导航:首页 > 装置知识 > 批量化检测装置国内外现状

批量化检测装置国内外现状

发布时间:2022-04-16 07:02:46

⑴ 超声波检测发展现状

1.3 国内外研究现状与水平
无损检测技术已经历一个世纪,尽管无损检测技术本身并非一种生产技术,但其技术水平却能反映该部门,该行业,该地区甚至该国的工业技术水平。无损检测技术所能带来的经济效益十分明显。统计资料显示,经过无损检测后的产品增值情况大致是,机械产品为5%,国防,宇航,原子能产品为12%一 18%,火箭为20%。例如,德国奔驰公司汽车几千个零件经过无损检测后,整车运行公里数提高了一倍,大大提高了产品在国际市场的竞争能力。可见现代工业是建立在无损检测基础上的说法并不为过。超声无损检测技术(UT)作为五大常规检测技术之一,由于其与其它常规无损检测技术相比,它具有被测对象范围广,检测深度大,缺陷定位准确,检测灵敏度高,成本低,使用方便,速度快,对人体无害以及便于现场使用等特点,因而世界各国都对超声无损检测给予了高度的重视。有关资 料表明,国外每年大约发表3000篇涉及无损检测的文献资料,全部文献资料中有关超声无损检测的内容约占45%,特别是2000年10月在罗马召开的第十五届世界无损检测会议(WCNDT)收录的663篇论文中,超声检测就占250篇。这些都说明超声无损检测的研究势头和其在无损检测中的重要地位。同时,这也是本文对材料裂缝选用超声波检测的一个重大原因。目前,国外工业发达国家的无损检测技术已逐步从无损探伤(Nondestruction Inspection NDI)和无损检测(Nondestructive testing NDT)向无损评价(Nondestructive Evauation NDE)过渡。无损探伤,无损检测和无损评价是无损检测发展的三个阶段。超声波无损探伤是初级阶段,它的作用仅仅是在不损害零部件的前提下,发现其人眼不可见的内部缺陷,以满足工业设计中的强度要求。超声无损检测是近20年来应用最广泛的术语,它不仅要检测最终产品,而且还要对生产过程的有关参数进行监测。 超声无损评价是超声检测发展的最高境界,不但要探测缺陷的有无,还要给出材质的定量评价,也包括对材料和缺陷的物理和力学性能的检测及其评价。
1.3.1 超声波无损探伤(NDI)
随着电子技术的迅速发展,使超声波无损探伤技术和仪器也得到了相应发展与应用。早在1929年苏联萨哈诺夫提出利用穿透法检查固体内部结构,以后利用连续超声波在实验室研究成功。随着声纳技术的发展,美、英两国分别于1944年和1964年研制成功脉冲反射式超声波探伤仪,并逐步用于锻钢和厚钢板的探伤。80年代,随着大规模集成电路和微机技术的快速发展,1983年德国 Krautkramer公司推出第一台便携式数字化超声波探伤仪USD1型,采用的是 z80CPU,尽管有许多不足,但已显示出数字化超声波探伤仪强大的生命力。我国 50年代初引进苏联超声波探伤仪,60年代初期先后形成了一些批量生产的厂家,80年代初,国内各生产厂研制生产的超声波探伤仪的主要技术指标均有大幅度地提高,较好地满足了超声波探伤技术的需要。如汕头超声电子(集团)公司在1980 年推出了CTS - 22型超声波探伤仪,其主要性能指标与当时国际同类仪器水平相当。
1.3.2 超声波无损检测(NDT)
超声波检测在近几十年中得到了较大的进展,它已成为材料或结构的无损检测最常用的手段。几十年来,超声波无损检测已得到了巨大发展和广泛应用,几乎应用到所有工业部门。如作为基础工业的钢铁工业,机器制造工业,锅炉压力容器有关工业部门,石油化工工业,铁路运输工业,造船工业,航空航天工业。高速发展中的新技术产业如集成电路工业,核电工业等重要工业部门。目 前大量应用于金属材料和构件,包括质量在线监控和产品的在役检查,水平普遍提高,应用频度和领域也日益增多。
1.2.3 超声无损评价(NDE)
超声无损评价主要包括:①微观组织结构及形态变化的描述;②弹性常数和声弹性能的评估;③不连续性及缺陷的测定;④力学性能变化及恶化的评价。超声无损评价是在超声无损探伤与超声无损检测基础上发展起来的。其研究手段更加先进和多样。其研究成果与现代工业生产结合更为紧密,因而在社会效益和经济效益等方面都具有很大的潜力。例如,离心球铁管的检测:是由具有150多年历史的英国clany cross铸管和铸件公司,于1986年采用超声无损检测技术,实现了对离心球墨铸铁管的在线实时检测与评价,这种方法效率高,速度快,并且有其它方法无可比拟的优越性。
1.2.4 自动无损评价(ANDE)和定量无损评价(QNDE)
无损检测的另一个发展是从一般无损评价向自动无损评价和定量无损评价发展(即从NDE向ANDE和QNDE发展)。超声检测仪器的应用与发展超声检测仪器性能直接影响超声检测的可靠性,其发展与电子技术等相关学科的发展是息息相关的。超声无损检测仪器将向数字化,智能化,图象化,小型化和多功能化发展。真正的智能化超声仪应该是全面,客观地反映实际情况,而且可以运用频谱分析,自适应专家网络对数据进行分析。提高可靠性、提高超声检测中对缺陷的定位、定量和定性的可靠性也是超声检测仪器实现数字化、智能化急待解决的关键技术问题。现代的扫查装置也在向智能化方向发展。扫查装置是自动检测系统的基础部分,但检测结果准确性,可靠性与否都依赖于扫查装置输出的信息是否真正反映缺陷的性质。

⑵ 自动控制技术全国及世界现状及发展趋势

工业控制自动化技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分。

工业控制自动化技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分。工业控制自动化技术作为20世纪现代制造领域中最重要的技术之一,主要解决生产效率与一致性问题。虽然自动化系统本身并不直接创造效益,但它对企业生产过程有明显的提升作用。

我国工业控制自动化的发展道路,大多是在引进成套设备的同时进行消化吸收,然后进行二次开发和应用。目前我国工业控制自动化技术、产业和应用都有了很大的发展,我国工业计算机系统行业已经形成。目前,工业控制自动化技术正在向智能化、网络化和集成化方向发展。

一、 以工业PC为基础的低成本工业控制自动化将成为主流

众所周知,从20世纪60年代开始,西方国家就依靠技术进步(即新设备、新工艺以及计算机应用)开始对传统工业进行改造,使工业得到飞速发展。20世纪末世界上最大的变化就是全球市场的形成。全球市场导致竞争空前激烈,促使企业必须加快新产品投放市场时间(Time to Market)、改善质量(Quality)、降低成本(Cost)以及完善服务体系(Service),这就是企业的T.Q.C.S.。虽然计算机集成制造系统
(CIMS)结合信息集成和系统集成,追求更完善的T.Q.C.S.,使企业实现“在正确的时间,将正确的信息以正确的方式传给正确的人,以便作出正确的决策”,即“五个正确”。然而这种自动化需要投入大量的资金,是一种高投资、高效益同时是高风险的发展模式,很难为大多数中小企业所采用。在我国,中小型企业以及准大型企业走的还是低成本工业控制自动化的道路。

工业控制自动化主要包含三个层次,从下往上依次是基础自动化、过程自动化和管理自动化,其核心是基础自动化和过程自动化。

传统的自动化系统,基础自动化部分基本被PLC和DCS所垄断,过程自动化和管理自动化部分主要是由各种进口的过程计算机或小型机组成,其硬件、系统软件和应用软件的价格之高令众多企业望而却步。

20世纪90年代以来,由于PC-based的工业计算机(简称工业PC)的发展,以工业PC、I/O装置、监控装置、控制网络组成的PC-based的自动化系统得到了迅速普及,成为实现低成本工业自动化的重要途径。我国重庆钢铁公司这样的大企业的几乎全部大型加热炉,也拆除了原来DCS或单回路数字式调节器,而改用工业PC来组成控制系统,并采用模糊控制算法,获得了良好效果。

由于基于PC的控制器被证明可以像PLC一样可靠,并且被操作和维护人员接受,所以,一个接一个的制造商至少在部分生产中正在采用PC控制方案。基于PC的控制系统易于安装和使用,有高级的诊断功能,为系统集成商提供了更灵活的选择,从长远角度看,PC控制系统维护成本低。由于可编程控制器(PLC)受PC控制的威胁最大,所以PLC供应商对PC的应用感到很不安。事实上,他们现在也加入到了PC控制“浪潮”中。

近年来,工业PC在我国得到了异常迅速的发展。从世界范围来看,工业PC主要包含两种类型:IPC工控机和CompactPCI工控机以及它们的变形机,如AT96总线工控机等。由于基础自动化和过程自动化对工业PC的运行稳定性、热插拔和冗余配置要求很高,现有的IPC已经不能完全满足要求,将逐渐退出该领域,取而代之的将是 CompactPCI-based工控机,而IPC将占据管理自动化层。国家于2001年设立了“以工业控制计算机为基础的开放式控制系统产业化”工业自动化重大专项,目标就是发展具有自主知识产权的PC-based控制系统,在3(5年内,占领30%(50%的国内市场,并实现产业化。

几年前,当“软PLC”出现时,业界曾认为工业PC将会取代PLC。然而,时至今日工业PC并没有代替PLC,主要有两个原因:一个是系统集成原因;另一个是软件操作系统Windows NT的原因。一个成功的PC-based控制系统要具备两点:一是所有工作要由一个平台上的软件完成;二是向客户提供所需要的所有东西。可以预见,工业PC与PLC的竞争将主要在高端应用上,其数据复杂且设备集成度高。工业PC不可能与低价的微型PLC竞争,这也是PLC市场增长最快的一部分。从发展趋势看,控制系统的将来很可能存在于工业PC 和 PLC之间,这些融合的迹象已经出现。

和PLC一样,工业PC市场在过去的两年里保持平稳。与PLC相比,工业PC软件很便宜。据Frost & Sullivan公司估计,全世界每年7亿美元工业PC市场里,大约8500万美元为控制软件,一亿美元为操作系统。到2007年会翻一番,工业PC市场变得非常可观。

二、 PLC在向微型化、网络化、PC化和开放性方向发展

长期以来,PLC始终处于工业控制自动化领域的主战场,为各种各样的自动化控制设备提供非常可靠的控制方案,与DCS和工业PC形成了三足鼎立之势。同时,PLC也承受着来自其它技术产品的冲击,尤其是工业PC所带来的冲击。

目前,全世界PLC生产厂家约200家,生产300多种产品。国内PLC市场仍以国外产品为主,如Siemens、Modicon、A-B、OMRON、三菱、GE的产品。经过多年的发展,国内PLC生产厂家约有三十家,但都没有形成颇具规模的生产能力和名牌产品,可以说PLC在我国尚未形成制造产业化。在PLC应用方面,我国是很活跃的,应用的行业也很广。专家估计,2000年PLC的国内市场销量为15(20万套(其中进口占90%左右),约25(35亿元人民币,年增长率约为12%。预计到2005年全国PLC需求量将达到25万套左右,约35(45亿元人民币。

