A. 加氨装置的分类
1、炉水加磷酸盐系统:
磷酸盐溶液的配制系统图所示磷酸三钠直接加入溶液箱搅拌配置外,亦可单设4m3的溶解箱,经输液泵先循环搅拌后,再进入溶液箱的配制方法.
加磷酸盐量的控制除手工控制外,亦可进行自动控制:依据炉水磷酸根表的采样信号,经微机综合处理后的输出,控制加磷酸盐泵的量达到自动加药的目的.
2、给水、凝结水加氨系统:
氨液的配制除手工配制外亦可进行自动控制:当溶液箱液位低于设定值时,自动开启凝结水进口电磁阀至高液位时关闭,在溶液箱出口管道上安装的导电度仪表的测量值,控制进氨阀门开启,当浓度为±1相当于450 us/cm的导电值,自动关闭进氨阀,完成配药过程.
加氨量的控制除手工控制外,亦可进行自动控制:依据给水导电度(或PH值)的采样信号,经微机综合处理后的输出,控制加氨泵的加氨量达到自动加药的目的.
3、炉水磷酸盐协调控制系统:
在以除盐水作为补给水的高参数,大容量汽包锅炉中,即使炉水中保持合适的PH值,又防止产生游离NaOH,兼有防腐防垢功能,这就是炉水磷酸盐协调处理的目的,在保证炉水PH,PO3-符合部颁标准前提下又使炉水中无游离NaOH的水质工况是靠向汽包内添加Na3PO4+Na2HPO4或Na3PO4+NaOH的混合液来实现的.两种配方的选择主要由锅炉炉水水质决定,而配方的定量-即Na/PO4比(R值)是通过PH和PO3-的测量,查表得到的.
由于可靠的磷酸根和PH测量仪表,微机软件技术的开发,及性能优良的电控加药计量泵的应用,使得炉水磷酸盐协调处理成为可能,并彻底解决了传统磷酸盐处理存在的主要问题.
B. 有推荐不错的氨逃逸在线监测系统厂家品牌吗
谢谢邀请回答,选择氨逃逸在线监测系统,首先要对氨逃逸概念有一个基本了解。
我们在完成脱硝烟气时,无论是选择使用选择性催化还原法或是选择性非催化还原法,掌握好注射到NOX上的氨总量和对于注射分布的控制情况是达到最小的氨逃逸率和最大的除NOX效率的关键所在。如果将过量的氨注射到整个管道或是管道的部分区域都会导致氨的逃逸,对环境造成严重的污染。
氨逃逸将腐蚀催化剂模块,造成催化剂失活(即失效)和堵塞,大大缩短催化剂寿命。逃逸的氨气,会与空气中的SO3生成硫酸氨盐(具有腐蚀性和粘结性)使位于脱销下游的空预器蓄热原件堵塞与腐蚀。过量的逃逸氨会被飞灰吸收,导致加气块(灰砖)无法销售。此外,逃逸掉的氨气造成资金的浪费,环境污染。
这时我们就需要安装氨逃逸在线监测系统,以保证排放出去的气体是符合国家要求的。这里我推荐河北誉天环保生产的氨逃逸在线监测系统,系统针对大型机组脱硝反应器出口烟道较大、烟道环境复杂,对烟道监测有更高要求的用户,可采用网格取样方式监测氨逃逸。
网格取样装置安装在脱硝反应器出口烟道,经过汇流除尘入口烟道母管与电连接,通过压差带动烟气流动,烟气在母管内进行混合后进行取样测量。是您选择氨逃逸在线监测系统的首选厂家。
希望回答能帮到您
C. 氨制冷系统安装办哪些手续
氨压缩机安全保护装置应由氨压缩机制造厂成套配置,且应符合下列规定:
1、应设排气压力过高、吸气压力过低,油压差过大等电动机负荷超载,螺杆式压缩机应增设精滤油器前后压差过大等停机保护装置;
2、吸气、排气、润滑油系统和曲轴箱应设压力表或真空压力表;
3、排气管出管处应设止逆阀,螺杆式压缩机吸气管处应增设止逆阀;
4、出水管应设断水停机保护装置;
5、吸、排气口及润滑油系统应设温度计及排握温度过高停机保护装置,螺杆式压缩机应增设油温过高停机保护装置;
