導航:首頁 > 裝置知識 > 校正聯軸器傳動裝置

校正聯軸器傳動裝置

發布時間:2021-02-23 09:43:40

① :如何校正電機與泵聯軸器同軸度,具體方法是什麼

測量倆基座高度,然後水平···

傳動裝置有哪些安全防護措施

機床上常見的傳動機構有齒輪嚙合機構、皮帶傳動機構、聯軸器等。在齒輪傳動機構中,兩輪開始嚙合的地方最危險。在皮帶傳動機構,皮帶開始進入皮帶輪的部位最危險。
聯軸器上裸露的突出部分有可能鉤住工人衣服等,給工人造成傷害。為了保護機構設備的安全運行和操作人員的安全和健康,所採取的安全技術措施一般可分為直接、間接和指導性三類。
直接安全技術措施是在設計機器時,考慮消除機器本身的不安全因素;間接安全技術措施是在機械設備上採用和安裝各種安全防護裝置,克服在使用過程中產生的不安全因素;指導性安全措施是制定機器安裝、使用、維修的安全規程及設置標志,以提示或指導操作程序,從而保證作業安全。
傳動裝置的安全防護措施:
1、齒輪傳動的安全防護
齒輪傳動裝置必須裝置全封閉型的防護裝置。齒輪傳動機構沒有防護罩不得使用。防護裝置的材料可用鋼板或鑄造箱體,必須堅固牢靠,保證在機器運行過程中不發生振動。同時應便於開啟,便用機器的維護保養,即要求能方便地打開和關閉。為了引起人們的注意,防護罩內壁應塗成紅色,最好裝電氣聯鎖,使防護罩在開啟的情況下機器停止運轉。另外,上海鋌和建議大家機械設備防護罩殼體本身不應有尖角和銳利部分。
2、皮帶傳動的安全防護
由於皮帶摩擦後易產生靜電放電現象,故不適用於容易發生燃燒或爆炸的場所。皮帶傳動機構的危險部分是皮帶接頭處、皮帶進入皮帶輪的地方。皮帶傳動裝置的防護罩可採用金屬骨架的防護網,與皮帶的距離不應小於50mm,一般傳動機構離地面2m以下,應設防護罩。但在下列3種情況下,即使在2m以上也應加以防護:皮帶輪中心距之間的距離在3m以上;皮帶寬度在15cm以上;皮帶回轉速度在9m/min以上。皮帶的接頭必須牢固可靠。
3、聯軸器的安全防護
對聯軸器的安全要求是沒有突出的部分,即採用安全聯軸器。但這樣還沒有徹底排除隱患,根本的辦法是加防護罩,最常見的是防罩。軸上的鍵及固定螺釘必須加以防護,螺釘一般應採用沉頭螺釘。