PLC市场也反映了全世界制造业的状况,2000后大幅度下滑。但是,按照Automation Research Corp的预测,尽管全球经济下滑,PLC市场将会复苏,估计全球PLC市场在2000年为76亿美元,到2005年底将回到76亿美元,并继续略微增长。

微型化、网络化、PC化和开放性是PLC未来发展的主要方向。在基于PLC自动化的早期,PLC体积大而且价格昂贵。但在最近几年,微型PLC(小于32 I/O)已经出现,价格只有几百欧元。随着软PLC(Soft PLC)控制组态软件的进一步完善和发展,安装有软PLC组态软件和PC-based控制的市场份额将逐步得到增长。

当前,过程控制领域最大的发展趋势之一就是Ethernet技术的扩展,PLC也不例外。现在越来越多的PLC供应商开始提供Ethernet接口。可以相信,PLC将继续向开放式控制系统方向转移,尤其是基于工业PC的控制系统。

三、 面向测控管一体化设计的DCS系统

集散控制系统DCS(Distributed Control System)问世于1975年,生产厂家主要集中在美、日、德等国。我国从70年代中后期起,首先由大型进口设备成套中引入国外的DCS,首批有化纤、乙烯、化肥等进口项目。当时,我国主要行业(如电力、石化、建材和冶金等)的DCS基本全部进口。80年代初期在引进、消化和吸收的同时,开始了研制国产化DCS的技术攻关。

近10年,特别是“九五”以来,我国DCS系统研发和生产发展很快,崛起了一批优秀企业,如北京和利时公司、上海新华公司、浙大中控公司、浙江威盛公司、航天测控公司、电科院以及北京康拓集团等。这批企业研制生产的DCS系统,不仅品种数量大幅度增加,而且产品技术水平已经达到或接近国际先进水平。在2001年全国应用的4426套DCS系统中,国产DCS系统为1486套,占35%。短短几年,国外DCS系统在我国一统天下的局面从此不再出现。这些专业化公司不仅占据了一定的市场份额,积累了发展的资本和技术,同时使得国外引进的DCS系统价格也大幅度下降,为我国自动化推广事业做出了贡献。与此同时,国产DCS系统的出口也在逐年增长。

虽然国产DCS的发展取得了长足进步,但国外DCS产品在国内市场中占有率还较高,其中主要是Honeywell和横河公司的产品。我国DCS的市场年增长率约为20%,年市场额约为30(35亿元。由于近5年内DCS在石化行业大型自控装置中没有可替代产品,所以其市场增长率不会下降。据统计,到2005年,我国石化行业有1000多套装置需要应用DCS控制;电力系统每年新装1000多万千瓦发电机组,需要DCS实现监控;不少企业已使用DCS近15(20年,需要更新和改造。所以,今后5年内DCS作为自动化仪表行业主要产品的地位不会动摇。

根据中国仪器仪表行业协会公布的调查数据显示,2002年我国DCS市场状况如下:

小型化、多样化、PC化和开放性是未来DCS发展的主要方向。目前小型DCS所占有的市场,已逐步与PLC、工业PC、FCS共享。今后小型DCS可能首先与这三种系统融合,而且“软DCS”技术将首先在小型DCS中得到发展。PC-based控制将更加广泛地应用于中小规模的过程控制,各DCS厂商也将纷纷推出基于工业PC的小型DCS系统。开放性的DCS系统将同时向上和向下双向延伸,使来自生产过程的现场数据在整个企业内部自由流动,实现信息技术与控制技术的无缝连接,向测控管一体化方向发展。

四、 控制系统正在向现场总线(FCS)方向发展

由于3C(Computer、Control、Communication)技术的发展,过程控制系统将由DCS发展到FCS(Fieldbus Control System)。FCS可以将PID控制彻底分散到现场设备(Field Device)中。基于现场总线的FCS又是全分散、全数字化、全开放和可互操作的新一代生产过程自动化系统,它将取代现场一对一的4(20mA模拟信号线,给传统的工业自动化控制系统体系结构带来革命性的变化。

根据IEC61158的定义,现场总线是安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、双向传输、多分支结构的通信网络。现场总线使测控设备具备了数字计算和数字通信能力,提高了信号的测量、传输和控制精度,提高了系统与设备的功能、性能。IEC/TC65的SC65C/WG6工作组于1984年开始致力于推出世界上单一的现场总线标准工作,走过了16年的艰难历程,于1993年推出了IEC61158-2,之后的标准制定就陷于混乱。2000年初公布的IEC61158现场总线国际标准子集有八种,分别为:

类型1 IEC技术报告(FFH1);
类型2 Control-NET(美国Rockwell公司支持);
类型3 Profibus(德国Siemens公司支持);
类型4 P-NET(丹麦Process Data公司支持);
类型5 FFHSE(原FFH2)高速以太网(美国Fisher Rosemount公司支持);
类型6 Swift-Net(美国波音公司支持);
类型7 WorldFIP(法国Alsto公司支持);
类型8 Interbus(美国Phoenix Contact公司支持)。

除了IEC61158的8种现场总线外,IEC TC17B通过了三种总线标准:SDS(Smart Distributed System);ASI(Actuator Sensor Interface);Device NET。另外,ISO公布了ISO 11898 CAN标准。其中Device NET于2002年10月8日被中国批准为国家标准,并于2003年4月1日开始实施。

目前在各种现场总线的竞争中,以Ethernet为代表的COTS(Commercial-Off-The-Shelf)通信技术正成为现场总线发展中新的亮点。其关注的焦点主要集中在两个方面:

(1) 能否出现全世界统一的现场总线标准;
(2) 现场总线系统能否全面取代现时风靡世界的DCS系统。

采用现场总线技术构造低成本的现场总线控制系统,促进现场仪表的智能化、控制功能分散化、控制系统开放化,符合工业控制系统的技术发展趋势。国家在“九五”期间为了加快现场总线技术在我国的发展,重点放在智能化仪表和现场总线技术的开发和工程化上,补充和完善工艺设备、开发装置和测试装置,建立智能化仪表和开发自动化系统的生产基地,形成适度规模经济。2000年,“九五”国家科技攻关计划“新一代全分布式控制系统研究与开发”和“现场总线智能仪表研究开发”两个项目相继完成。这两个项目以及先期完成的“现场总线控制系统的开发”项目,针对国际上已经出现的多种现场总线协议并存的局面,重点选择了HART协议和FF协议现场总线技术攻关。

总之,计算机控制系统的发展在经历了基地式气动仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统以及集散控制系统(DCS)后,将朝着现场总线控制系统(FCS)的方向发展。虽然以现场总线为基础的FCS发展很快,但FCS发展还有很多工作要做,如统一标准、仪表智能化等。另外,传统控制系统的维护和改造还需要DCS,因此FCS完全取代传统的DCS还需要一个较长的过程,同时DCS本身也在不断的发展与完善。可以肯定的是,结合DCS、工业以太网、先进控制等新技术的FCS将具有强大的生命力。工业以太网以及现场总线技术作为一种灵活、方便、可靠的数据传输方式,在工业现场得到了越来越多的应用,并将在控制领域中占有更加重要的地位。

五、仪器仪表技术在向数字化、智能化、网络化、微型化方向发展

经过五十年的发展,我国仪器仪表工业已有相当基础,初步形成了门类比较齐全的生产、科研、营销体系。现有各类仪器仪表企业6000余家,年销售额约1000亿元,成为亚洲除日本之外第二大仪器仪表生产国。据海关统计,除去随成套工程项目配套引进的仪器仪表不计,去年进口各类仪器仪表近60亿美元,约占我国仪器仪表工业总产值的50%。但目前我国仪器仪表行业产品大多属于中低档水平,随着国际上数字化、智能化、网络化、微型化的产品逐渐成为主流,差距还将进一步加大。目前,我国高档、大型仪器设备大多依赖进口。中档产品以及许多关键零部件,国外产品占有我国市场60%以上的份额,而国产分析仪器占全球市场不到千分之二的份额。

2001年3月,第九届全国人大四次会议批准的“十五”计划纲要首次提出“把发展数控机床,仪器仪表和基础零部件放到重要位置,努力提高质量和技术水平”。2001年8月,国家计委把仪器仪表明确列为国民经济重要技术装备,国家经贸委制定并公布的仪器仪表行业 “十五”规划,确立了6项高技术产业化项目:

1. 基于现场总线技术的全开放分散控制系统及智能仪表;
2. 新型传感器;
3. 智能化工业控制部件与执行机构;
4. 环境与污染源监测仪器及自动监测系统;
5. 城市污水处理利用成套工艺设备中的仪表自动化控制系统;
6. 炼钢转炉煤气净化回转成套装置中的仪表自动化控制系统。

根据仪器仪表行业的预测,“十五”期间我国仪器仪表市场大致是:2002年1628亿,2003年1790亿,2004年1969亿,2005年2165亿。五年间,平均年市场容量为1806亿(相当于220亿美元),其中工业自动化仪表和控制系统占41%、科学测试仪器占25%、医疗仪器占17%、其它占17%,平均年增长率将不会低于10%。

今后仪器仪表技术的主要发展趋势:
* 仪器仪表向智能化方向发展,产生智能仪器仪表;
* 测控设备的PC化,虚拟仪器技术将迅速发展;
* 仪器仪表网络化,产生网络仪器与远程测控系统。

几点建议:
* 开发具有自主知识产权的产品,掌握核心技术。
* 加强仪器仪表行业的系统集成能力。
* 进一步拓展仪器仪表的应用领域。

六、 数控技术向智能化、开放性、网络化、信息化发展

从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了51年的历程。近10年来,随着计算机技术的飞速发展,各种不同层次的开放式数控系统应运而生,发展很快。目前正朝着标准化开放体系结构的方向前进。就结构形式而言,当今世界上的数控系统大致可分为4种类型:

1. 传统数控系统;
2. “PC嵌入NC”结构的开放式数控系统;
3. “NC嵌入PC”结构的开放式数控系统;
4. SOFT型开放式数控系统。

我国数控系统的开发与生产,通过“七五”引进、消化、吸收,“八五”攻关和“九五”产业化,取得了很大的进展,基本上掌握了关键技术,建立了数控开发、生产基地,培养了一批数控人才,初步形成了自己的数控产业,也带动了机电控制与传动控制技术的发展。同时,具有中国特色的经济型数控系统经过这些年来的发展,产品的性能和可靠性有了较大的提高,逐渐被用户认可。

国外数控系统技术发展的总体发展趋势是:
* 新一代数控系统向PC化和开放式体系结构方向发展;
* 驱动装置向交流、数字化方向发展;
* 增强通信功能,向网络化发展;
* 数控系统在控制性能上向智能化发展。

进入21世纪,人类社会将逐步进入知识经济时代,知识将成为科技和生产发展的资本与动力,而机床工业,作为机器制造业、工业以至整个国民经济发展的装备部门,毫无疑问,其战略性重要地位、受重视程度,也将更加鲜明突出。