6、排气和吸气侧之间应有安全阀;
7、应设事故紧急停机按钮。
制冷系统所用压力容器和压力管道应符合下列规定:
1、所用的压力容器为有资质的生产厂家制造,设备铭牌和技术资料齐全,未经非法改造;
2、制冷装置所用压力管道的材质应采用无缝钢管,其质量应符合国家标准《流体输送无缝钢管》GB8163的要求,并有相应材质证明。制冷管道系统应采用氨专用阀门和配件,其公称压力不应小于2.5Mpa,并不得有铜质和镀锌、镀锡铸铁的零配件。在柱子、过梁、墙壁和制冷系统压力管道等易受碰撞之处,应设有防护装置;
3、安装制冷所用压力容器应由取得1级压力容器安装资质的单位进行,压力管道应由取得GC2以上压力管道资质的单位进行,安装单位应及时向使用单位移交有关安装质量证明材料;
4、制冷所用压力容器和压力管道应定期进行检验,经检验合格才能继续使用。压力容器和压力管道上的安全附件应定期校验。制冷装置高压侧压力表应采用氨专用压力表,其量程不得小于工作压力的1.5倍,精度不低于1.5级。用于低压侧的压力表精度不低于2.5级;
5、制冷系统应装设紧急泄氨器,在紧急情况下,可将系统中的氨液溶于水中,排至紧急泄氨池中;
6、冷凝器应设断水及冷凝压力超压力超过报警装置、压力表和安全阀;冷却水出口、给水主管应设温度计,蒸发式冷凝器应增设风机故障报警装置;
7、低压循环桶、氨液分离器和中间冷却器应设超高液位报警装置及正常液位自控装置。低压贮液器应设超高液位报警装置;
8、贮液器、中间冷却器、氨液分离器、低压循环桶、排液桶均应设氨用液位指示器或防霜液位计,其设计压力不应低于2.5Mpa(表压)。玻璃板(管)液位计指示器两端连接件应有关闭装置,采用玻璃管液位计应加设防护罩;
9、氨制冷设备和管道的刷漆颜色应符合《冷库设计规定》GB50072-2001的有关规定;
10、冷库所用的压力容器和压力管道应每年进行一次外部检验,每六年由法定检验单位进行一次全面检验,未经检验合格,领取使用证,不得使用。
D. 合成氨转化工段燃料气系统原理
固定床煤气炉是合成氨装置的“龙头”设备,传统的生产工艺为空气、蒸汽间歇制气;近年来,富氧空气、蒸汽连续制气工艺为合成氨装置提供了技术改造的新途径。技术改造后的煤气炉可根据炉况或工艺条件实现两种制气模式的切换。其中,富氧制气具有产气量高,煤耗、汽耗低的优势。因此,结合煤气炉多制气模式的工艺与自动化改造是目前合成氨企业节能降耗的主要措施之一。
煤气炉间歇制气虽然已采用了DCS控制,但其生产操作与控制仍主要依赖于人工经验,存在着运行平稳性差、炉况波动大、劳动强度高等问题。另一方面,富氧制气生产是一项新工艺,尚无成熟的过程控制解决方案。基于此,根据煤气炉两种制气工艺特点,开发基于预测控制和智能控制的先进控制系统,实现了生产过程的精细化控制,减少了设备故障率,以达到稳定炉况、提高产气量、降低煤耗与汽耗、减少劳动强度、提高经济效益的目的。
先进控制策略
合成氨装置煤气炉先进控制系统采用浙江中控软件技术有限公司的先进控制软件APC-Sutie。
该先进控制系统适用于多台间歇制气与富氧制气并联生产的煤气炉。其总体结构如图1所示。
图1 合成氨装置煤气炉先进控制系统总体结构
煤气炉间歇制气先进控制:通过对加煤量、炉条机转速、吹风时间、上吹时间、下吹时间等的合理调节,稳定煤气炉的火层位置、炭层高度、上行温度、下行温度、灰仓温度等关键工艺指标,从而有效地防止炉况恶化,稳定并提高产气量。同时通过合理调整煤气炉加氮时间,克服滞后和干扰因素的影响,实现对合成塔循环氢氢氮比的平稳控制,有效降低合成氨装置的综合能耗。