③ 聯軸器有那幾種類型,在補償軸偏移的能力方面各有何不同

以下回答由聯軸器製造商-上海松銘傳動機械有限公司回答。
更多型號選擇及介紹請登錄上海松銘傳動機械有限公司官網查看及下載樣冊。
聯軸器是機械傳動系統中的重要組成部分,常用於聯結兩軸或軸與回轉件以傳遞扭矩及運動,廣泛的應用於冶金、化工、機械、車船、電子、飛機等工業部門。
聯軸器一般分為剛性聯軸器和撓性聯軸器兩大類。
1、剛性聯軸器:
剛性聯軸器有剛性元件組成,適用於兩軸線許用相對位移量甚微的場合。此類聯軸器結構簡單,體積小,成本低。
撓性聯軸器
撓性聯軸器又分為金屬彈性元件撓性聯軸器和非金屬彈性元件撓性聯軸器兩大類。
(1)金屬彈性元件撓性聯軸器:
金屬彈性元件撓性聯軸器有以下主要特點:
1.彈性元件強度較高,比傳遞同等扭矩的其它聯軸器體積小,結構緊湊。
2.性能穩定,使用壽命長。
3.製造較復雜,成本較高。
金屬彈性元件多為膜片、波紋管、連桿、金屬卷簧、板簧。金屬彈性元件聯軸器廣泛地應用於:
1.具有較大功率和較高轉速的泵和風機,大功率的內燃機、壓氣機、燃氣輪機。
2.具有沖擊扭矩較大,負載變化劇烈的破碎機械。
3.精密傳動機械,數據傳輸系統,如數控機床。
4.有高溫、高精度要求的如紡織、造紙、印刷、包裝機械。
5.本公司生產的膜片聯軸器屬此類型聯軸器。
(2)非金屬彈性元件撓性聯軸器:
非金屬撓性元件的材料主要是橡膠以及工程塑料(尼龍).使用非金屬彈性元件的聯軸器具有以下特點:
1.具有較高的阻尼減震特性,消震能力較強。
2.具有結構多樣及良好的絕緣性能。
3.耐油性和耐熱性比較差,負荷性能不夠穩定。
4.在運轉中無需潤滑,維護簡便.
5.本公司生產的非金屬彈性元件撓性聯軸器品種有柱銷聯軸器、柱銷齒式聯軸器、彈性柱銷聯軸器、梅花彈性聯軸器、輪胎式聯軸器、滑塊式聯軸器、尼龍內齒圈鼓式聯軸器。
聯軸器的選定:
1.選擇適當的形式:根據機械特性的要求,如傳遞扭矩大小、剛度要求、震動、沖擊、耐酸鹼腐蝕、傳動精度等等,確定合適的類型。
2.計算扭矩:
聯軸器傳遞的最大扭矩應小於許用扭矩值.最大扭矩的確定應考慮機器制動所需要加減速扭矩和過載扭矩.但是在設計時資料不足或分析困難,最大扭矩不易確定時,可按計算扭矩選用.即不超過許用扭矩值。
計算扭矩Tc:用下列公式計算
Tc=KT
T=9550×Pw/n=7020×PH/n
式中T=理論扭矩N.m
K---工作情況系數,可參考JB/ZQ4383-86 《聯軸器的載荷分類及工作情況系數》選用,通常1﹤K﹤5。
Pw ---驅動功率,Kw
PH---驅動功率,馬力
n----轉速,rpm
3.確定孔徑范圍(注:主從動軸徑不同時,應按大端直徑選用聯軸器的規格)。
4.確定軸孔徑及鍵(或脹緊聯結套)的形式。

④ 聯軸器的校正方法是什麼

(1)百分表測量法把專用的夾具(對輪卡)或磁力表座裝在作基準的(常是裝在主機轉軸上的)半聯軸器上,用百分表測量聯軸器的徑向間隙和軸向間隙的偏差值。此方法使梅花彈性聯軸器找正的測量精度大大提高,常用的百分表測量方法有四種。
(2)雙表測量法(又稱一點測量法) :用兩塊百分表分別測量聯軸器外圓和端面同一方向上的偏差值,故又稱一點測量法,即在測量某個方位上的徑向讀數的同時,測量出同一方位上的軸向讀數.具體做法是:先用角尺對吊裝就位準備調整的機器上的梅花彈性聯軸器做初步測量與調整。然後在作基準的主機側半聯軸器上裝上專用夾具及百分表,使百分表的觸頭指向原動機側半聯軸器的外圓及端面。
(3)簡單的測量方法。用角尺和塞尺測量梅花彈性聯軸器外圓各方位上的徑向偏差,用塞尺測量兩半梅花聯軸器端面間的軸向間隙偏差,通過分析和調整,達到兩軸對中。這種方法操作簡單,但精度不高,對中誤差較大。只適用於機器轉速較低,對中要求不高的梅花聯軸器的安裝測量。
角尺和塞尺的測量方法
(4)用中心卡及塞尺的測量方法找正用的中心卡(又稱對輪卡)結構形式有多種,根據梅花彈性聯軸器的結構,尺寸選擇適用的中心卡,常見的結構。中心卡沒有統一規格,考慮測量和裝卡的要求由鉗工自行製作
常見對輪卡型式
(a)用鋼帶固定在聯軸器上的可調節雙測
(b)測量軸用的不可調節的雙測點對輪卡
(c)測量齒式聯軸器的可調節雙測點對輪卡
(d)用螺釘直接固定在凌斯聯軸器上的可調節雙測點對輪卡
(e)有平滑圓柱表面聯軸器用的可調節單測點對輪卡
(f)有平滑圓柱表面聯軸器用的可調節雙點對輪卡
利用中心卡及塞尺可以同時測量梅花聯軸器的徑向間隙及軸向間隙,這種方法操作簡單,測量精度較高,利用測量的間隙值可以通過計算求出調整量,故較為適用。

