㈠ 變速器與驅動橋間為什麼加萬向傳動裝置
因為變速器與驅動橋之間是不在同一直線上的,需要加萬向節稍微的改動一點方向的。
㈡ 驅動橋的組成及作用
答:一、驅動橋的組成
驅動橋一般由主減速器、差速器、車輪傳動裝置和內驅動橋殼等組成容。
二、驅動橋的作用
1、將萬向傳動裝置傳來的發動機轉矩通過主減速器、差速器、半軸等傳到驅動車輪,實現降速增大轉矩。
2、通過主減速器圓錐齒輪副改變轉矩的傳遞方向。
3、通過差速器實現兩側車輪差速作用,保證內、外側車輪以不同轉速轉向。
4 通過橋殼體和車輪實現承載及傳力矩作用。
㈢ 驅動橋的作用是什麼主要由哪些部件組成
驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成。
它的作用是內將萬向傳動裝置傳來的動力容折過90°角,改變力的傳遞方向,並由主減速器降低轉速,增大轉矩後,經差速器分配給左右半軸和驅動輪。
㈣ 萬向傳動裝置的功用和組成
1.功用
萬向傳動裝置在汽車上有很多應用,結構也稍有不同,但其功用都是回一樣的,即在軸線相交且相互答位置經常發生變化的兩轉軸之間傳遞動力。
如圖5-1所示為在汽車中最常見的應用,位於變速器與驅動橋之間的萬向傳動裝置。由於汽車布置、設計等原因,變速器輸出軸和驅動橋輸入軸不可能在同一軸線上,並且變速器雖然是安裝在車架(車身)上,可以認為位置是不動的,但驅動橋會由於懸架的變形而引起其位置經常發生變化,所以在變速器和驅動橋之間裝有萬向傳動裝置正好可以滿足這些使用、設計的要求。
變速器與驅動橋之間的萬向傳動裝置
1-變速器 2-萬向傳動裝置 3-驅動橋 4-後懸架 5-車架
2.組成
萬向傳動裝置主要包括萬向節和傳動軸,對於傳動距離較遠的分段式傳動軸,為了提高傳動軸的剛度,還設置有中間支承,
㈤ 驅動橋的工作原理
驅動橋工作原理處於動力傳動系的末端,其基本功能是:
①將專萬向傳動裝置傳來的屬發動機轉矩通過主減速胎、差速器、半軸等傳到驅動車輪,實現降速增大轉矩;
②通過主減速器圓錐齒輪副改變轉矩的傳遞方向;
③通過差速器實現兩側車輪差速作用,保證內、外側車輪以不同轉速轉向。
驅動橋是位於傳動系末端能改變來自變速器的轉速和轉矩,並將它們傳遞給驅動輪的機構。驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成,轉向驅動橋還有等速萬向節。另外,驅動橋還要承受作用於路面和車架或車身之間的垂直力,縱向力和橫向力,以及制動力矩和反作用力。
㈥ 驅動橋的組成部分是什麼
驅動橋(driving axle)由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成。是將萬向傳版動裝置傳來的動力折過90°角權,改變力的傳遞方向,並由主減速器降低轉速,增大轉矩後,經差速器分配給左右半軸和驅動輪。
㈦ 機械傳動系統包括哪五大部分
機械式傳動系
1、組成 主要由離合器、變速器、萬向傳動裝置和驅動橋(包括主減速器、差速器、半軸和橋殼等)組成、在越野車輛上,還設有分動器。負責將變速器的功力分回給各驅動橋。
2、各主要總成的結構特點
(1) 離合器:
離合器位於發動機飛輪與變速器之間。主動部分(壓盤與離合器蓋)固定於飛輪後端面,從動部分(摩擦片)位於飛輪與壓盤之間,並通過中心的花鍵孔與變速器第一軸相連。壓緊部分位於壓盤與離合器蓋之間,利用其彈力將摩擦片緊緊地夾在飛輪與壓盤之間,主從動部分利用摩擦力矩來傳遞發動機輸出的扭矩。分離機構由安裝於離合器蓋和壓盤上的分離杠桿、套於變速器第一軸軸承蓋套筒上的分離軸承以及安裝於飛輪殼上的分離叉組成。分離叉通過機械裝置或者液壓機構與駕駛室內的離合器踏板相連。離合器是經常處於接合狀態傳遞扭矩的,只有將離合器踏板踩了,分離機構將壓盤後移與摩擦片分開而呈現分離狀態。此時扭矩傳遞中斷,可以進行諸如起步、換檔、制動等項操作作業。當汽車傳動系過載時,離合器會啟動打滑,對傳動系實現過載保護。