近年来,我国数控机床一直保持两位数增长。2001年,我国机床工业产值已进入世界第5名,机床消费额在世界排名上升到第3位,达47.39亿美元,仅次于美国的53.67亿美元。2002年产值达260亿元,产量居世界第4。但与发达国家相比,我国机床数控化率还不高,目前生产产值数控化率还不到30%;消费值数控化率还不到50%,而发达国家大多在70%左右。由于国产数控机床不能满足市场的需求,高档次的数控机床及配套部件只能靠进口,使我国机床的进口额呈逐年上升态势,2001年进口机床跃升至世界第2位,达24.06亿美元,比上年增长27.3%。

智能化、开放性、网络化、信息化成为未来数控系统和数控机床发展的主要趋势:
* 向高速、高效、高精度、高可靠性方向发展;
* 向模块化、智能化、柔性化、网络化和集成化方向发展;
* 向PC-based化和开放性方向发展;
* 出现新一代数控加工工艺与装备,机械加工向虚拟制造的方向发展。
* 信息技术(IT)与机床的结合,机电一体化先进机床将得到发展。
* 纳米技术将形成新发展潮流,并将有新的突破。
* 节能环保机床将加速发展,占领广大市场。

七、 工业控制网络将向有线和无线相结合方向发展

自从1977年第一个民用网系统ARCnet投入运行以来,有线局域网以其广泛的适用性和技术价格方面的优势,获得了成功并得到了迅速发展。然而,在工业现场,一些工业环境禁止、限制使用电缆或很难使用电缆,有线局域网很难发挥作用,因此无线局域网技术得到了发展和应用。随着微电子技术的不断发展,无线局域网技术将在工业控制网络中发挥越来越大的作用。

无线局域网(Wireless LAN)技术可以非常便捷地以无线方式连接网络设备,人们可随时、随地、随意地访问网络资源,是现代数据通信系统发展的重要方向。无线局域网可以在不采用网络电缆线的情况下,提供以太网互联功能。在推动网络技术发展的同时,无线局域网也在改变着人们的生活方式。无线网通信协议通常采用IEEE802.3和802.11。802.3用于点对点方式,802.11用于一点对多点方式。无线局域网可以在普通局域网基础上通过无线Hub、无线接入站(AP)、无线网桥、无线Modem及无线网卡等来实现,以无线网卡使用最为普遍。无线局域网的未来的研究方向主要集中在安全性、移动漫游、网络管理以及与3G等其它移动通信系统之间的关系等问题上。

在工业自动化领域,有成千上万的感应器,检测器,计算机,PLC,读卡器等设备,需要互相连接形成一个控制网络,通常这些设备提供的通信接口是RS-232或RS-485。无线局域网设备使用隔离型信号转换器,将工业设备的RS-232串口信号与无线局域网及以太网络信号相互转换,符合无线局域网IEEE 802.11b和以太网络IEEE 802.3标准,支持标准的TCP/IP网络通信协议,有效的扩展了工业设备的联网通信能力。

计算机网络技术、无线技术以及智能传感器技术的结合,产生了“基于无线技术的网络化智能传感器”的全新概念。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。无线局域网技术能够在工厂环境下,为各种智能现场设备、移动机器人以及各种自动化设备之间的通信提供高带宽的无线数据链路和灵活的网络拓扑结构,在一些特殊环境下有效地弥补了有线网络的不足,进一步完善了工业控制网络的通信性能。

八、工业控制软件正向先进控制方向发展

自20世纪80年代初期诞生至今,工业控制软件已有20年的发展历史。工业控制软件作为一种应用软件,是随着PC机的兴起而不断发展的。工业控制软件主要包括人机界面软件(HMI),基于PC的控制软件以及生产管理软件等。目前,我国已开发出一批具有自主知识产权的实时监控软件平台、先进控制软件、过程优化控制软件等成套应用软件,工程化、产品化有了一定突破,打破了国外同类应用软件的垄断格局。通过在化工、石化、造纸等行业的数百个企业(装置)中应用,促进了企业的技术改造,提高了生产过程控制水平和产品质量,为企业创造了明显的经济效益。2000年,“九五”国家科技攻关计划项目“大型骨干石化生产系统控制及计算机应用技术”通过了验收。

作为工控软件的一个重要组成部分,国内人机界面组态软件研制方面近几年取得了较大进展,软件和硬件相结合,为企业测、控、管一体化提供了比较完整的解决方案。在此基础上,工业控制软件将从人机界面和基本策略组态向先进控制方向发展。

先进过程控制APC(Advanced Process Control)目前还没有严格而统一的定义。一般将基于数学模型而又必须用计算机来实现的控制算法,统称为先进过程控制策略。如:
* 自适应控制;
* 预测控制;
* 鲁棒控制;
* 智能控制(专家系统、模糊控制、神经网络)等。

由于先进控制和优化软件可以创造巨大的经济效益,因此这些软件也身价倍增。国际上已经有几十家公司,推出了上百种先进控制和优化软件产品,在世界范围内形成了一个强大的流程工业应用软件产业。因此,开发我国具有自主知识产权的先进控制和优化软件,打破外国产品的垄断,替代进口,具有十分重要的意义。

在未来,工业控制软件将继续向标准化、网络化、智能化和开放性发展方向。

结束语

工业信息化是指在工业生产、管理、经营过程中,通过信息基础设施,在集成平台上,实现信息的采集、信息的传输、信息的处理以及信息的综合利用等。在“十五”期间,国家用信息化带动工业化的工作重点有三个方面:一是以电子信息技术应用为重点,提高传统产业生产过程自动化、控制智能化和管理信息化水平;二是以先进制造技术应用为重点,推进制造业领域的优质高效生产,振兴装备制造业;三是改造提升重点产业的关键技术、共性技术及其相关配套技术水平、工艺和装备水平。国家实施高技术产业化的主要目标有两个:一是发展高技术,形成新兴产业,培育新的增长点;二是利用先进技术改造和优化传统产业,提高经济增长的质量。

由于大力发展工业自动化是加快传统产业改造提升、提高企业整体素质、提高国家整体国力、调整工业结构、迅速搞活大中型企业的有效途径和手段,国家将继续通过实施一系列工业过程自动化高技术产业化专项,用信息化带动工业化,推动工业自动化技术的进一步发展,加强技术创新,实现产业化,解决国民经济发展面临的深层问题,进一步提高国民经济整体素质和综合国力,实现跨越式发展。

⑶ 国内外研究现状

1.2.1 元素硫溶解度及沉积运移实验研究现状

(1)元素硫溶解度研究现状

对高含硫天然气中元素硫溶解度的认识是该类气藏开发过程中重要的环节之一。国内外对该问题进行了深入的研究。硫溶解度的研究主要包括实验和理论两个部分,以下为实验部分。

1960年,Kennedy[7]等人研究了硫在不同含量的CH4、CO2和H2S三种气体中的平衡溶解问题。并且首次说明了硫的溶解性能与气体压力、温度和组分有关。在一定温度压力的条件下,其溶解能力大小依次为H2S、CO2、CH4

1971年,Roof[8]通过实验研究了低温低压条件下硫在硫化氢气体中的溶解度(压力6.8~30.6MPa,温度43.3℃~114℃)。

1976年,为了更好地研究深层气藏的高温高压条件下硫在酸性气体中的溶解度,Swift[9]进行了溶解度实验研究(压力34.5 MPa~138 MPa,温度121℃~204℃)。

1980年和1988年,E.Brunner[10~11]等人将Kennedy等人研究进行推广(压力6.6MPa ~155MPa,温度116℃~213℃),研究了硫在不同比例的CO2、H2S、C1~C4的14个合成酸性气体混合物中的溶解度。

1992年和1993年,P.M.Davis[12]等人将E.Brunner等人的研究成果进行了深入研究(压力7 MPa~55MPa,温度60℃~150℃),将硫在简单多组分中的溶解扩展到实际的酸气组分中。

1993年,谷明星[13~14]等人建立了静态法测定难挥发溶质(固体或液体)在超临界、近临界流体中溶解度的实验装置,针对硫化氢大于50%的富含H2S酸性流体溶解度进行了测试。

2003年,C.Y.Sun[15]在谷明星实验研究的基础上,在室内利用静态实验测试装置完成了元素硫在7个高含硫混合气体(H2S CO2、CH4)中溶解度测定,并建立了能预测和关联硫在高含硫天然气中溶解度的气固热力学模型。

2005年,曾平[16~17]对元素硫在天然气中的溶解度进行了实验研究,并对其机理进行了说明,分析了不同组分对元素硫溶解度的影响,提出混合物中含碳原子数目较多的烃类组分对硫溶解度有着重要的影响。

2009年,杨学锋[18]通过自主设计的元素硫溶解度实验设备,针对Chrasnti[19]和Roberts[20]常系数模型进行了关联性研究,发现Chrasnti l溶解度计算模型更加科学可靠; 而Roberts溶解度模型,由于是根据有限特定的几组数据拟合得到,具有一定的局限性。

由于硫在含硫混合气中溶解度测试具有一定的危险性,故为了更好的得到硫在含硫混合气中的溶解度,国内外学者在理论模型方面也做了很多深入的研究。

1980年和1983年,J.B.Hyne[21~22]等人研究发现随着温度压力的升高,元素硫和硫化氢会生成多硫化氢。反之,随着温度压力的降低,多硫化氢又会分解成为元素硫和硫化氢,从而导致硫沉积。

1982年,Chrastil[19]基于理想溶液理论,提出了一个简化的热力学方程来计算硫的溶解度。该经验公式已经广泛用于超临界流体溶质溶解度的计算。

1989年,R.A.Tamxej[23]等人在对大量实验数据进行拟合的基础上,得到了元素硫在含硫气体中溶解度的预测模型。

1997年,E.Bruce[20]等人利用Brunner[10]和Woll的实验数据,对Chrastil经验公式进行了回归拟合,建立了元素硫在酸性气体中的溶解度经验公式,该公式考虑了温度、压力和气体组分对元素硫溶解度的影响,因为方便应用,故一直被用于预测元素硫在含硫天然气中的溶解度。

1998年,Kunal Karan[24]等人建立一个热动态模型,可用于预测酸气混合气体中硫溶解度,并利用该模型计算了元素硫在硫化氢和高含硫气体混合物中的溶解度。

2003年,C.Y.Sun[15]等人采用与谷明星类似的方法,建立了能够预测和关联元素硫在高含硫天然混合气中溶解度的气固热力学模型。

2006年,杨学锋[25]引入了超临界流体的压缩气体模型,建立了元素硫和高含硫天然气达到气固相平衡时定量计算元素硫溶解度的关联和预测模型。

(2)元素硫沉积运移实验研究现状

随着温度压力的降低,元素硫会从含硫天然气中析出,部分硫颗粒将会沉降,部分硫颗粒则会随储层流体运移。

目前,元素硫沉积实验主要集中在油藏方面[27~29],由于硫化氢的剧毒性,开展高含硫元素硫沉积储层伤害的实验极少。

2000年,Jamal H.Abou-Kassem[30]利用氮气携带升华的元素硫进入碳酸岩岩心,观察和测定了元素硫对岩心的伤害。提出了一种简易的方法来模拟实际高含硫气藏元素硫对储层的伤害,但由于元素硫升华的温度极高,对其实验及数据的可行性值得深入探讨。