⑤ 機械設備聯軸器的同軸度校正

小轉矩和以傳遞運動為主的軸系傳動,要求聯軸器具有較高的傳動精度,版宜選用非金屬彈性元件權的撓性聯軸器。大轉矩和傳遞動力的軸系傳動,對傳動精度變有要求,高轉速時,應避免選用金屬彈性元件彈性聯軸器和可動元件之間的間隙的撓性聯軸器,宜選用傳動精度高的膜片聯軸器。

主要:千分表,高度尺,磁性座,銅棒等!

具體的方法有很多不同!

www.jxcdj.cn

⑥ 聯軸器找正校表應放在電機側還是傳動軸測

聯軸器不需要來校正源 如果電機軸和傳動軸不同心 那是你電機安裝座有問題
再有 聯軸器都是有擾性的 就是允許有一定角度的不同心 如果你肉眼看你出來 你可以開啟電機運行10分鍾後 摸一下聯軸器是不是很燙 不燙就說明在允許誤差范圍以內了 當然 國產酒難說了

⑦ 機械課程設計盤磨機傳動裝置

我做的是普通減速機,磨盤機不清楚,我只能復制個樣本給你
目 錄

一 課程設計書 2

二 設計要求 2

三 設計步驟 2

1. 傳動裝置總體設計方案 3
2. 電動機的選擇 4
3. 確定傳動裝置的總傳動比和分配傳動比 5
4. 計算傳動裝置的運動和動力參數 5
6. 齒輪的設計 8
7. 滾動軸承和傳動軸的設計 19
8. 鍵聯接設計 26
9. 箱體結構的設計 27
10.潤滑密封設計 30
11.聯軸器設計 30

四 設計小結 31
五 參考資料 32

一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級齒輪減速器.運輸機連續單向運轉,載荷有輕微沖擊,工作環境多塵,通風良好,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限10年(300天/年),三班制工作,滾筒轉速容許速度誤差為5%,車間有三相交流,電壓380/220V。
參數:
皮帶有效拉力F(KN) 3.2
皮帶運行速度V(m/s) 1.4
滾筒直徑D(mm) 400

二. 設計要求
1.減速器裝配圖1張(0號)。
2.零件工作圖2-3張(A2)。
3.設計計算說明書1份。
三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 齒輪的設計
6. 滾動軸承和傳動軸的設計
7. 鍵聯接設計
8. 箱體結構設計
9. 潤滑密封設計
10. 聯軸器設計
1.傳動裝置總體設計方案:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:

圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器。
傳動裝置的總效率
為V帶的傳動效率, 為軸承的效率,
為對齒輪傳動的效率,(齒輪為7級精度,油脂潤滑)
為聯軸器的效率, 為滾筒的效率
因是薄壁防護罩,採用開式效率計算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.電動機的選擇
電動機所需工作功率為: P =P/η =3200×1.4/1000×0.760=3.40kW
滾筒軸工作轉速為n= = =66.88r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。

方案 電動機型號 額定功 率
P
kw 電動機轉速

電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動 比 V帶傳 動 減速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90

3.確定傳動裝置的總傳動比和分配傳動比

(1)總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/66.88=17.05
(2)分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3(實際的傳動比要在設計V帶傳動時,由所選大、小帶輪的標準直徑之比計算),則減速器傳動比為
= =17.05/2.3=7.41
根據展開式布置,考慮潤滑條件,為使兩級大齒輪直徑相近,查圖得高速級傳動比為 =3.24,則 = =2.29