煤气炉富氧制气先进控制:通过对加煤量、炉条机转速、蒸汽量、富氧空气量的合理调节,实现对煤气炉炭层高度、上行温度、灰仓温度等关键工艺参数的平稳控制。并根据煤气炉关键工艺指标的变化优化调整蒸汽和富氧空气量的配比,稳定炉况,提高产气量,同时也大幅度降低操作劳动强度。
炉况智能诊断专家控制:利用煤气炉生产实时数据和历史信息,建立炉况实时监控和智能诊断系统,通过跟踪关键工艺指标的变化,及时发现并处理异常炉况,维持稳定的煤气炉火层位置,防止出现炉况恶化、设备故障等极端情况,为煤气炉的平稳生产提供保障。
应用效果
合成氨装置煤气炉应用先进控制技术之后,取得了如下效果:
显著提高煤气炉在间歇制气、富氧连续制气两种工况下操作平稳性,各关键工艺指标(上行温度、下行温度、煤气质量等)的标准方差平均减少30~40%以上;
基于平稳操作,实现了工艺指标的“卡边”优化,使煤气中CO2含量降低2%,残碳含量降低3%;同时提高了吨煤的产气量;
充分挖掘装置潜力,实现节能降耗,吨氨煤耗降低5%,吨氨汽耗降低10%;
提高装置的综合自动化水平,统一操作方法,大幅度降低操作人员劳动强度;
先进控制系统投运率达到95%以上。
E. 啤酒厂的液氨使用属于氨直接蒸发制冷的空调系统,快速冻结装置吗
有如下几个需要注意的方面:1.在设备设施方面,液氨管线严禁穿过有人员办公、休息和居住的版建筑物,避免发生氨权制冷系统管道泄漏给房间内人员带来的危险。2.包装间、分割间、产品整理间等人员较多生产场所的空调系统严禁采用氨直接蒸发制冷系统。3.快速冻结装置回气集管端部封头等焊缝质量要符合规范要求。4.热氨融霜工艺,必须采取有效的超压导致泄漏的预防措施。5.氨制冷机房贮氨器等重要部位应安装氨气浓度检测报警仪器,并与事故排风机自动开启联动。
F. 温 度文档2010-3-19 电容式液位变送器在合成液位测控系统中的关键性
电容式液位变送器 在合成液位测控系统中的关键性是不容忽视的,它的一次微小的变化都有可能造成液位检测反应不准。举例说明下:
某厂装设了合成氨分、冷交的液位测控系统。液位计选用了我厂的气动高压浮筒液位调节变送器UQZ-113,调节阀采用MATS-320KDg6C=0.1,配以气动调节记录仪及副线板,压力校验仪,组成合成工段氨分、冷交高压测控系统。为了便于维护检修。每套系统总共用7只Dg10的高压阀、两个标准三通、1个弯头、15对高压法兰、48条高压螺栓、90个高压螺母及5Mφ 24×6高压管。为了延长高压调节阀的使用寿命,保证调节效果,采用2只高压调节阀串联方案。整个系统繁琐,安装量大,现场杂乱,而且每套系统投资也在15000元以上(几年前的价格)。然而,这两套系统安装以后,因液位检测反应不准,一直未能正常投入使用。
原因分析
我厂合成氨生产中的氨分离器、冷交换器等高压容器中的液位检测,按常规方式采用连通管形式(浮筒式液位计等)设计安装的液位检测装置无法正常工作的现象,据调查在小化肥厂普遍存在。
造成这种现象的原因是:氨分、冷交等高压气液分离器并不是简单的空筒容器,工作压力高达32MPa,其中都装有结构形式不同的分离内件,而这些高压容器的外筒采用多层卷板焊接,不允许在筒体上开孔。因此作为液位检测仪表安装的气相、液相预留接口,均开在整体锻造的高压容器上、下封头上,即气相接口在上封头,液相接口在下封头。