2008年,西南油气田分公司勘探开发研究院[31 ]自主研制了模拟实际储层高温高压的条件下,元素硫沉积对储层伤害驱替实验仪器,完成了不同初始压力、温度下元素硫对天然碳酸盐岩岩心渗透率和孔隙度的伤害。

1.2.2 含硫气藏储层改造铁离子伤害研究现状

储层改造作为低渗透油气藏重要的增产措施已经得到了广泛的认可,目前含硫气藏也通常进行酸压改造增产作业。由于含硫气藏涉及元素硫沉积和酸性气体等因素,对其储层改造必要性的探讨还存在空白。

考虑到元素硫沉积和酸性气体的影响,含硫气藏储层改造的核心就是控硫控铁。在处理含硫化氢气井的储层改造问题上,国内外主要集中在控制铁沉积上[32~37]。在酸压作业中,对于控制铁离子沉淀,通常有三种方法:

一是对主体工作液进行研究,采用弱酸体系来控制残酸液的pH值,使得残酸pH值处于一个相对较低的位置,以便于抑制残液中析出含铁的硫化物。

二是采用铁离子络合剂。由于络合剂对高价的金属离子具有较强的亲和力,从而使得溶液中铁离子浓度低于析出沉淀的浓度,从而抑制铁离子沉积的产生。

三是采用还原剂,将溶液中的三价铁离子还原成为二价铁离子,从而达到避免沉淀析出的目的。

2004年,陈红军[38]等人对于含硫化氢气井酸化过程中,硫化铁沉淀预测及抑制剂研究进行了详细的调研和研究,并提出了一套适应含硫气井酸压作业且与之匹配的添加剂,优化了酸液体系的整体性能,其具体表现为铁离子稳定剂、硫化氢吸收剂和控硫剂。

2007年,Jairo Leal[39]等人在分析了在对解除硫化铁沉积过程中可能会出现的问题,提出了一系统有序的方法来对硫化铁沉淀进行移除。

2009年,Tao Chen[40]等人建立了一套新的硫化铁测试方法来评价硫化铁抑制剂的性能。在此基础上,研制了一种新的抑制剂并对硫化铁抑制剂机理进行了说明。

1.2.3 元素硫沉积对储层伤害研究现状

为了研究地层条件下元素硫沉积对储层的伤害,国内外学者分别建立了考虑元素硫伤害的含硫气藏伤害模型,分析元素硫沉积对储层参数及产能的影响。

1966年,C.H.Kuo[41]建立流体流动数学模型,该模型能够描述多孔介质中固相沉积。该模型假设初始状态含硫天然气饱和溶解元素硫。

1972年,C.H.Kuo[42]将硫沉积模型引入,在黑油模型的基础上,建立元素硫沉积的储层伤害数学模型,该模型考虑了硫溶解度的变化和硫沉积对渗透率和孔隙度的影响。该模型能够模拟均质气藏一维径向流动情况下,采气速度、井距和井筒半径对硫沉积的影响。

1980年,J.B.Hyne[21]等人通过统计学原理,分析了100多口含硫气井的元素硫沉积问题,分析了混合物中不同碳原子数、CO2、硫化氢含量对元素硫沉积的影响。

1997年,E.Boberts[20]在等温稳态理想流动的条件下,研究了酸性气井中元素硫沉积对流人动态的影响,建立了考虑元素硫沉积储层伤害模型,分析了不同时间,不同径向距离处元素硫饱和度的分布。发现硫的聚集速度与径向距离平方成反比,径向距离小,元素硫沉降距离的越快。同时还考虑表皮的影响,表皮越小,硫的聚集速度越小,但该模型假设元素硫析出就地沉降,没有考虑元素硫运移。

1997年,王琛[43]在Roberts建立的理论基础上,研究了硫沉积对气井产能的影响及各因素对硫沉积的影响。

2001年,Faruk Civan[44]将延迟效应引入到元素硫沉积里面,考虑元素硫动态沉积,即元素硫析出后不会就地沉降,而是运移一段时间或位移后再沉降。但并没有说明元素硫何时沉降,运移多长时间和位移。

2002年,Nicholas Hands[45]等建立了天然裂缝性含硫气藏硫沉积预测解析模型,该模型考虑了温度和近井地带的气流临界流速的影响,对元素硫在近井地带的分布进行了分区和详细地研究,并给出了相应的井底除硫时间,但对于元素硫颗粒临界流速计算并没有给出具体计算方法。

2004年,杨满平[46]考虑非达西渗流的影响,建立了高含硫气藏元素硫沉积模型。该模型在完善硫沉积伤害模型基础上,对比了考虑非达西和达西流动下,不同径向距离,不同时间元素硫饱和度随时间的变化关系,同时还分析了产能对硫颗粒沉积堵塞的影响。

2005年,曾平[47]就高含硫气藏渗流规律进行了研究,得到孔隙度,渗透率随时间的变化关系,进一步完善了考虑非达西影响的元素硫沉积伤害模型。

2006年,杨学锋[48]在Faruk Civan建立的模型基础上,考虑元素硫沉积的延迟效应,完善了元素硫动态沉积预测模型。

2006年,H.Mei[49]等人在Roberts建立伤害模型基础上,根据实际井参数,建立了无阻流量与渗透率和储层厚度之间的关系。

2006年,Du Zhi-Ming[50]等人建立了裂缝性气藏气液固三相耦合数学模型,并利用Roberts实例井数据进行计算,同时进行了结果对比分析。

2006年,Guo Xiao[51]等人将气液固三相耦合模型与硫沉积实验相对比,分析了流速,初始硫浓度和岩心渗透率对元素硫沉积的影响。

2007年,Guo Xiao[52]等人基于组分模型和相平衡原理建立了气液固三相数学模型,该模型可用于预测元素硫沉积,并提出需要进行储层解堵时间。

1.2.4 考虑元素硫沉积的产能方程及物质平衡方程研究现状

由于压力降最快的地方在近井地带,导致元素硫析出最快的地方聚集在近井地带,从而使得常规的产能方程需要进一步考虑元素硫沉积的影响。含硫气藏开发过程中元素硫沉积而导致试井曲线发生变化,对此学者们也进行了相应的研究。

2005年,李成勇[53]等人进行了高含硫气藏解释方法研究,建立了高含硫气藏两区复合试井模型,并用Stehfest反演算法对井底压力响应典型曲线进行了计算,分析了污染半径和流度比对井底压力动态的影响。

2007年,段永刚[54]等人建立了基于含硫气藏与井筒耦合的非稳态产能预测新方法,该方法为没有试采资料的气井合理配产提供了一种方法。

2008年,张烈辉[55]等人基于渗流力学相关理论,对高含硫气藏的渗流模式进行了分析,建立了考虑附加表皮的复合渗流模型与产能试井解释数学模型。

2009年,晏中平[56]等人在现代试井解释方法和油气渗流理论基础上,建立了考虑含硫气井硫污染区和未污染区两区双孔介质复合试井解释数学模型,并利用Stehfest反演算法对井底压力响应典型曲线进行了计算,同时完成了多参数对井底压力的敏感性分析。

随着高含硫气藏的开发,储层压力会不断降低,析出的元素硫将会占据储层部分孔隙空间,使得在建立含硫气藏物质平衡方程的时候,体积平衡方程发生了变化。

1936年,R.J.Schilthuis[57]根据物质平衡原理首先建立了油藏的物质平衡方程式,因为该方法需要的相关地质及流体生产数据较少,同时计算方法相对简单,故一直在油藏工程中得到广泛使用。

国内的陈元千[58~60]等人在物质平衡原理的基础上建立了气藏的物质平衡方程,并完善了不同类型的气藏物质平衡方程式。

在凝析气藏物质平衡方程式的问题上,国内的马永详[61~62]利用摩尔平衡原理对凝析气藏物质平衡方程进行了研讨。

2006年,张勇[63]等人给出了高含硫气藏物质平衡方程的推导,该模型考虑了元素硫沉积的影响,但仅仅是基于体积平衡原理,没有考虑元素硫的析出会导致混合天然气密度发生变化。

2008年,卞小强[64]考虑了元素硫析出后,会使得天然气密度发生变化,必须使用质量平衡原理来建立含硫气藏物质平衡方程,故其利用摩尔平衡原理建立了气藏物质平衡方程,并进行了实例计算,但在建立物质平衡时,由于对元素硫产生的机理认识不足,使得摩尔平衡原理建立的方程求解具有一定难度。

⑷ 关于电能质量检测装置(或者电能质量)的国内外发展现状

在西方发达国家,电能质量问题早已被当作电力系统面临的重要问题,各国均在加强电能质量问题的研究。已得到不少的理论成果,并提出一系列的综合的监测控制和管理的方法。国际上对电能质量的研究,可以追溯到上世纪的80年代电磁兼容学科EMC的兴起。出于这种长期对电能质量的重视和科技水平的整体优势,他们在电能质量监测装置的研制上水平较高,市场占有率也很高。目前,国外电能质量的研究主要集中以下几点:
1.暂态电能质量问题
2.短持续时间电能质量问题
3.长持续时间电能质量问题
4.三项电压不平衡
5.波形畸变
6.电压波动和闪动
7.频率变化
我国的电力供应一直比较紧张,人们的关注的焦点主要集中在电力供应量上,对电能质量的关心不多,通常只对电压及频率两个指标进行监测。进行大规模的电网改造之前,我国的网架十分的薄弱,电力系统的自动化水平十分低。随着电力供应紧张状态的缓解,电能质量的日益恶化和用户对电能质量要求的不断提高,这个问题也引发了各级电力部门的重视。国家也颁布了国家标准,主要依靠供电企业的来保证,但是,目前的的控制的方法主要依靠对供电电压的调整。
我国的电能质量检测还处于初级阶段,我国的质量检测的研究方向主要有以下几点:
1.电压波动和闪变
2.供电电压允许偏差
3.公用电网谐波
4.三项电压允许的不平衡度
5.电力系统频率允许偏差
6.暂态过电压和瞬态过电压从我国电力系统目前的发展水平后和保护供电双方权益的角度看,这些标准时比较现实和易于操作的。但随着国际贸易的发展和各国间技术交流的需要,标准的国际化趋势是不可避免的。技术的发展,新情况的出现,国际标准的变化,使得我国电力工作者不仅需要对现有的6项标准进行进一步的完善和修改,还要根据实际情况研究制定其他的标准。

⑸ 自动化的国外现状

国外自动化技术的发展趋势是系统化、柔性化、集成化和智能化。自动化技术不断专提高属光电子、自动化控制系统、传统制造等行业的技术水平和市场竞争力,它与光电子、计算机、信息技术的融合和创新,不断创造和形成新的行业经济增长点,同时不断提供新的行业发展的管理战略哲理。

世界自动化产业发展势头迅猛。传感器技术、开放式工业过程自动化系统、现场总线技术等自动化技术已形成一定的产业规模,其中90年代传感器在美国、日本的市场总销售额已超过100亿美元。

(5)批量化检测装置国内外现状扩展阅读

发展趋势:

现代生产和科学技术的发展,对自动化技术提出越来越高的要求,同时也为自动化技术的革新提供了必要条件。70年代以后,自动化开始向复杂的系统控制和高级的智能控制发展,并广泛地应用到国防、科学研究和经济等各个领域,实现更大规模的自动化。

