导航:首页 > 装置知识 > 传动装置的优化设计

传动装置的优化设计

发布时间:2022-05-02 06:51:01

❶ 带式传输机传动装置的设计

设计—用于带式运输机上的单级直齿圆柱减速器,已知条件:运输带的工作拉力F=1350 N,运输带的速度V=1.6 m/s卷筒直径D=260 mm,两班制工作(12小时),连续单向运转,载荷平移,工作年限10年,每年300工作日,运输带速度允许误差为±5%,卷筒效率0.96

一.传动方案分析:
如图所示减速传动由带传动和单级圆柱齿轮传动组成,带传动置于高速级具有缓冲吸振能力和过载保护作用,带传动依靠摩擦力工作,有利于减少传动的结构尺寸,而圆柱齿轮传动布置在低速级,有利于发挥其过载能力大的优势

二.选择电动机:
(1)电动机的类型和结构形式,按工作要求和工作条件,选用一般用途的Y系列三相异步交流电动机。
(2)电动机容量:
①卷筒轴的输出功率Pw=FV/1000=1350×1.6/1000=2.16 kw
②电动机输出功率Pd=Pw/η
传动系统的总效率:η=
式中……为从电动机至卷筒之间的各传动机构和轴承的效率。
由表查得V带传动=0.96,滚动轴承=0.99,圆柱齿轮传动
=0.97,弹性连轴器=0.99,卷筒轴滑动轴承=0.96
于是η=0.96××0.97×0.99×0.96≈0.88
故:
Pd= Pw/η=2.16/0.88≈2.45 kw
③ 电动机额定功率由表取得=3 kw
(3)电动机的转速:由已知条件计算卷筒的转速
即:
=60×1000V/πD=60×1000×1.6/3.14×260=118 r/min
V带传动常用传动比范围=2-4,单级圆柱齿轮的传动比范围=2-4
于是转速可选范围为 ==118×(2~4)×(2~4)
=472~1888 r/min
可见同步转速为 500 r/min和2000 r/min的电动机均合适,为使传动装置的传动比较小,结构尺寸紧凑,这里选用同步转速为960 ×r/min的电动机
传动系统总传动比i= =≈2.04
根据V带传动的常用范围=2-4取=4
于是单级圆柱齿轮减速器传动比 ==≈2.04