众所周知,高压介质流经设备后,因设备阻力的影响,在设备进出口将出现压差。该压差的大小与设备结构、流通截面、介质流量等因素有关,并随介质流量变化而变化,以我厂氨分离器为例,介质进入容器后流经分离内件,进行气液分离,液氨积存在氨分底部作为产品排出,气体则从容器上端的出口引出氨分进入后一级装置。而我厂的氨分、冷交的液位检测接口(液相、气相)正好位于分离段的两侧,分离段产生的压差也正好作用于液位计气液相接口之上。据测量,分离段的压差在满负荷时可高达几米至十几米水柱。随氨分、冷交设备结构及介质进口位置及在分离段内的流向不同,可能出现两种情况;一种是分离段压差值的正压侧作用于液位上方而负压侧作用于液位计气相接口上,此时,由液位计气相、液相引出的是容器中实际液位与分离段所产生的压差的正向叠加量。一般浮筒液位变送仪表的测量范围仅在1米之内,因此,只要容器底部稍有一点液体,在压差作用下很快充满外接液位计(浮筒)的连通管内,使液位计显示满液位。除非容器中液位彻底排空,否则不论其中液位如何变化,外接浮筒液位计总是显示满量程。另一种情况是内件的压差正压侧作用于液位计气相接口、负压侧作用于容器中液位上方,内件压差与液位量值反向叠加。因受内件压差作用,不论容器中液位如何变化,即使液位已充满容器甚至带液,液位计显示总为零。
我厂原装氨分、冷交气动浮筒液位测量系统之所以不准,仍属于前者类型。
改进措施
为尽快实现节能降耗,我厂决心重新改造合成氨分、冷交液位检测自控系统。采用《化肥工业》、《小氮肥》编辑部重视与推广的MAT-320C内装式电容式高压液位变送器,从氨分、冷交的液相孔直接插入设备中检测其液位,用等离子双光柱数字显示仪(带上、下限报警)显示液位变化,液位上、下限报警和调节阀位由简易电子调节器进行自调。因原有的气动高压调节阀装上后从未使用,为节约投资,拟暂时仍用其进行调节。
我厂利用小修,不到半天时间,两套液位计全部装好。开车后调试使用,液位检测部分很快正常工作,投入运行,实现有液位指示下的放氨操作。随后对自控系统进行调试,压力变送器发现原有的气动调节阀MATS内漏严重,虽然冷交串联安装的两只阀门处于全部关闭的状态,其流通能力也选得很小,但液位仍然很难提起来,说明调节阀已难适应高压液位自控的需要。即使这样,跑气量已较手动放氨时明显减少,循环气中CH4 含量也随之上升。我厂又迅速购进两台新型专用自动放氨阀,进行更换,分别用于氨分、冷交系统实现自动放氨,使液位自控很快转入正常、终于在短时间内解决了我厂这一生产关键,实现了合成氨分、冷交高压液位测量自动控制。
实施效果
某厂以内装式电容高压 液位变送器 为主的合成氨分、冷交液位测控系统自2007年10月正式投运至今有2年余,实践证明,该项目实施效果明显,产生效益显著,据统计,年直接创益80万元
要买就要买安全可靠的产品,北京奥特美自动化技术有限公司可以为您提供
G. 加氨装置的概述
本厂生产的炉内加药装置包括给水加氨,加联胺,炉水加磷酸盐,炉水加磷酸盐协调控制版,凝结水加氨等系统权.
加药装置的单元组合形式主要视机组容量大小,锅炉配置的方式(二炉共用一套或单炉单套等),自动化水平的高低(自动或手动控制),加药泵种类的选用(交流或支流马达,进口或国产泵)灵活的组成各种不同形式单元,安装在一个底座上,这种工厂化的整套装置,大大减少了设计和现场安装的工作量,对整机的质量,安全和现场投运提供了可靠的保证.
单元组合装置各部件材质,主要分为不锈钢,碳钢,和碳钢衬胶等几种形式,视用户需要而定.