例如大型企业的综合自动化系统、全国铁路自动调度系统、国家电力网自动调度系统、空中交通管制系统、城市交通控制系统、自动化指挥系统、国民经济管理系统等。自动化的应用正从工程领域向非工程领域扩展,如医疗自动化、人口控制、经济管理自动化等。

⑹ 高温钻井液检测仪器国内外发展现状

3.3.1 高温高压流变仪

高温流变性是高温钻井液的重要参数之一,直接影响钻速、泵压、排量、悬浮及携带岩屑、井眼清洁、井壁稳定、压力波动及固井质量等,因此国内外非常重视高温流变仪的研发。典型生产商为美国Fan公司、OFI公司、Grace公司等。其典型产品有如下。

3.3.1.1 OFITE1100高温加压流变仪

美国OFI公司研制生产的OFITE1100高温加压流变仪是一个全自动测试系统,能够根据剪切力、剪切速率、时间、压力、温度等参数来准确测试压裂液、完井液、钻井液、水泥浆的流变特性,并实时显示和同步记录剪切应力、剪切率、转速、压力、容池和样品温度。可以在实验室使用也可以在野外使用,可选择防水移动箱,带轮子,移动方便。OFITE高温高压流变仪压力可达到18MPa,温度可到260℃,最低0℃。另外还有冷却系统,冷却样品(图3.1)。

图3.1 OFITE 1100高温加压流变仪

独特的ORCADA(OFITE R(流变仪)C(控制)and D(数据)A(采集)),软件简单。全新的KlikLockTM快速链接技术与重新设计的样品杯相结合,便于拆卸和维修。全新的SAFEHEATTM系统是一个安全、精确、环境友好、高效的空气传输加热系统,使得操作更安全简单,清洗更快速。

3.3.1.2 OFITE高温高压流变仪

根据剪切力、剪切速率、时间和压力直到207MPa和温度最高至260℃条件,全自动系统准确测定完井液、钻井液、水泥浆的流变特性。选配冷水系统后,可使测试系统适应于需要冷却的测试样品,进一步增加了仪器的应用范围(图3.2)。

图3.2 OFITE高温高压流变仪

使用罗盘来测定扭矩附件顶部磁铁的转动。如果没有对仪器进行补偿,防护罩内动力驱动磁铁的影响。地球磁场的影响、防护罩磁性的影响、弹簧非线性的影响、实验室磁场和材料的影响、非理想流体流动的影响、产品结构微小变化的影响等综合结果使测定角度显示非线性关系。计算机可以容易地完成这些影响的补偿。

3.3.1.3 Ceast毛细管流变仪

毛细管流变仪分为单孔型和双孔型,应用于热塑性聚合物材料的质量控制和研发工作。在CeastVIEW平台下,通过VisualRHEO软件控制仪器。可实现以任意恒剪切速率或活塞杆速度测量。双孔料筒结构独立采集分析每个孔所测得的试验数据。可选各种专用的软件。可选配多种测量单元:熔体拉伸试验、口模膨胀、狭缝口模。PVT、半自动清洗等。Rheologic系列:最大力50kN;速度比1∶500000;活塞速度0.0024~1200mm/min。工作温度50℃~450℃(选配500℃),有两个PT100传感器控制。可快速更换的载荷传感器(范围:1~50KN),压力传感器范围3.5~200MPa(图3.3)。

图3.3 毛细管流变仪

3.3.1.4 Haake RV20/D100高温高压黏度仪

Haake RV20/D100该高温加压旋转黏度计的使用上限为203kPa(1400psi)和300℃,它由两个固定在加热器上的同轴圆筒组成。外筒用螺栓固定在加热器(高压釜)的顶部,内筒支承在滚珠轴承上(外筒通过轴承将内筒托住)。内筒或转筒靠磁耦合与一个Rotovisco RV 20相连接。内筒作为转子,釜外的驱动机构通过电磁耦合带动内筒转动;内筒通过电磁耦合将其所受的转矩传递给釜外的驱动机构,使其转过一个角度(图3.4)。

图3.4 Haake RV20/D100剪应力测试原理

可用计算机控制来自动描绘流变曲线。该仪器在0s-1~1200s-1范围内可连续变化,并且自动进行数据分析。施加在转轴上的扭矩可被反应灵敏的电扭力杆测得。测量电扭力杆扭转的角度即为所施加的扭矩值。剪切应力可由扭矩值通过合适的剪切应力常数来计算得出。

3.3.1.5 美国Grace公司专利产品MODEL 7400/M7500

M7400流变仪包含250mL的浆杯总成,安装在仪器加压的测试釜体内,浆杯易于取出,方便浆杯装样和清洗。流变仪可配备不同的内筒/转子(外筒)组合,提供了不同的测量间隙尺寸。转子(外筒)按需要的速度围绕内筒转动,由于内筒和转子(外筒)之间的环型区域内的液体被剪切,传导到内筒上的扭矩用一个应力表类型的扭矩传感器测量(图3.5)。

图3.5 M7400流变仪

仪器加压用一个空气驱动液压泵,矿物油作为压力介质,连接到高压泵上的可编程压力控制器控制压力的升压和保压,浆杯下的叶轮循环流动压力油改善温度控制效果,叶轮也用于提供均匀的样品加热效果,温度控制采用一个连接到内部4000W加热器和热电偶的温度控制器控制,浆杯中心内筒顶部的热电偶用于测量实际样品温度,马达驱动转子(外筒)在一定速度范围内转动,样品黏度根据测量出来的剪切应力和剪切速率计算出来。

M7500是专为复杂样品进行简单测试而设计的高温、超高压、低剪切、自动、数字流变仪。该仪器专利的测量机构设计消除了昂贵和易损的宝石轴承,可以进行大范围的测量。由于它独特的设计,使其便于维护并大大简化了操作流程。基于微软数据库作为支持友好的用户界面,测试结果自动化的压力,速度和温度控制,使实验结果更加精确和一致,标准的API实验可由触摸式LCD屏幕或者在计算机上单击鼠标来实现(表3.5)。

表3.5 M7500技术参数

M7500与其他同类产品相比,测试时间短且更容易操作;它不含有易碎和昂贵的精密轴承,维修成本低;最先进的速度控制使得低剪切率测试成为可能,自动剪切应力校准在很大程度上简化了操作程序。

3.3.1.6 Fann流变仪

(1)Fann稠度仪

Fann稠度仪是一种高温高压仪器,试验的泥浆在套筒内承受剪切,其最高工作压力和温度分别为140MPa和260℃,其测量原理见图3.6。它通过安装在样品釜两端的两个交替充电的电磁铁产生的电磁力,使软铁芯作轴向往复运动。存在于运动铁芯与样品釜釜壁之间的环形间隙内的泥浆受到剪切,泥浆黏度越高,铁芯运动越缓慢,从一端运行到另一端所用的时间也就越长,泥浆的相对黏度就用铁芯的运行时间来衡量。Fann稠度仪不能测量绝对黏度,通常将其结果作为相对黏度。这是因为电磁铁施加给铁芯的是一个不变的力,使铁芯在被测泥浆中从速度为零加速至终速度,在常用的泥浆中铁芯不能总是匀速运动,因此不能按不变的或确定的环空剪率进行分析。在实际使用中,常用于测量水泥浆的稠度。

图3.6 Fann稠度仪原理图

(2)Fann 50C高温高压流变仪

Fann50C高温高压流变仪是高温高压同轴旋转式黏度计,其最高工作压力和温度为7MPa和260℃,其剪应力测量原理如图3.6。泥浆装在两个圆筒的环状间隙里,外筒可用不同转速旋转。外同在泥浆中旋转所形成的扭矩,施加在内筒上,使内筒转过一个角度。测量这一角度,即可确定其剪应力值。测量数据用X-Y记录仪以曲线形式输出。其转速可在1~625r/min范围内无级调速。

Fann 50C早期产品由压力油提供压力,适合于作水基泥浆的高温高压流变性测试,压力油对油基泥浆试验结果影响较大。Fann 50C中期产品有两种形式,既可由压力油提供压力,也可由高压氮气或空气提供压力。近期产品则只有由高压气源提供压力一种形式。采用气压形式后,就不存在压力油对泥浆污染和对测试结果的影响。

(3)Fann 50SL高温流变仪

50SL是Fann 50C的改进型产品,它在Fann50C原有结构基础上,新增加了压力传感器,冷却水电磁阀和远程控制器(RCO),是一款高精度的同轴旋转型黏度计,该仪器具有广泛的通用性,可解决多种黏度测试问题或完成许多程序测试,Fann 50SL(图3.7)可以测试特殊剪切速率下的流体的流变特性,如宾汉塑性流体和假塑性流体(包括幂律流体)和膨胀性流体,触变性和胶凝时间也可以测试出来,实验可以在剪切率、温度和压力精确控制的状态下进行。

该黏度计可以测试出剪切力-剪切率值,也可得到在流变状态下的剪率特性,通过选择合适的扭簧、内筒和外筒可得到很宽的黏度测量范围(量程从50到64000dyn/cm2之间的剪力范围)。

最高温度260℃,压力7MPa(1000psi)条件下的测试。使用该仪器必须在连接远程控制器和一台合适的电脑的条件下,其控制操作由仪器将传感器信号通过接口传送到计算机,计算机再把正确的控制信号输出给Fann 50SL。加热、施压和转子速度的控制由专门软件的输入来控制。在各种剪切速率下的表观黏度、时间依赖性、连续剪切和温度效应引起的变化等可快速而准确地测定。50SL是一般流变特性,包括钻井液高温稳定性测定的理想仪器。唯一不足的是该控制软件中不具备将曲线在打印机上输出的功能。

(4)Fann 75流变仪

主要用来测量不同温度、压力和剪切速率下钻井液的剪切应力、黏度。最高测量温度为260℃,最高测量压力为138MPa,仪器如图3.8所示。

该仪器同其他“旋转”式流变仪工作原理一样,转子/浮子组合如图所示。

(5)Fann IX77流变仪

范氏IX77型全自动泥浆流变仪(图3.9)是第一台在高压(30000Psi)和高温(316℃)的极端条件下测量流体流变性的全自动流变仪。另外,如果配上一个软件控制的制冷器可以使实验在室温以下的温度进行。

图3.7 Fann 50SL高温流变仪

图3.8 Fann 75流变仪

该仪器是同轴圆筒测量系统,它使用一个精密的磁敏角度传感器来检测内嵌宝石轴承的弹簧组合的角度,传感器系统可以校准到±1℃。电机转速实现了0~640r/min无级调速的全自动控制。

仪器的特点在于借助内嵌微电脑和巧妙的机械及电路设计而带来的非常安全的传动机构。它的软件使仪器的操作、数据采集、输出报告和报警功能自动进行,最大限度的扩展其应用范围,给操作带来较大的灵活性。

IX77禁止用于测试具有赤铁矿、钛铁矿、碳酸铁成分的或者含有磁性的活亚铁成分的混合物、溶液、悬浮液和试剂的样品。

其他高温高压流变仪如Chandler 7400(工作极限条件:140MPa和205℃)和Huxley Burtram(105MPa和260℃)与以上类型工作原理相似。