❷ 卷扬机传动装置中的一级圆柱齿轮减速器

圆柱齿轮减速机,是一种动力传达机构,其利用齿轮的速度转换器,将电机的回转数减速到所要的回转数,并得到较大转矩的装置。圆柱齿轮减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。
圆柱齿轮减速机的齿轮采用渗碳、淬火、磨齿加工,承载能力高、噪声低;主要用于带式输送机及各种运输机械,也可用于其它通用机械的传动机构中。它具有承载能力高、寿命长、体积小、效率高、重量轻等优点,用于输入轴与输出轴呈垂直方向布置的传动装置中。
ZQD型圆柱齿轮减速机
ZQD型减速机是在尽量不改变ZQ型减速机的输入输出轴的位置和安装尺寸的前提下,增加一高速级称为三级传动,增加的高速级在上方。
ZQD型大传动比圆柱齿轮减速机共有ZQD350+100、ZQD400+100、ZQD650+150、ZQD850+250和ZQD1000+250六种规格。
ZQA型圆柱齿轮减速机
ZQA型减速机是在ZQ型减速机的基础上改进设计的,为提高齿轮承载能力,又便于替代ZA型减速机,在外形、轴端和安装尺寸不变的情况下,改变齿轮齿轴材质,齿轮轴为42CrMo,大齿轮为ZG35CrMo,调质硬度齿轮轴为291~323HB,大齿轮为255~286HB。ZQA型减速机主要用于起重、矿山、通用化工、纺织、轻工等行业。
ZSC型圆柱齿轮减速机
ZSC减速机在吸取了国内、国外同类产品的设计、制造经验的基础上,经过完善优化而形成的系列产品,广泛适用于冶金、机械、石油、化工、建筑、轻纺、轻工等行业。
ZQA型圆柱齿轮减速机的性能特点:
(1)齿轮均采用优质合金钢经渗碳、淬火而成,齿面硬度达54-62HRC。
(2)中心距,公称传动比等主要参数均经优化设计,主要零、部件互换性好。
(3)一般采用油池润滑,自然冷却,当热功率不能满足时,可采用循环油润滑或风扇.冷却盘管冷却。
(4)体积小、重量轻、精度高、承载能力大、效率高,寿命长,可靠性高、传动平稳、噪声低。[1]
我们在生活中经常出现减速机出现机器故障的问题,当机器出现问题时,一定会很影响工作的进度,甚至带来很多不必要的损害,那么如果减速机出现问题了,怎么对ZQD型圆柱齿轮减速机进行维修呢?我们先要对减速机进行维修前的检查工作,再进行具体的拆机工作,一起来看看。
检修前的准备工作:
(一)现场检查准备。检修现场执行定置管理,开工前,完成检修现场的布置,检查安全措施必须全部落实,工作票已经办理完成,具备开丁条件。
(二)备件及T器具准备。开T前,对检修中用到的材料、备件进行一次全面的检查、核对,保证完好可用;对使用的检修工器具进行全面外观检查和实验,电缆盘、电动工器具、起重工器具均在检验周期内,且外观检查合格。检验合格后,将其全部运至检修现场指定位置。
(三)工前交底。工作负责人向丁作班人员交代安全注意事项、检修质量要求、T作进度,进入T作现场检修工作开始。
(四)检修指导文件准备。检修指导文件是指完成检修工作的步骤、工艺要求及验收质量标准,检修现场必须严格执行该文件,并履行相关验收手续。主要包括检修文件包、检修.[艺、消缺T艺卡等。这些文件必须开丁前完成编制、审批,并组织检修人员学习讨论。
(五)要圆满完成一项大型检修工作,必须做好“七分准备,i分干”,工前准备至关重要,主要包括检修指导文件准备、备件及工器具准备、现场检查准备、工前交底等。

❸ 带式输送机传动装置如何设计

【传动方案拟定】

  1. 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷回平稳。

  2. 原始数据:滚答筒圆周力F=1.7KN;带速V=1.4m/s;

  3. 滚筒直径D=220mm。

【电动机的选择】

  1. 电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。

  2. 确定电动机的功率:
    传动装置的总效率:
    η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
    =0.96×0.992×0.97×0.99×0.95
    =0.86
    电机所需的工作功率:
    Pd=FV/1000η总
    =1700×1.4/1000×0.86
    =2.76KW

  3. 确定电动机转速:
    滚筒轴的工作转速:
    Nw=60×1000V/πD
    =60×1000×1.4/π×220
    =121.5r/min

❹ 机械设计课程设计带式运输机传动装置的设计

给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2 、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3 、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100 ,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齿数比: u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;
则 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取 φ
齿宽: b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1 、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2 、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。
则 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滚动轴承的选择
1 、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2 、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1 、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2 、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3 、输入轴与带轮联接采用平键联接 =25mm L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4 、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计参考资料目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11

❺ 谁做过单级直齿圆柱齿轮减速器优化设计

圆柱齿轮减速器的优化设计

一、课题的目的意义:
齿轮减速器是原动机和工作机之间独立的闭式机械传动装置,能够降低原动机转速或增大扭矩,具有传递功率大,冲击小,维修方便,使用寿命长等许多优点。是一种广泛应用在工矿企业及运输,建筑等部门的机械部件。圆柱齿轮减速器传统的设计方法使:设计人员根据各种资料,文献提供的资料,结合自己得设计经验,初步订出一个设计方案,然后进行验算。但用这种方法设计出的减速器往往尺寸偏大,可能并不是最优的设计方案。因此,应用离散变量的组合型优化设计理论能将设计中的模糊因素和模糊主观信息定量化,通过合理给定约束函数,目标数的地容许值,期望值及其模糊分布来求得合适的优化方案,减少用料,降低了生产成本,具有可观的经济效益。