中型以下及部分大型車輛,多採用只有一片摩擦片的單片式離合器,部分大型車輛則採用雙片式離合器,離合器的摩擦片直徑越大,數目越多,所能傳遞的扭矩就越大,但分離時需要加在踏板上的力就要大些.在摩擦片上還設有扭矩減振器,以使傳動系工作更加平穩。
傳統結構的離合器壓緊部分多採用一圈沿四周均布的螺旋彈簧。數目多為8~16個不等。雖然壓緊可靠,但操縱離合器時比較費力,彈力也不容易均勻。還存在軸向尺寸大、高速時壓緊力下降等缺點,正逐步被膜片式離合器所取代。
目前在中小型甚至在部分大型車輛上,都採用了膜片式離合器。它利用一個碟狀的膜片彈簧取代了螺旋彈簧和分離杠桿,不但使軸向尺才減小,而且操縱輕便,不論在何種情況下都能可靠地壓緊。
離合器的操縱機構是指離合器踏板到分離叉之間的傳動部分。大部分汽車採用機械式結構,通過拉桿或者鋼絲繩將二者相連。也有一些車輛採用液壓機構,通過液力傳動來將二者聯在一起。
(2)變速器:
在汽車行駛中,要求驅動力的變化范圍是很大的,而發動機輸出扭矩的變化范圍有限。必須通過變速器來使發動機輸出扭矩的變化范圍能滿足汽車行駛的需要。同時,變速器還應能實現汽車的倒駛和發動機的空轉。目前汽車上多採用機械有級式變速器,由變速傳動機構(傳遞和變換扭矩)和變速操縱機構(用來變換檔位)組成。一般設有3~6個前進擋和1個倒檔。每一個檔位都有一個傳動比,可以將發動機輸出扭矩增大到和傳動比相同的倍數。同時將發動機轉速降低到和傳動比相同的倍數。擋位越低,傳動比越大。因此,當汽車低速行駛需要大扭矩時,可以將變速器掛入低擋,而汽車高速行駛需要小扭矩時,可將變速器掛入高檔。在前進檔中,有一個檔的傳動比為1。掛入該擋時變速器第一軸(輸入軸)和第二輪(輸出軸)初成一體同步轉動,發出動力不經變化直接輸出,稱之為直接擋。直接擋傳動效率最高,應經常使用。當變速器不掛入任何擋位,稱之為空擋,動力傳送中斷,實現發動機怠速運轉,滿足汽車滑行和怠速時的需要。
(3)萬向傳動裝置:
萬向傳動裝置主要由萬向節和傳動軸組成,將變速器或者是分動器發出的動力輸送給驅動橋。
(4)驅動橋:
主減速器:用來將變速器輸出的扭矩進一步增加,轉速進一步降低。對於縱置發動機來說,還將旋轉平面旋轉90度,變成與車輪平面平行。
差速器:驅動橋上設置差速器,可以在必要時允許兩側驅動輪轉速不同步,以滿足汽車轉向、路面不平時行駛的需要。
半軸:半軸為兩根,每根半軸內端通過花鍵與半軸齒輪相連,外端與車輪轂機連。
橋殼與輪轂:橋殼構成驅動橋的外殼。輪轂是車輪的一部分,通過輪轂將車輪安裝於驅動橋上。
分動器:全輪驅動的越野汽車上設有分動器,將變速器輸出的動力分配給各驅動橋。
㈧ 1.汽車傳動系中為什麼要設萬向傳動裝置該裝置由哪幾部分組成
由於發抄動機-變速器的動力輸出襲軸線和驅動橋的動力輸入軸線不可能完全對上,況且驅動橋在車輛行駛時在上下跳動,輸入軸軸線位置不斷變化,動力傳遞需要能夠適應這個變化,同時還要傳遞扭矩。
採用獨立懸架的驅動橋,動力由主減速器傳遞到車輪也是同樣的情況。
所以必須在傳動系統中設萬向傳動裝置。
萬向傳動裝置按結構形式有:十字軸式萬向節,雙聯式萬向節,三銷軸式萬向節,球叉式萬向節,球籠式萬向節,撓性萬向節等。結構各不相同
㈨ 傳動裝置都有哪些作用
汽車傳動系的基本功能就是將發動機發出的動力傳給驅動車輪。它的首要任務就是與汽車發動機協同工作,以保證汽車能在不同使用條件下正常行駛,並具有良好的動力性和燃油經濟性,為此,汽車傳動系都具備以下的功能:
1、減速和變速:
我們知道,只有當作用在驅動輪上的牽引力足以克服外界對汽車的阻力時,汽車才能起步和正常行駛。由實驗得知,即使汽車在平直得瀝青路面上以低速勻速行駛,也需要克服數值約相當於1.5%汽車總重力得滾動阻力。以東風EQ1090E型汽車為例,該車滿載總質量為9290kg(總重力為91135N),其最小滾動阻力約為1367N。若要求滿載汽車能在坡度為30%的道路上勻速上坡行駛,則所要克服的上坡阻力即達2734N。東風EQ1090E型汽車的6100Q-1發動機所能產生的最大扭距為353Nm(1200-1400rpm)。假設將這以扭距直接如數傳給驅動輪,則驅動輪可能得到的牽引力僅為784N。顯然,在此情況下,汽車不僅不能爬坡,即使在平直的良好路面上也不可能勻速行駛。