图3.9 Fann IX77 流变仪

3.3.2 高温高压滤失仪

泥浆在钻井时向地层渗滤是一个复杂的过程,影响因素较多,它包括在泥浆液柱压力和储层压力之间的压差作用下,发生的静止滤失。包括在该压差下,泥浆在流动状态下的动滤失,这种流动是由泥浆循环时的返流和钻柱旋转时的旋流所引起,它对井壁过滤面产生冲刷作用,影响了渗滤的过程。

高温高压滤失仪是一种在模拟深井条件下,测定钻井液滤失量,并同时可制取高温高压状态下滤失后形成的滤饼的专用仪器。温度和压力在滤出液控制中起着很大的作用。

3.3.2.1 海通达高温高压滤失仪

(1)GGS系列(图3.10;表3.6)

图3.10 GGS-71型高温高压滤失仪

表3.6 GGS系列仪器参数

其中GGS42-选用单孔单层活网钻井液杯,滤网目数50。

GGS42-2和GGS71-A使用不锈钢外壳,添加特殊保温层,热传递效率高,选用通孔单层活网钻井液杯,滤网目数50;GGS42-2A和 GGS71-B使用不锈钢外壳,添加特殊保温层,热传递效率高,选用通孔单层活网钻井液杯,滤网目数60,有独立温度控制系统,采用国外先进的电子温控器。

(2)HDF-1型高温高压动态滤失仪

HDF-1型高温高压动态滤失仪克服了静态滤失仪的不足,使测试结果更加接近井下实际情况。该仪器由电机驱动的主轴带动杯体内的螺旋叶片对钻井液进行搅拌。通过SCR控制器控制变速电机,数字显示主轴转速(表3.7;图3.11)。

表3.7 仪器的主要技术参数

图3.11 HDF-1型滤失仪

3.3.2.2 OFI公司高温高压动态全自动失水仪

OFITE高温高压动态失水仪在动态钻井条件下测量滤失特性。马达驱动装配有桨叶的主轴在标准500mL HTHP泥浆池中旋转,转速设置范围为1~1600r/min,模拟钻井液高温高压池中以层流或紊流形式流动。测试方式完全和标准的高温高压滤失仪一样,唯一的差异为滤出物收集时钻井液在高温高压池中流动循环。由于滤失介质为普通的圆盘(disk)材质,因此测定结果跟别的或以往的有充分的可比性,该仪器能够和电脑相连,并自动画出曲线。最高压力8.6MPa,最高温度260℃(图3.12)。

图3.12 OFI高温高压动态滤失仪

技术特征:①一款分析转动中钻井液的真正循环滤失仪;②变速马达,1/2Hp永久磁铁,直流;③池顶带盖得以辅助管路连接,移去堵头,可以添加额外的钻井液添加剂;④安全校正的防爆片,保证过压安全;⑤马达和转动主轴转动转速操作保证1∶1;⑥可调螺旋桨改变到滤失介质距离;⑦可调热电偶温度38~260℃;⑧可选的滤失渗透性滤片;⑨500mL容积的不锈钢高压池。

3.3.2.3 美国Fann高温高压动态全自动失水仪

Fann90高温高压动态失水仪使用人造岩心滤筒,滤液从岩心滤筒侧壁滤出,能很好地模拟钻进过程中钻井液从井壁滤失的过程,不但能测试在一段时间内累积的滤液量,而且可以绘制滤液随时间变化的滤失曲线。Fann90的最高工作压力可达17.2MPa,最高工作温度260℃。该仪器可与电脑和打印机连接,自动化程度高,操作方便,是当前最先进的高温高压动态失水仪(图3.13)。

图3.13 Fann90 高温高压动失水仪

3.3.2.4 LH-1型钻井液高温高压多功能动态评价实验仪

“抗高温高密度水基钻井液作用机理及性能研究”的多功能动态评价实验仪,是一种钻井液用智能型多功能动态综合评价实验仪。该仪器能模拟钻井过程中的井下情况评价钻井液性能,并将钻井液多项高温高压性能评价实验集于一体,达到一仪多用的目的(图3.14)。

图3.14 钻井液多功能动态综合测试仪实物图

该仪器可以进行高温高压静/动态滤失、高温高压钻屑分散、高温高压动态老化等若干项实验,采用电脑工控机控制实验过程,实时显示实验状态、自动采集、处理、显示实验数据,实现智能化实验操作。

仪器主要技术指标:工作温度0~300℃;工作压力0~40MPa;转速0~1200r/min,无级调速;釜体容积800mL;冷却速率200℃~室温/10min。

3.3.3 高温滚子炉

温度的影响对钻井液在钻井内的循环是非常重要的。热滚炉的作用是评定钻井液循环与井内时温度对钻进的影响。

高温滚子炉包括炉体、滚筒及滚筒带动的陈化釜。陈化釜设有一釜体,釜体上部设有釜盖,釜体与釜盖之间设有密封盖,釜盖上垂直于釜盖设有压紧螺栓,将密封盖与釜体压紧。密封盖与釜体之间设有密封环,所述的密封环为四氟乙烯材质。覆盖上设有排气阀,排气阀穿过密封盖与釜腔相通,排气阀两端设有O型密封圈,密封圈为四氟乙烯材质。釜盖与釜体上设有支撑环,支撑环为四氟乙烯材质,炉门边缘设有密封垫,密封垫为四氟乙烯材质。该滚子炉耐高温、密封效果好,而且体积小、安全系数高,便于使用。

3.3.3.1 青岛海通达XGRL-4高温滚子炉

滚子炉是一种加热、老化装置。采用微处理器智能控制技术,直接设定,数字面板显示,并可进行偏差指示。适用范围为50~240℃,滚子转速为50r/min(图3.15)。

图3.15 XGRL-4型高温滚子炉

该滚子炉采用钢架结构、硅酸铝保温层、不锈钢外壳;滚筒采用优质金属材料滚筒和框架、四氟石墨轴承,重量轻、转动平稳;其加热系统采用两根700W加热管加热;动力系统由大功率调速电机链带动滚子转动,传动平稳可靠、噪音低;温控部分采用智能仪表设定、显示和读出,恒温准确,温度超限自动断开加热电源,并发出声光报警。定时部分定时关机。

3.3.3.2 OFFIE 滚子炉

美国OFI公司,五轴高温滚子炉。适用范围为50~300℃,滚子转速为50r/min(图3.16,图3.17)。

图3.16 OFFIE滚子炉

图3.17 老化罐

3.3.3.3 Fann 701滚子炉

美国Fann公司的Fann 701型五轴高温滚子炉,适用范围为50~300℃,滚子转速为50r/min(图3.18)。

图3.18 Fann滚子炉

3.3.4 其他高温高压评价仪器现状

3.3.4.1 高温高压堵漏仪

高温高压堵漏仪主要是用来模拟高温高压条件下进行堵漏材料实验,对一套泥浆系统既可以做填砂床实验又可以做缝板实验,还可以做岩心静态污染实验以及测量堵漏层形成后抗反排压力的大小。如:JHB高温高压堵漏仪由加压部分、加温部分、缝板模拟部分等组成。参看图3.19~图3.22。

图3.19 高温高压堵漏仪实物图

图3.20 高温高压堵漏仪结构图

图3.21 实验缝板实物图

图3.22 实验用滚珠及套筒实物图

3.3.4.2 高温高压膨胀仪现状

膨胀仪是评价黏土矿物膨胀性能的重要试验仪器,主要用于防塌泥浆及处理剂的研究方面。通过电脑回执曲线可准确测定泥页岩试样在不同条件下的膨胀量和膨胀率。用以评价不同的防塌处理对页岩泥水化的抑制能力,并针对不同的地层及不同组分的泥页岩选择适用的处理剂,以控制、削弱泥页岩的水化膨胀进而防止可能出现的坍塌、卡钻等事故的发生。

常温常压膨胀仪不能模拟井下条件下黏土的膨胀情况和加入黏土抑制剂后对黏土的防膨胀效果。

(1)HTP-C4高温高压双通道膨胀仪

HTP-C4型高温高压单通道膨胀量仪,能较好模拟井下温度(≤260℃)和压力(≤7MPa)条件下,测试页岩的水化膨胀特性,为石油钻井井壁稳定性研究、评价和优选防塌钻井液配方提供了一种先进的测试手段。HTP-C4型页岩膨胀仪采用非接触式高精度传感器,电脑监控记录,性能稳定,测试范围大,无漂移,通电即可使用,两个样品可同时测量(表3.8;图3.23)。

表3.8 仪器的主要技术参数

图3.23 HTP-4型高温高压单通道膨胀仪

(2)JHTP非接触式高温高压智能膨胀仪

高温高压膨胀仪虽然能模拟井下温度和压力条件,但其使用的是接触式线性位移传感器,这种接触式传感器受膨胀腔结构的影响,在高压密封和位移之间产生矛盾,使黏土的线性膨胀量不能得到真实的反映,因为增大了试验误差。

图3.24是一种非接触式高温高压智能膨胀仪结构图。它由加热体、实验腔体、腔盖、腔体、腔身、圆铁饼、非接触式位移传感器、试验液体加入口、加压孔、前置器、数据采集器及输出设备组成。它是利用非接触式位移传感器与圆铁饼之间的距离随黏土饼膨胀时提高变化而变短,而改变传感器的输出电压,使数据采集器得到实验参数,达到在室内评价黏土矿物的膨胀性能。克服了现有膨胀仪不能真实和准确地描述井下条件黏土的膨胀情况、实验误差大、加入抑制剂后对黏土的防膨胀效果不能预计的问题。结构简单,操作方便,实验数据准确。

图3.24 JHTP非接触式智能膨胀仪结构

3.3.4.3 高温高压黏附仪

该仪器可测定钻井液在常温中压(0.7MPa)及在常温高压(3.5MPa)条件下滤失后形成滤饼的黏附性能,同时还可测试钻井液样品在高温(~170℃)高压(3.5MPa)条件下滤失后形成滤饼的黏附性能。黏附盘加压方式为气动(图3.25)。

3.3.4.4 高温高压腐蚀测定仪

OFI高温高压腐蚀测试仪是用于测试金属试样在高温高压动态条件下对各种腐蚀液体的反应速率。该系统主要由压力釜、控制仪表及阀门、样品支架和试样玻璃器皿组成。

压力釜采用特制的合金钢材料,最大工作压力34.5MPa,最高温度可达204.4℃。压力釜及内部样品由热电偶加温。加热速率范围为2.5℉/min到3℉/min。机箱内包括一个马达用以摇动测量支架,一台高压泵用于提供系统压力。系统设有安全装置,包括安全警报等。