二、近年来国内外研究现状:
最优化方法在机构设计和零件设计中应用广泛,效果显著。近十年来,国内外对整台机器或某一机械系统的设计,采用最优化方法代替原来传统的设计方法也越来越多。
机构的优化设计从六十年代后期开始得到学速发展,目前已经成为机构学的重要研究方向之一。
齿轮传动的优化设计可概括为:当传动载荷一定时追求齿轮的体积最小,或在齿轮体积一定时追求传递的载荷最大。有时也追求齿轮传动的某项或某几项性能为最佳。齿轮传动的优化设计既可以成为但目标函数的问题,也肯已成为多目标函数问题。为使齿轮工作可靠,显然齿面的接触应力、齿轮的疲劳弯曲应力应分别小于或等于许用值或保证一定得的安全裕度。为使齿轮的啮合处于较好的工作条件下,有时还把吃面同油膜厚度以及润滑油的温升也作为约束条件。另外,诸如为了避免产生根切、并保持连续啮合、避免齿轮齿顶过分变尖、均须对设计变量提出某些限制,这些限制也应最为约束条件。
齿轮优化设计通常都是将齿轮的模数、齿数、尺宽、螺旋角以及传动比等取作设计变量。至于是否将变位系数也取做设计变量,这要根据工程设计的实际需要而定。事实上,若设计变量中包括变位系数,一般就应采用整数规划或混合规划。否则,优化设计所输出的均为连续变量的最优解中的齿数和模数就难于离散化(因齿数应圆整为正整数,模数应标准化)。有些工程问题,若直接采用整数规划或混合规划,往往因限制过于苛刻有可能得不到最优解。作为齿轮优化设计的另一种办法,是不把变为系数选作设计变量,这样一来,当需要随优化计算所输出的均为连续变量的最优解中的齿数和模数进行离散化时,我可引入变位系数,来调整几何关系或提高某个(或某些)齿轮的强度,从而能凑配中心矩,又能控设射计变量不越出可行域。其次,更为重要的是,这种做法一般都不至于使算法本身所得到的最优解遭到较大程度的坡坏。
在机械设计中人们希望获得全部最优设计点,但实际的工程问题,很少能保证满足凸性的要求,即所追求的目标函数往往具有很多个相对的极小点,因而优化的结果一般为局部最优设计点,或后退一步讲,如果这些都做不到,那么优化设计最起码也能将设计方案作出重大改进。这就是我们以前提到过的“最优化”应被理解为一个相对的概念,而不要把它决对化。实际上,如上所述,设计人员如能正确地运用最优化方法进行设计,其设计方案与传统方法比较,一定会有所改善并能避免许多盲目性,显然这刚好是工程设计人员最感兴趣的。
最后化方法在机械设计中的应用,关键在于试验工作要跟上,因为再好的理论也要由实践来检验,所以采用最优化方法设计出的机械产品必须通过实践来检验其可靠性。

三、设计方案的可行性分析和预期目标
1可行性分析:齿轮减速器具有传递功率大,冲击小,维修方便,使用寿命长等许多优点。优化设计的目的和前提就是使减速器的体积小,以达到结构紧凑,质量最小从而降低总系统的使用成本。成本是首先需要考虑的主要因素之一。
2优化设计的目标:减速器向自动化、高精度、高效率、高速化、高功率、小型化、轻量化方向发展。

四、所需要的仪器设备、材料:
主要仪器设备和材料有:装有AutoCAD软件的计算机一台,硬件要求:P41.1CPU,512M RAM,10G硬盘以上计算机。软件要求:WINDOWS XP;A0图板,丁字尺,计算器。

能用的话联系...

❻ 带式输送机传动装置的设计

一)选择电动机1。选择电动机容量 P=FV/η P=4000*2/η η是带式输送机的效率,你没写出来。回2。选答取电动机额定功率 查表3。确定电动机转速 n=60V/πD n=60*2*1000/π*450 毫米转化米/1000 然后查表。二)计算传动装置的总传动比并分配各级传动比。总传动比等于电动机转速除以n。 分配有:动机道减速箱,动力轴道中间轴,间轴道输出轴 。 开始的就这么多了。我打字好慢的,累的不行了 呵呵