4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各軸輸入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
則各軸的輸出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各軸輸入轉矩
= × × N•m
電動機軸的輸出轉矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
輸出轉矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.40 22.55 1440
1軸 3.26 3.19 49.79 48.79 626.09
2軸 3.04 2.98 151.77 148.73 193.24
3軸 2.83 2.77 326.98 320.44 84.38
4軸 2.75 2.70 307.52 301.37 84.38
5.齒輪的設計
(一)高速級齒輪傳動的設計計算
1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1)齒輪材料及熱處理
① 材料:高速級小齒輪選用45#鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用45#鋼正火,齒面硬度為大齒輪 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。

2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計

確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26

②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5

[ ] = =0.96×450=432
許用接觸應力

⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d

=
②計算圓周速度

③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式

⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN•m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774
⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78
⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =

大齒輪的數值大.選用.
⑵ 設計計算
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的

(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用45鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用45鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度

6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN•m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y

(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的

查課本由 圖10-20c得齒輪彎曲疲勞強度極限

查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較

大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度

圓整後取

低速級大齒輪如上圖:

齒輪各設計參數附表
1. 各軸轉速n
(r/min)
(r/min)
(r/min)
(r/min)

626.09 193.24 84.38 84.38

2. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)

3.26 3.04 2.83 2.75

3. 各軸輸入轉矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)

49.79 151.77 326.98 307.52

6.傳動軸承和傳動軸的設計
1. 傳動軸承的設計
⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圓周力F ,徑向力F 及軸向力F 的方向如圖示:
⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取

輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取

因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑
⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.

D B

軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 從動軸的設計
對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.
④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則

至此,已初步確定了軸的各端直徑和長度.
5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.

傳動軸總體設計結構圖:

(從動軸)

(中間軸)

(主動軸)
從動軸的載荷分析圖:

6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全
7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力

截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:


經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以

綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅳ左側的彎矩M為 M=133560
截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.鍵的設計和計算
①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50
②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:

名稱 符號 計算公式 結果
箱座壁厚

10
箱蓋壁厚

9
箱蓋凸緣厚度

12
箱座凸緣厚度

15
箱座底凸緣厚度

25
地腳螺釘直徑

M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑

M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚

9 8.5

軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離

120(1軸)125(2軸)
150(3軸)
10. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
11.聯軸器設計
1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器.
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm

就這樣樓

⑧ 聯軸器的注意問題

聯軸器是各運動機構的中間連接部件,它對各運動機構的正常運轉有直接影響,因此,使用時必須注意:
①聯軸器不允許有超過規定的軸心線歪斜和徑向位移,以免影響其傳動性能。
②凌斯聯軸器的螺栓不得有松動,缺損。
③齒輪聯軸器和十字滑塊聯軸器要定期潤滑,一般2~3個月加潤滑脂一次,以免輪齒劇烈磨損,造成嚴重後果。
④齒輪聯軸器齒寬接觸長度不得小於70%;其軸向竄動量不得大於5mm.
⑤聯軸器不允許有裂紋存在,如有裂紋則需更換(可用小錘敲擊,根據聲音判斷)。
⑥凌斯聯軸器的鍵應配合緊密,不得松動。
⑦齒輪聯軸器的齒厚磨損,對起升機構超過原齒厚的15%時,對運行機構超過25%時應報廢,有斷齒時也應報廢。
⑧柱銷聯軸器的彈性圈,齒輪聯軸器的密封圈,如有損壞老化,要注意及時更換。 平衡等級
(1)任意一個聯軸器組件的平衡等級是根據聯軸器的慣性主軸線與旋轉軸線之間重心位置偏心量的最大可能值的平方和方根值而決定的。其不平衡量以微米表示。 (2)對聯軸器組件的潛在不平衡因素前面作了介紹,確定各種類型聯軸器組件的平衡等級和計算平衡的各個步驟見計算示例。 (3)聯軸器平衡等級的標准分級表下表,在平衡面位置上慣性主軸線對旋轉軸線所產生的最大偏移以最大均方根微米表示,其數值是按AGMA方法計算的聯軸器平衡標准等級 聯軸器平衡等級 慣性主軸線在平衡面上的最大位移(均方根) 聯軸器平衡等級 慣性主軸線在平衡面上的最大位移(均方根) 聯軸器平衡等級 慣性主軸線在平衡面上的最大位移(均方根) 聯軸器平衡等級 慣性主軸線在平衡面上的最大位移(均方根) 4 >800 9 50 5 800 10 25 6 400 11 12 7 200 12 6 8 100 平衡問題
聯軸器由於種種原因使其質心或慣性主軸與其加轉軸線不重合,在運轉時將產生不平衡離心慣性力、離心慣性偶力和動撓度(振型)的現象,稱為轉子的不平衡現象,這種不平衡現象必然引起軸系的振動,從而影響機器的正常工作和使用壽命,因而對其必須加以重視。不平衡的程度(不平衡量U)通常用轉子的質量m和質心到轉子回轉軸線距離r的乘積mr來表達,稱為質徑積。也有用單位質量的質徑積來表達的,稱為偏心距e(不是幾何意義上的偏心。)質徑積mr是一個與轉子質量有關的相對量,而偏心距e是一個與轉子質量無關的絕對量。前者比較直觀,常用於具體給定轉子的平衡操作,後者用於衡量轉子平衡的優劣或檢測平衡精度,聯軸器的平衡等級標准即按e來評定。對於撓性轉子則用振型偏心距(第n階振型)en=Un/mn,Un、mn分別為第n階振型和階模態質量。
為了糾正或最大限度地減少聯軸器的不平衡量,應根據需要選擇適當的平衡等級,並在產品製造完成及在機器上安裝完成後,在聯軸器指定的平衡(校正)平面上,通過增加或減少適當質量的方法,使之達到平衡等級要求。這個工藝過程稱為平衡校正,簡稱平衡。
相對位移
聯軸器所聯兩軸由於製造誤差、安裝誤差、軸受載而產生的變形、基座變形、軸承磨損、溫度變化(熱脹、冷縮)、部件之間的相對運動等多種因素而產生相對位移。一般情況下,兩軸相對位移是難以避免的,但不同工況條件下的軸系傳動所產生的位移方向,即軸向(x)、徑向(y)、角向(a)以及位移量的大小有所不同。只有撓性聯軸器才具有補償兩軸相對位移的性能,因此在實際應用中大量選擇撓性聯軸器。剛性聯軸器不具備補償性能,應用范圍受到限制,因此用量很少。

⑨ 鋼性聯軸器和彈性聯軸器在主傳動系統中應用在什麼部位有什麼區別

鋼性聯軸器用於低速軸上。     
彈性聯軸器,用於齒輪箱高速軸上。 
鋼性聯軸器將兩個半軸專直接接成一體屬,對中性比較好。     
彈性聯軸器對所聯結的兩個軸相對偏移有一定的補償量。 
對中時比較准,用途:一個是補償偏移,一個是吸收振動,減少振動,緩沖,減振作用。

閱讀全文

與校正聯軸器傳動裝置相關的資料

熱點內容
進口電動工具與國產電動工具 瀏覽:491
醫用設備零配件屬於什麼材料 瀏覽:51
pe工具箱支持win10 瀏覽:163
10kv線路保護測控裝置的作用 瀏覽:201
利舊設備怎麼套定額 瀏覽:624
暖氣閥門怎麼修才能熱視頻 瀏覽:288
常用玻璃儀器可採用哪些洗滌方式 瀏覽:656
機械零件圖號如何編制 瀏覽:361
收到設備贈送配件如何入賬 瀏覽:230
宇通工具箱 瀏覽:872
垂直儀器怎麼接線 瀏覽:855
鋁合金門窗電動工具 瀏覽:922
電動工具製冷學校洛陽 瀏覽:599
設備費說明怎麼寫 瀏覽:816
客機為什麼不能設計逃生裝置 瀏覽:11
煤礦c級儀表是什麼意思 瀏覽:681
通風管道中閥門是否包括 瀏覽:583
汽車儀表盤上的膠怎麼辦 瀏覽:769
儀表盤istop亮是什麼 瀏覽:39
蛋糕麵包機械大概多少錢一個 瀏覽:562