图3.25 GNF-1型黏附仪

⑺ 现代自动检测技术的发展现状及趋势

现代自动检测技术的发展现状及趋势
梁森,欧阳三泰,王侃夫.自动检测技术及应用.北京:机械工业出版社,2006.
趋势:
随着半导体和计算机技术的发展,新型或具有特殊功能的传感器出现,检测装置也向小型化、固体化及智能化发展,应用领域更加宽广。
1、不断提高监测系统的测量精度、量程范围、延长使用寿命、提高可靠性
科学技术的发展要求测量系统有更高的精度。近年来,人们研制出许多高精度的检测仪器以满足各种需求。例如,用直线光栅测量直线位移时,测量范围可达二三十米,而分辨率可达到微米级;人们已经研制出测量低至几个帕的微压力和高达几千兆帕高压的;力传感器;开发了能够测出极微弱磁场的磁敏传感器等。
从20世纪60年代开始,人们对传感器的可靠性和故障率的数学模型进行了大量的研究,使得监测系统的可靠性和使用寿命大幅度提高。
2、应用新技术和新的物理效应,扩大检测领域
检测原理大多以各种物理效应为基础,近代物理学的进展如纳米技术、激光、红外、超声波、微波、光纤、放射性同位素等新成就为检测技术的发展提供了更多的依据。如图像识别、激光测距、红外测温、C型超声波无损探伤。放射性测厚。中子探测爆炸物等非接触测量得到迅速发展。
20世纪70年代以前,检测技术主要用于工业部门,如今,检测领域正扩大到整个社会需要的各个方面,不仅包括工程、海洋开发、航空航天等尖端科技和新兴工业领域,而且已涉及生物、医疗、环境污染监测、危险品和毒品的侦查、安全检测等方面,并且已经开始渗入到人们的日常生活设施之中。
3、发展集成化、功能化的传感器
随着半导体集成电路技术的发展,硅和砷化镓电子元件的高度集成化大量向传感器领域渗透。人们将传感技术与信号处理电路制作在同一块硅片上,从而研制体积更小、性能更好、功能更强的传感器。例如,高精度的PN结测温集成电路;又如,将排成阵列的上千万个光敏元件及扫描放大电路制作在一块芯片上,制成彩色CCD数码照相机、摄像机以及可摄像的手机等。今后还将在光、磁、温度、压力等领域开发出新型的集成度很高的传感器。
4、采用计算机技术,使检测技术智能化
自20世纪70年代微处理器问世以来,人们迅速将计算机技术应用到测量技术领域中来,使检测仪器智能化,从而扩展了功能,提高了精度和可靠性,目前研制的测量系统大多带有微处理器。
5、发展网络化传感器及检测系统
随着微电子技术的发展,现在已经可以将十分复杂的信号处理和控制电路集成到单块的芯片中去。传感器的输出不再是模拟量,而是符合某种协议格式(如可即插即用)的数字信号。从而可以通过企业内部网络,也可以通过网络实现多个系统之间的数据交换和共享,从而构成网络化的检测系统。还可以远在千里之外,随时随地浏览现场工况,实现远程调试、远程故障诊断。远程数据采集和实时操作。
现状:
在机械制造业中,通过对机床的许多静态、动态参数如工件的加工精度、切削速度、床身振动等进行在线检测,从而控制加工质量。在化工、电力等行业中,如果不随时对生产工艺过程中的温度、压力、流量等参数进行自动检测,生产过程就无法控制甚至产生危险。在交通领域,一辆现代汽车的传感器就有十几种之多,分别用以检测车速、方位、负载、振动、油压、油量、温度、燃烧过程等。在国防科研领域,例子更举不胜举,很多尖端的检测技术就是因国防工业需要而发展起来的,例如,研究飞机的强度时,需在机身、机翼贴上上百个应变片并进行动态测量;在导弹。卫星的研制中,必须对每一个部件进行强度和动态特性的检测、运行姿势的测量等。近年来,随着家电市场的兴起,自动检测技术也进入人们的日常生活中,例如,自动检测并调节房间温度、湿度的空调机;自动检测衣服污度和重量,利用模糊技术的智能洗衣机等。
模糊洗衣机
能自动判断衣服的重量、布料质地、肮脏程度来决定水位的高低、洗涤时间、搅拌与水流方式、脱水时间等,将洗涤控制在最佳状态。见图为模糊洗衣机的模糊推理。
(1)布量和布质的判断 不同的布质()和布量
(2)水位判断 压力传感器
(3)水温判断 半导体
(4)水的浑浊度判断 红外光电对管
作用
金伟等编著,现代检测技术.北京:北京邮电大学出版社,2006.
趋势:
1、 软测量技术
科技的进步和生产规模的扩大以及工艺的日渐复杂,给自动检测和控制提出了更高的要求,人们迫切需要找到一种新的技术来满足生产过程的检测和优化控制的需要。软测量技术(Soft SensingTechniques)被认为是目前最具吸引力和卓有成效的新方法。其主要包括三部分内容:第一,根据某种最优化原则研究建立软测量数学模型的方法,这是软测量技术的核心。主要方法有机理建模方法和辨识建模方法。辨识建模方法包括动态模型的间接辨识,静态模型的回归分析法辨识,采用模糊逻辑和神经网络以及二者结合的非线性建模。第二,模型实时运算的工程化实施技术,这是软测量技术的关键。包括现场数据的采集和处理,软测量模型结构的选择,模型参数的估计等。第三,模型自校正技术,这是提高软测量准确度的有效方法,包括在线自校正和模型的离线更新技术等。
软测量技术为生产的优化控制提供了新的有用信息,今后将在实践中取得更大的成果。
2、 模糊传感器
模糊逻辑控制(Fuzzy Logic Control,FLC)作为一种新颖的高级控制方式,成为智能控制的一个重要分支。模糊控制技术的理论基础是模糊数学和模糊逻辑理论。模糊理论是建立在人类思维的基础上,能很好的表达事物的模糊性质。传统的传感器虽然有高精度、无冗余的优点,但也存在提供的信息简单,难于描述涉及人类感觉信息和某些高层逻辑信息的问题。模糊传感器可以说在经典传感器数值测量的基础上具有经过模糊推理和知识集成、以自然语言符号的描述形式输出的传感器,能够对模糊事物进行识别和判断,可以应用在传统传感器无法处理的场合。
贺良华主编,现代检测技术。武汉:华中科技大,2008
趋势:
研究开发仿生传感器
自然界中的许多生物有着超乎寻常的能力,如,狗的嗅觉是人类的一百多倍,鸟的视觉是人的50到60倍,蝙蝠、海豚的听觉相当灵敏。所有这些动物的感官的、性能,是今后研究仿生传感器(如视觉传感器、听觉传感器、嗅觉传感器等)的努力方向。
现状:
电力、石油、化工、机械等行业的一些大型设备通常在高温、高压和大功率状态下运行,保证这些设备安全运行在国民经济中有着重要意义。为此,为此经常设置故障监测系统以对温度、压力、流量、转速、振动和噪声等多种参数进行长期动态监测,以便及时发现异状,加强故障防御,达到早期诊断的目的。这样做可以避免突发事件,保证人员和机器的安全,提高经济利益。即使设备发生故障,也可以从检测的数据中找出故障原因,缩短检修周期,提高检修质量。

⑻ 管道检测机器人的发展现状及其趋势

工 业 设备中大 量 的细小 管 道经 过 长 时 间 的使 用后 , 会 出现各种 各样的 缺陷 , 给生产 和 生 活 带 来 安全 隐患。 由于 对 细 小 管 道 的检 修 与 维 护 比较 困 难 , 所 以 对管道进 行检 测 和 维 修的 管道检 测机器 人的 需 求 日 益 增 加。 通过对 国内 外管道检 测机器人研 究现状 分析 ,总体 看来 ,国内 外已 经 在管内作 业机 器人 领域 取得 了大量 的成果,主要 应 用 在 管 道 检测 、 维修 等 方面 。国 外有 名的有德国 I pa k , 国 内 做的好 的 品 牌 有武 汉 中仪 。

⑼ 计算机视觉技术国内 国外发展历史及现状

1研究现状及存在的问题
水果实时分级系统主要功能是水果外部品质和内部品质的自动检测。水果的外部品质检测的项目有大小、形状、颜色、表面缺陷等,内部品质无损检测的项目为水果的硬度、糖含量、酸度、口味及某些内部缺陷等。
1.1水果外部品质的自动检测
水果的尺寸和颜色检测技术已比较成熟,且在国外已经实现自动化检测,在国内也有按重量或尺寸分级的系统。但果面的缺陷检测却一直成为水果实时分级的障碍。
果面缺陷检测的技术比较复杂,目前存在以下几方面难题。
1.1.1对水果整个表面进行实时视觉检测比较困难
在水果分选生产线上,输送机构输送水果并把水果整个表面呈现给摄像机,这是水果实时分级系统比较关键的组成部分,因为当水果通过时,要求视觉系统能快速检查每个水果的全部果面,即使很小的缺陷面积,也会使得水果级别发生很大变化。同时,设计的视觉分级系统必须满足高生产率的要求。在这方面,国外学者(Growe,1996,Tao,1996)[1,2]采用滚子输送带使水果一边移动一边自身转动,从而使安装在输送带上方的摄像机能采集到水果的多个面的图像,达到全表面检测的目的。但由于水果大小和形状不规则,造成水果旋转速度不一致且难以保证按同一轴线旋转。此外,水果旋转两端的表面部分摄像机无法采集到,因此,分级误差较大。
1.1.2快速而准确地测定水果表面的各种缺陷且与梗、萼凹陷区正确区分比较困难
Miller等(1991)[3]对桃子的分选试验表明:因不能正确区分水果表面的缺陷和梗、萼凹陷区,由此产生的分级误差为25%左右。Rehkugler等(1986)[4]利用机械定向机构使苹果梗、萼处于垂直方向并绕梗萼轴旋转,CCD线扫描摄像机可扫描苹果的整个表面且形成一幅图像,该方法的特点是由机械定向机构定位水果梗、萼区,摄像机对此区不需要再检查。但因为受定向机构速度的限制,还达不到实时分级的速度,试验结果为每分钟选30个苹果。Yang(1996)[5]利用结构光图像与散射光图像相结合来区分梗、萼区和缺陷区,综合两方面图像处理的结果,共抽取16个特征参数,再利用BP神经网络区分苹果的梗、萼区和缺陷区,分辨精度为95%,但还需要进一步把试验结果应用于实际水果分选生产线中。Growe等(1996)[1]采取在780 nm附近带域内,用结构光由一黑白摄像机进行水果表面的凹陷度检测;在750 nm带域内的散射光照射下,由一黑白摄像机进行水果表面的可疑缺陷区检测。水果的输送旋转装置及摄像机布置如图1a所示,采用的双锥滚筒输送带可使水果一方面沿水平方向作平移运动,另一方面又绕自身水平轴作旋转运动。两个黑白CCD摄像机用来采集750 nm附近的散射光图像和780 nm附近的结构光图像,水果旋转一周摄取两次图像。两个黑白摄像机采集的图像经过设计的接口电路后,被合成为一幅黑白图像,合成过程如图1b所示。图像的处理由流水线图像处理系统完成。试验结果表明:每个水果采集两幅图像时,缺陷检测的速度可达5个/s,但误差较大,如对于苹果,碰伤检测的准确率仅为51%。试验表明,要想得到较高的检测精度,每个水果应采集5幅以上的图像,结构光至少6条以上。此外,由于水果尺寸不同所造成各个水果旋转速度的不一致,也是产生测量误差的原因。徐娟(1997)[6]及Nakano(1997)[7]利用人工神经网络法对缺陷区和梗萼区进行区分,试验表明神经网络的区分准确率较低。在果面各种缺陷的快速检测方面,Throop(1997)[8]等人研究了多光谱测量技术,对10个品种的苹果的22种缺陷,在460~1 030 nm光谱范围内,每隔10 nm试验测定了它们的反射光谱特性,其中对3种苹果同一种缺陷测量的结果如图2所示。图中纵坐标的马氏距离反映了水果缺陷区与正常区反射强度的差别程度,距离越大,两者差别越大。由图中曲线可看出:在中心为540 nm、740 nm、1 030 nm三波段附近,3种苹果同一缺陷与正常区的反射强度的差别表现为最大或最小值,最后通过对3个波段的图像进行简单的减法和阈值处理,即可得到检测的缺陷,下一步应考虑实际应用的实现。