❼ 循环水泵节能改造中的水循环节能助力装置设计理念

博力丰的“水循环节能助力装置”是依据流体力学里的射流原理设计,它主要能吸蚀消化水泵气蚀余量,提高流体密度并转化为动能
,转换成系统内部分扬程,克服系统阻力。

❽ K-H-V什么意思

K-H-V型少齿差行星轮系在钻掘机械中的优化设计

内容摘要摘要:小体积、大传动比等优点使少齿差行星轮系在钻掘机械中得到了广泛的应用,通过模糊可靠性设计,寻求最佳设计参数,保证了传动装置可靠性好、寿命长,对钻掘机械的正常运行起到了重要的作用。
正文文字大小:大 中 小 K-H-V型少齿差行星轮系在钻掘机械中的优化设计

殷素峰1,廖新根2 ,何伟2

(1.河北科技大学 机械学院, 河北 石家庄 050054

2.东莞理工学院 城市学院, 广东 东莞 523106 )

摘要:小体积、大传动比等优点使少齿差行星轮系在钻掘机械中得到了广泛的应用,通过模糊可靠性设计,寻求最佳设计参数,保证了传动装置可靠性好、寿命长,对钻掘机械的正常运行起到了重要的作用。

关键词:钻掘机械; 优化设计; 少齿差; 可靠性

The optimal design of K-H-V gear galaxy with fewer tooth difference in milling machine

Yin Sufeng1,Liao Xingen2,He Wei 2

(1.Hebei University of Science and Technology Mechanical College,Shijiazhuang,Hebei 050054

2.Dongguan University of Technology City College,Dongguan,Guangdong 523106)

Abstract:The advantages of gear galaxy with fewer tooth difference, such as little volume and big transmission ratio , make it applied widely in milling machine. According to fuzzy reliability optimal design, reasonable parameters are found to assure the reliability and prolong the life of the transmission, as a result, which make an effect on operation of milling machine.

Key word: milling machine;optimal design;fewer tooth difference;reliability

1、K-H-V型少齿差行星轮系传动原理

目前,在岩土钻掘机械中,如转盘式钻机、动力头钻机、冲击反循环钻机、牙轮钻机、旋挖钻机等,其变速机构广泛采用圆柱齿轮减速器,行星齿轮减速器,涡轮减速器,摆线针轮减速器,而K-H-V少齿差传动装置与其相比结构更加简单、体积小,承载能力大、耐疲劳,使用可靠。 K-H-V型少齿差行星轮系传动原理如图1所示, 在这种少齿差行星齿轮传动中,只有一个太阳轮(用K表示)、一个行星架(用H表示)和一根带输出机构的输出轴(用V表示),故又称这种轮系为K—H—V行星轮系。行星轮1与内齿轮2的齿数差为1~ 4,这种轮系用于减速时,行星架H为主动件,行星轮1为从动件。输出的运动为行星轮的转动。其传动比

由上式可知,如齿数差(z2-z1)很小,就可以获得较大的单级减速比,当z2-z1=1时 ,即“一齿差”时,则 。由此可见,这种轮系可用很少几个构件,就可获得相当大的传动比。

由于上述优点,渐开线少齿差行星齿轮减速器在岩土钻掘机械中得到了较为广泛的应用。但该传动的设计计算比较复杂,传统的设计方法根据材料的物理机械性能,采用材料力学的弹性理论进行计算,没有充分考虑材料机械性能参数的离散性设计影响,要么其工作可靠度不够,要么造成材料浪费,因此,只有在考虑全部变量的离散性和约束条件模糊性基础上,进行优化计算,才能够保证设计出更为合理的少齿差传动机构。

2、K-H-V少齿差行星轮系模糊优化基本原理

在K-H-V少齿差行星传动中,齿轮副许用弯曲应力是一个模糊量,根据模糊数学和概率论知识,如果使齿轮副许用弯曲应力的模糊可靠度R不低于要求可靠度R0,就能够设计出既能满足使用要求,又能显著节省材料,提高机械性能的变速器。