H. 氨用截止阀与其他截止阀有什么异同 氨系统用截止阀是否是专用的
I. 合成氨脱硫造气的基本原理
氨法脱硫工艺皆是根据氨与SO2、水反应成脱硫产物的基本机理而进行的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。
1、电子束氨法(EBA法)与脉冲电晕氨法(PPCP法)
电子束氨法与脉冲电晕氨法分别是用电子束和脉冲电晕照射喷入水和氨的、已降温至70℃左右的烟气,在强电场作用下,部分烟气分子电离,成为高能电子,高能电子激活、裂解、电离其他烟气分子,产生OH、O、HO2等多种活性粒子和自由基。在反应器里,烟气中的SO2、NO被活性粒子和自由基氧化为高阶氧化物 SO3、NO2,与烟气中的H2O相遇后形成H2SO4和HNO3,在有NH3或其它中和物注入情况下生成(NH4)2SO4/NH4NO3的气溶胶,再由收尘器收集。脉冲电晕放电烟气脱硫脱硝反应器的电场本身同时具有除尘功能。
这两种氨法能耗和效率尚要改进,主要设备如大功率的电子束加速器和脉冲电晕发生装置还在研制阶段。
2、简易氨法
简易氨法已商业化的有TS、PS氨法脱硫工艺等,主要利用气相条件下的H2O、NH3与SO2间的快速反应设计的简易反应装置,严格地讲简易氨法是一种不回收的氨法,其脱硫产物大部分是气溶胶状态的不稳定的亚铵盐,回收十分困难,氨法的经济性不能体现;且脱硫产物随烟气排空后又会有部分分解出SO2,形成二次污染。所以,该工艺只能用在环保要求低、有废氨水来源、不要求长期运行的装置上。
3、湿式氨法
湿式氨法是目前较成熟的、已工业化的氨法脱硫工艺,并且湿式氨法既脱硫又脱氮。湿式氨法工艺过程一般分成三大步骤:脱硫吸收、中间产品处理、副产品制造。根据过程和副产物的不同,湿式氨法又可分为氨-硫铵肥法、氨-磷铵肥法、氨-酸法、氨-亚硫酸铵法等。
(1)吸收过程:
脱硫吸收过程是氨法烟气脱硫技术的核心,它以水溶液中的SO2和NH3的反应为基础:
SO2+H2O+xNH3 = (NH4) xH2-XSO3 (1)
得到亚硫酸铵中间产品。其中,x=1.2-1.4。
直接将亚铵制成产品即为亚硫酸铵法
(2)中间产品处理
中间产品的处理主要分为两大类:直接氧化和酸解。
a) 直接氧化——氨-硫铵肥法
在多功能脱硫塔中,鼓入空气将亚硫铵氧化成硫铵,其反应为:
(NH4)XH2-XSO3+1/2O2 +(2-x)NH3=(NH4)2SO4 (2)
b) 酸解——氨酸法
用硫酸、磷酸、硝酸等酸将脱硫产物亚硫铵酸解,生成相应的铵盐和气体二氧化硫。反应如下:
(NH4)XH2-XSO3+x/2H2SO4=x/2(NH4)2SO4+SO2+H2O (3)
(NH4)XH2-XSO3+xHNO3=xNH4NO3+SO2+H2O (4)
(NH4)XH2-XSO3+x/2H3PO4=x/2(NH4)2HPO4+SO2+H2O (5)
(3)副产品制造
中间产品经处理后形成了铵盐及气体二氧化硫。铵盐送制肥装置制成成品氮肥或复合肥;气体二氧化硫既可制造液体二氧化硫又可送硫酸制酸装置生产硫酸。而生产所得的硫酸又可用于生产磷酸、磷肥等。
4、湿式氨法的脱氮作用
湿式氨法在脱硫的同时又可起一定的脱氮作用。
反应式为:
2NO十02=2N02
2N02十H20=HN03 + HN02
NH3+ HN03 = HN4NO3+H2O
NH3+ HN02 = HN4NO2+H2O
4(HN4)2SO3+ 2N02 = N2 +4(HN4)2SO4
湿式氨法脱硫工艺系统一般组成
氨水洗涤脱硫工艺设备主要由脱硫洗涤系统、烟气系统、氨贮存系统、硫酸铵生产系统(若非氨-硫铵法则是于其工艺相对应的副产物制造系统)等组成。核心设备是脱硫洗涤塔。
J. 氨制冷系统与金属的关系
制冷剂
氨和氟(针对R22)都是中温制冷剂,在常温下的冷凝压力和单位容积制冷量相差不大,但为提高制冷量,制冷剂在节流以前一般均需要过冷,实验表明,当冷凝温度tk=30℃, 蒸发温度to=-15℃时,每过冷1℃制冷系数R22增加0.85%,而R717为0.46%.