(a)(b)

图1图像采集布置图与图像合成示意图

(a)输送装置及摄像机布置(b) 图像合成示意图

图23种苹果同一缺陷在460~1 030 nm
范围内与正常区反射强度的差别情况

1.1.3球形水果表面引起光照强度在投影面内呈曲面分布,以及二维图像上的透视区域与水果实际表面存在的畸变,给图像的缺陷检测带来困难和造成误差
Tao(1996)[2]提出的球形变换法很好地解决了第一个问题。基本思想如图3所示:带缺陷的原始物体图像(OOI)与该物体反表面无缺陷的图像(IOI)相加得到变换后的物体图像(TOI),此图像具有平面物体图像的性质,而缺陷区低于该平面,然后经过简单阈值处理即可得缺陷区。何东健(1997)[9]提出了缺陷透视图像面积发生畸变的校正方法,但对复杂形状的缺陷区进行校正,还存在一定的困难。Nakano(1997)[7]利用一旋转平台使水果旋转,每旋转18°CCD摄像机采集一幅图像,苹果旋转一周可得20幅图像,为消除苹果球面面积的畸变,每幅图像只保留中间13 cm宽度的幅面,再全部合成一幅苹果整个表面的展开图像,此法非常有效,但在分选生产线上实现比较困难。

图3球形变换方法

1.1.4传统的图像处理及模式识别算法的速度不适合实时分选线的要求
国外一般采用高速图像处理硬件与简单有效的图像处理软件相结合的途径,来实现水果的实时分级。如Yang(1996)[5]利用的是Transputer系统、结构光法和洪水算法;Growe等(1996)[1]研制的系统,图像的大部分工作由流水线图像处理硬件系统完成;Tao(1996)[2]采用的是专用Merlin图像处理系统和简单有效的球形变换法,研制的苹果分选系统已应用到水果分选生产线上,其分选速度可达3 165个/min。国内研究者(刘禾,1998,徐娟,1997,杨秀坤,1997,何东健,1997)[6,9~11]大多利用一般的微机和图像采集卡,开发了一些图像处理和模式识别的新算法,如把人工神经网络、模糊理论、遗传算法、图像形态学、分形理论、小波理论及人工智能理论用于图像特征的抽取和识别。但由于图像处理的硬件速度太低,故只能限于静态水果图像分选的算法研究。此外,水果分级的算法应具备人工分级的一些优良性能,如学习与记忆功能,因为目前的一些分级算法的训练样本都比较少,而要分级的水果品种多变且量大。
1.2水果内部品质无损检测
反映水果内部品质的主要指标有硬度、糖含量、酸度、口味及内部缺陷等。目前国内外研究的主要方法和存在的问题如下。
1.2.1水果的硬度检测
水果的硬度可间接反映水果的成熟度、运输中的抗损坏性、储藏期等。目前用于水果硬度检测的方法主要有变形法和声学法。
变形法就是在一定时间内给水果施加一定的动态力或冲击力,然后根据测得的变形量确定水果的硬度。如Schmilovitch等(1995)[12]研制成功了枣子硬度自动检测系统,其原理是把枣子放在两平板之间,在上面板施加5~8 N的动态力,根据所测变形量的大小把枣子分成4个硬度等级。Delwiche(1991)[13]利用冲击法研制了苹果硬度自动检测系统,发现冲击力会造成苹果表面的轻微损伤。变形法只能测量水果表面的局部硬度,实际上,水果表面硬度变化较大,故限制了变形法的应用。
声学法包括声波脉冲响应法和超声波法,声波脉冲响应法(20~1 500 Hz)就是利用一麦克风测量受轻微敲击水果的声波强度,由此确定水果的硬度。Armstrong等(1993)[14]试验研究了所测声波强度与水果硬度的关系,发现二者有很好的相关关系。此法的优点是简单、无损,且能反映水果的整体硬度,缺点是必须注意周围噪声的绝缘及机械振动的消除,此外水果形状也影响测量精度。超声波(>20 000 Hz)法是根据超声波在水果等介质中传播时,能量衰减系数的大小来确定水果硬度。但由于水果内部含有较多气隙且各向异性,故超声波很难穿透整个水果。
1.2.2糖含量、酸度、口味的自动检测
糖含量、酸度比较有潜力的检测方法是近红外法(NIR)和磁共振法(MR)。近红外法又分穿透法、反射法和部分穿透法,部分穿透法原理如图4所示。穿透法对水果不适应,反射法一般用于水果表面特征的检测,因此常用的方法是部分穿透法。由图4可看出,在部分穿透法中,光线经过的路径比穿透法短,且入射光线与接收器有一夹角,此夹角的确定对测量起关键作用,此外二者之间必须加一隔板。884 nm和834 nm测得量的比值已用于桃子、苹果(Slaughter ,1995)[15]糖含量的自动测定。Slaughter等(1996)[16]对西红柿,在400~1 100 nm的光谱范围内进行部分穿透性测量试验,结果表明:800~1 000 nm范围的信息对糖含量的确定最有用,测得的相关系数r=0.92, 但酸度测量比较困难。Mizrach(1997)[17]利用超声波法试验研究了超声波衰减系数和芒果硬度、糖含量、酸度的关系,但其超声波测量探头必须与果面接触,故限制了在线的应用。因此,利用近红外多光谱技术测定水果内部糖含量及其他成分是很有前途的,为达到实时应用的目的,应进一步确定最合适的一两个波段并与计算机视觉技术结合。磁共振及磁共振成像(MRI)技术也是测定水果内部成分的有效方法,其依据是物质内部的某些原子核(H、C、P等)在外部磁场作用下,可与射频区域的电磁波辐射相互作用。Chen等(1996)[18]利用此法对鳄梨的成熟度和鲜杏梅的糖含量进行了一些研究,得到了较好的结果。此法的主要缺点是设备昂贵。

图4部分穿透法

与水果的口味相关的化学成分主要是可挥发性芳香化合物,当水果成熟时,就会在周围空气中散发这种挥发性芳香气体。Benady等(1995)[19]研制的电子传感器可以测量这种气体的浓度。
1.2.3水果内部缺陷的检测
西瓜的内部空心用超声波检测已比较成熟。其他缺陷的检测,目前国外正研究利用X射线法、磁共振和磁共振成像技术等方法测量,因成本高及安全性等问题,故很难在农业中推广应用。

2研究的途径及方向探讨
水果实时分级系统的进一步研究应从两方面入手,一方面要加快水果外部品质的计算机视觉实时分选技术的研究;另一方面也要进行水果内部品质的无损检测技术的研究。因为水果分级的主要目的是选出高质量的水果,故水果内外品质的检测技术都十分重要。
在水果的外部品质检测方面,应进行多种技术集成的应用研究。
(1) 对于水果整个表面机器视觉快速检测的问题,可采用机械与光学技术相结合,设计合理的传送机构,既保证水果在传送带上比较平稳地移动,又可由视觉系统快速检测到水果的全部表面。尽量减小因水果不规则运动造成的分级误差、损伤及图像的模糊。
(2) 对于果梗、萼区与缺陷的检测与视觉区分方面,应采用多光谱技术与机器视觉技术相结合,研究水果图像上可疑缺陷区的关键特征参数的抽取方法,得到简单、有效、快速的图像处理和识别方法。
(3) 在球形果面造成的光反射强度呈曲面分布及曲面成像面积的畸变问题,可从光照设计、图像合成及软件补偿3方面综合考虑。光照的充分设计可解决第一个问题;多幅图像的有效合成,可解决畸变问题。我们通过试验表明:一个水果至少应采集5幅图像,然后再合成为一幅,可基本保证水果整个表面上缺陷的有效检测,以避免畸变误差。软件补偿的方法必须简单而有效,以适合高速的要求。
(4) 在实时系统的图像处理器硬件设计方面,首先应采取先进的并行CPU芯片,如TMS320C80等;其次处理板的设计应与视觉系统结合起来考虑,如采集多路视觉信号的合成问题,机械机构与视觉系统的同步电路设计等。当然,也可引进国外比较成熟的高速图像处理主板,而其他技术可由国内自行开发,这样可以加快国内水果实时分级系统实现自动化的步伐。
(5) 在图像处理和识别的软件设计方面,应把传统方法与现代新方法(神经网络,并行算法,遗传算法,模糊技术,人工智能,图像形态学,分形学,小波变换等)结合起来,改变传统图像信息的超数据量表达方式,寻求图像表达与解释的新方法,力求图像处理和识别算法的快速性、有效性及鲁棒性。
在水果内部品质检测方面,声学振动法是实现硬度自动检测的有效方法,但应设法消除影响测量精度的因素,并进行在生产线上的应用开发;近红外局部投射法和磁共振法是水果糖含量、酸度等内部成分自动检测的有效方法。在国内,近红外局部投射法更有应用前景,应进一步研究其通用性、稳定性和实用性;内部缺陷的无损检测应进一步研究新原理和新方法,应采取自己开发和从国外引进相结合的方式。此外,应进行多种传感器测量信息集成技术的研究,这是水果内外品质实现实时自动检测与分级的有效途径。

3结语
利用各种现代技术的高度集成,在水果分选生产线上同时完成水果内外品质的检测与分级是将来进一步研究的方向和目的。随着科学技术的飞速发展,在我国近期有望实现农产品品质的自动化检测与分级。

阅读全文

与批量化检测装置国内外现状相关的资料

热点内容
泵前泵后应该使用什么阀门 浏览:226
所有的云梯器材箱怎么打开 浏览:109
装置设计变量的压力等级数 浏览:634
苏州高中压阀门厂有限公司销售电话 浏览:529
自行车后轴轴承型号是什么 浏览:530
重庆市渝北国际五金机电城 浏览:355
低温检测报警装置 浏览:889
重力工具箱设置好了怎么没用 浏览:607
自来水管道阀门国家标准 浏览:95
天然气阀门坏了怎么开 浏览:108
电线收纳装置设计图 浏览:276
不给钱什么样的设备可以拆回来 浏览:301
赵县特种设备使用登记证如何办理 浏览:248
自行车轴承跟滚珠有什么区别 浏览:60
空调轴承脏了怎么清洗 浏览:543
犬笛怎么发出超声波的 浏览:268
仪器箱是什么材料制造的 浏览:218
五金市场布局v 浏览:827
机械能除以位移等于什么 浏览:30
什么事制药设备的urs 浏览:892