模糊可靠度计算如下

μA (x) 为隶属函数

p(x) 为概率密度函数

在K-H-V少齿差行星传动中, 齿轮副弯曲应力近于对数正态分布,其概率密度函数为

μ为变量x对数均值,σ为变量x的对数标准差。

许用弯曲应力模糊隶属函数为降半梯形分布

α1、α2为许用应力

将(2)、(3)式代入(1),得齿轮副齿根弯曲强度模糊可靠度

φ为标准正态函数

3、优化设计分析

1、目标函数

以K-H-V少齿差行星系体积最小为设计目标,从图1可知其体积大小主要取决于内齿轮顶圆直径和齿宽,因此,其目标函数可设为

2、强度约束

在K-H-V少齿差行星传动中,由于行星轮和内齿轮曲率半径相差甚小, 相互接触面积大,接触应力较小 ,其主要的失效形式一般为轮齿折断,而不会产生齿面点蚀破坏,所以只需进行齿根弯曲强度计算,而不需考虑接触疲劳强度的计算。取内齿轮、行星轮弯曲强度的要求可靠度R0为0.995,则弯曲强度模糊可靠性约束条件为

R1、R2计算如下:

K-H-V少齿差行星传动轮齿弯曲强度的要求

K为载荷系数;Ft为圆周力;YFα 为齿形系数;YSα为应力修正系数;Ys 为重合度系数;φd为齿宽系数;m为模数;z 为齿数

CσF为变异系数

将σ、μ代入(4)式,得 R1、R2

3、运动约束

(1)不产生齿廓重叠干涉条件

δ1、δ2为辅助角

αe1、αe2为行星轮、内齿轮的齿顶压力角

(2)连续传动条件

α为传动啮合角

4、几何约束

(1)根据模数应大于零,得

(2)根据轮齿不根切条件,得

(3)根据齿宽限制条件,得

4、优化结果及存在的问题

某旋挖钻机动力头采用渐开线"一齿差"少齿差传动,要求内齿轮分度圆直径不大于400mm,传动比i=75,输入轴转速1500r/min,额定输出转矩T2=30KN,在满足强度可靠度R≥0.995条件下进行模糊可靠性优化设计。优化设计前后对照如表1。

表1 优化设计前后对照表

m z1 b f(X)

优化前 6 75 80mm 12.7×106mm3

优化后 6 66 71mm 8.7×106mm3

通过优化设计,K-H-V少齿差传动装置在钻掘机械中的体积明显减小,节约了材料,降低了生产成本,在实际应用中轮齿接触性能也有所改善,受载均匀,在使用过程中工作良好,但为了防止由于齿数差很小而引起的内啮合轮齿的干涉,需要采用具有很大啮合角( 54°~ 64°)的正传动,当传动速度小于980r/min,或速度过高时、容易自锁,并且有较大的轴向压力。此外,K-H-V少齿差传动还需要一个输出机构,致使其传递的功率和传动效率受到了一些限制。因此,少齿差传动在钻掘机械的应用还需作进一步的研究,但可以肯定的是少齿差传动在钻掘机械的应用前景是乐观的。

❾ 带式输送机传动装置设计

一)选来择电动机1。选择电源动机容量 P=FV/η P=4000*2/η η是带式输送机的效率,你没写出来。2。选取电动机额定功率 查表3。确定电动机转速 n=60V/πD n=60*2*1000/π*450 毫米转化米/1000 然后查表。二)计算传动装置的总传动比并分配各级传动比。总传动比等于电动机转速除以n。 分配有:动机道减速箱,动力轴道中间轴,间轴道输出轴 。 开始的就这么多了。我打字好慢的,累的不行了 呵呵

阅读全文

与传动装置的优化设计相关的资料

热点内容
电子实验装置怎么连导线 浏览:611
中学化学水的电解实验装置 浏览:966
dis实验系统主要仪器是什么 浏览:224
加速度与力小实验装置 浏览:276
房屋设备安装有哪些设备 浏览:903
煤气阀门的结构图 浏览:850
阀门管件怎么寻找国外客户 浏览:181
东莞理化仪器升级怎么收费 浏览:759
苏州fag轴承需要多少钱 浏览:23
机械硬盘如何分区比例 浏览:381
晓月小红伞综合工具箱73 浏览:2
循环水自动过滤装置 浏览:576
天水轴承零件是什么 浏览:725
工具箱与 浏览:462
滚齿机自动上下料装置 浏览:467
西安哪里买家具五金件 浏览:444
家冈管道阀门批发价格 浏览:731
现代中药分析哪些仪器 浏览:886
可以装卸汽车工作板螺丝的电动工具 浏览:617
阀门关闭时拧断了怎么拧开 浏览:485