另一方面,6100Q-1發動機在發出最大功率99.3kW時的曲軸轉速為3000rpm。假如將發動機與驅動輪直接連接,則對應這一曲軸轉速的汽車速度將達510km/h。這樣高的車速既不實用,也不可能實現(因為相應的牽引力太小,汽車根本無法啟動)。
2、減速作用:
為解決這些矛盾,必須使傳動系具有減速增距作用(簡稱減速作用),亦即使驅動輪的轉速降低為發動機轉速的若干分之一,相應地驅動輪所得到的扭距則增大到發動機扭距的若干倍。
汽車的使用條件,諸如汽車的實際裝載量、道路坡度、路面狀況,以及道路寬度和曲率、交通情況所允許的車速等等,都在很大范圍內不斷變化。這就要求汽車牽引力和速度也有相當大的變化范圍。對活塞式內燃機來說,在其整個轉速范圍內,扭距的變化范圍不大,而功率的及燃油消耗率的變化卻很大,因而保證發動機功率較大而燃油消耗率較低的曲軸轉速范圍,即有利轉速范圍很窄。為了使發動機能保持在翻譯公司有利轉速范圍內工作,而汽車牽引力和速度有能在足夠大的范圍內變化,應當使傳動系傳動比(所謂傳動比就是驅動輪扭距與發動機扭距之比以及發動機轉速與驅動輪轉速之比)能在最大值與最小值之間變化,即傳動系應起變速作用。
3、差速作用
當汽車轉彎行駛時,左右車輪在同一時間內滾過的距離不同,如果兩側驅動輪僅用以根剛性軸驅動,則二者角速度必然相同,因而在汽車轉彎時必然產生車輪相對於地面滑動的現象。這將使轉向困難,汽車的動力消耗增加,傳動系內某些零件和輪胎加速磨損。所以,我們需要在驅動橋內裝置具有差速作用的部件——差速器,使左右兩驅動輪可以以不同的角速度旋轉。
㈩ 驅動橋的作用是什麼,主要由哪些部件組成啊
1 驅動橋的組成
驅動橋主要由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成。
1)主減速器:主減速器一般用來改變傳動方向,降低轉速,增大扭矩,保證汽車有足夠的驅動力和適當的速皮。主減速器類型較多,有單級、雙級、雙速、輪邊減速器等。
由一對減速齒輪實現減速的裝置,稱為單級減速器。其結構簡單,重量輕,東風BQl090型等輕、中型載重汽車上應用廣泛。但是對一些載重較大的載重汽車,要求較大的減速比,用單級主減速器傳動,則從動齒輪的直徑就必須增大,會影響驅動橋的離地間隙,所以採用兩次減速。通常稱為雙級減速器。雙級減速器有兩組減速齒輪,實現兩次減速增扭[3]。
2)差速器:差速器用以連接左右半軸,可使兩側車輪以不同角速度旋轉同時傳遞扭矩。保證車輪的正常滾動。有的多橋驅動的汽車,在分動器內或在貫通式傳動的軸間也裝有差速器,稱為橋間差速器。其作用是在汽車轉彎或在不平坦的路面上行駛時,使前後驅動車輪之間產生差速作用。
目前國產轎車及其它類汽車基本都採用了對稱式錐齒輪普通差速器。對稱式錐齒輪差速器由行星齒輪、半軸齒輪、行星齒輪軸(十字軸或一根直銷軸)和差速器殼等組成。
3)半軸:它是將差速器傳來的扭矩再傳給車輪,驅動車輪旋轉,推動汽車行駛的實心軸。由於輪轂的安裝結構不同,而半軸的受力情況也不同。所以,半軸分為全浮式、半浮式、3/4浮式三種型式。一般大、中型汽車均採用全浮式結構。而半浮式半軸這種結構型式主要用於小客車。3/4浮式半軸是受彎短的程度介於半浮式和全浮式之間[4]。此式半軸目前應用不多,只在個別小卧車上應用,如華沙M20型汽車。
4)橋殼:整體式橋殼因強度和剛度性能好,便於主減速器的安裝、調整和維修,而得到廣泛應用。整體式橋殼因製造方法不同,可分為整體鑄造式、中段鑄造壓入鋼管式和鋼板沖壓焊接式等。分段式橋殼一般分為兩段,由螺栓1將兩段連成一體。分段式橋殼比較易於鑄造和加工。目前應用整體式較多。驅動橋的作用主要是把由傳動軸輸入的動力經過驅動橋減速增扭傳到驅動輪,產生牽引力,通過差速器使汽車在彎道行駛時,左右驅動以不同轉速旋轉,使車輪既不產生滑拖,也不產生滑轉,並通過懸架將牽引力,制動力傳給車架