氨对人体有毒,氨蒸气无色,具有强烈的刺激性臭味。一旦泄漏将污染空气、食品,并刺激人的眼睛、呼吸器官。氨液接触皮肤会引起“冻伤”。如果空气中氨的容积浓度达到0.5~0.6%时,人在其中停留半个小时即可中毒,浓度达到11~14%时即可点燃,当浓度达到16~25%会引起爆炸(系统中氨所分离的游离氢积累到一定的程度,遇空气引起强烈爆炸),江浙和福建等地曾多次发生氨压缩机或制冷系统爆炸事故,导致设备毁坏和人员伤亡的惨重损失。而且,我国已明确规定在人口稠密的场合,不能使用易燃、易爆的有毒制冷剂。
氨在润滑油中的溶解度很小,因此氨制冷剂管道及换热器的表面会积有油膜,影响传热效果。氨液的比重比润滑油小,在贮液器和蒸发器中,油会沉积在下部,需要定期放出。
因氨压力在0公斤时,蒸发压力为-33.4℃,为避免制冷系统在负压下工作,目前氨主要用于蒸发温度在-34.4℃以上的大型或中型制冷系统中。
因此,从安全、方便、卫生等方面考虑,特别是对空调、贮藏、-34℃以下制冷系统氨机不理想。
氟里昂是一种常用的高、中、低温制冷剂。它无色,无味,不燃烧,不爆炸,化学性能稳定。基本无毒(我国国家标准GB7778-87综合考虑制冷剂的燃烧性、爆炸性、对人体的直接侵害三个方面的因素,对制冷剂进行安全分类,R22被列为第一安全类,而R717被列为第二安全类),又可适用于高温、中温、和低温制冷机,以适应不同制冷温度的要求,能制取的最低蒸发温度为-120℃
氟里昂能不同程度的溶解润滑油,不易在系统中形成油膜,对传热影响很小。同时,氟里昂制冷机组在设计时还考虑到了工质的替代问题,即在使用新工质时,无须对系统进行改动。
(二)制冷系统
氨制冷压缩机本身的特点,蒸发温度低于-28℃时要采用双级压缩,且氨机需提供泵供液系统及复杂的回油机构,致使系统庞大、辅机多、管路复杂,阀门多,施工安装程序复杂,施工周期长。同时会带来故障隐患的增加(江浙和两广等地,氨系统曾发生多起蒸发管道和加氨管道、阀门破裂、脱开等引起跑氨事故,氨阀阀芯脱落,陷入阀体内卡死的事故更是频繁发生)。由于氨具有较大的毒性,机房向外开启的门不允许同向生产性厂房, 氨制冷系统的设备间不宜布置在其它厂房的共同建筑之内。而且氨机运行时噪音大,振动较大,产生的动载荷大,对库体的影响不可忽略。因此必须单独设置机房。且氨系统中阀门均为开启式阀门,制冷剂的微量泄漏是无法避免的。
氟里昂的特性决定了氟系统管路较氨系统简单的多。氟里昂机组的配置已经非常完备,只需简单的接管即能投入运行。且氟机组体积小,占地少,不需单独设机房,大大节省了空间,机组噪音低,所有阀件为全封闭阀件,无工质泄漏等问题。
(三)控制系统
氨系统无法完全实现自动控制。其开、停机及供液调节等工作必须由人工操作完成,需设专业人员对氨机进行24小时管理,且保护装置不完备。
氟系统可实现完全自动控制,无需专人看管。保护装置完备,机组配有电压保护、温度保护、电流保护、压力保护等完备的保护措施,并可实现计算机控制,能量调节范围广。
(四)经济性
☆设备投资比较:对于相同的制冷量、相同的温度范围,不同的制冷机初期投资是不同的。大型工程从设备投资来看,氨制冷系统的整体设备投资比氟里昂低。
氨系统包括的设备较多,主要有压缩机、冷风机、冷凝器、油分离器、高低压贮液桶、中间冷却器、再冷却器、氨液分离器、低压循环桶、紧急泄氨器、放空气器、集油器、氨泵及相应的阀件和旁通阀等。氨对钢铁不起腐蚀作用,但当含有水分时,腐蚀锌、铜、青铜及其铜合金,只有磷青铜不被腐蚀。一般氨系统管路不用铜和铜合金材料而采用无缝钢管,只有连杆衬套、密封环等零件才允许使用高锡磷青铜,无缝钢管比铜管造价要低,但其传热性能要比铜管差。