Ⅰ 淺談波浪能發電裝置發電機優化設計
淺談波浪能發電裝置發電機優化設計
引言:發電機的三相輸出接到風光互補控制器上,通過控制器可以得到48V的穩定電壓,可將穩定的電能存儲在蓄電池中。以下是我來淺談波浪能發電裝置發電機優化設計,希望對你們有幫助。
【論文摘要】 本文在上海海洋大學研製的“浪流一體化發電裝置”的基礎上,對其發電機進行了優化設計,去掉了發電機和水輪機的中間轉換裝置,滿足了海洋能直驅發電的形式,通過電機實驗室性能測試驗證了其可行性,提高了發電效率和可靠率,降低了維護成本,可以應用於實際生產中。
【關鍵詞】浪流一體化;發電裝置;發電機;優化設計;直驅發電
0 前言
上海海洋大學研製的“浪流一體化發電裝置”同時可以捕獲波浪和海流的向前的推力,在接受到海洋能量之後產生慣性而發生連續轉動;通過主軸帶動發電機旋轉而產生電能。為海洋觀測、島礁生活、海洋養殖、海水淡化等提供穩定的電能,並用於解決邊遠海域的國防設施、部分電網未覆蓋的有居民海島、偏遠無居民海島生態建設中的供電需求。本文以此發電裝置為研究對象,對其水輪機匹配的發電機進行了優化設計,克服了傳統的海洋能需要經過三個部分轉換的缺點,沒有齒輪箱,減少了傳動損耗,採用發電機輸出電壓穩定控制器,實現了浪輪機的輸出轉速穩定,提高了發電效率,降低了運行維護成本。尤其是在低轉速環境下,效果更加顯著。
1 研究對象與方法
本項目設計的發電機是滿足海洋能直驅發電形式的。然而,齒輪箱的存在卻成為制約海洋能發電機組發展的因素之一:機組運行過程中齒輪箱一直處於高速旋轉,增加了系統損耗,降低了能量利用率;海洋能發電機組往往安裝在海平面或海水之中,經受嚴寒酷暑,海水腐蝕、溫度變化大,環境條件惡劣,導致升速齒輪箱的工況嚴峻,維護保養工作量大;為了能適應惡劣的運行環境,齒輪箱畢竟造價昂貴,更由於海洋能能量多變,往往會造成過載,這樣就更容易損壞齒輪箱,使得系統運行成本增大。
因此,本設計取掉了中間轉換環節,水輪機主軸右端通過聯軸器和電機連接在一起,直接帶動電機發電,中間不經過任何環節,這就實現了絕對的直驅。本文研製海洋能直驅發電方式有以下幾個方面優點:
(1)提高了發電效率高。直驅式發電沒有齒輪箱,減少了傳動損耗,提高了發電效率,尤其是在低轉速環境下,效果更加顯著。
(2)提高了可靠性。直驅技術省去了齒輪箱及其附件,簡化了傳動結構,提高了機組的可靠性。同時,機組在低轉速下運行,旋轉部件少,可靠性更高。
(3)運行及維護成本低。採用無齒輪直驅技術可減少發電機組裝置零部件數量,避免齒輪箱油的定期更換,降低了運行維護成本。
然而,這樣的海洋能直驅發電方式就需要發電機具有低速運行的'特性,並且有較高的效率,更者要求發電機要能在海水中運行。
2 直驅發電機設計
2.1 直驅發電機結構設計
發電機採用盤式結構:波浪能單位體積所攜帶的能量有限,要能高效的收集這些能源,發電機則成為本裝置中能源轉換的關鍵設備之一。波浪能發電機,最多每分鍾幾百轉,因此發電機的技術指標、經濟性等決定本裝置在市場中的競爭力。常用發電機分為盤式和圓柱式兩種:圓柱式發電機的氣隙磁場延軸向分布,要想獲得較高的發電效率,圓柱式發電機必須運行在高速下,而盤式發電機的定轉子為平行結構,克服了圓柱式發電機定子包容轉子的結構缺點,軸向尺寸小,沒有疊片和鉚壓工序,工藝好,因此盤式發電機可以運行在低速條件下。因此發電機選用盤式發電機結構,能夠在低轉速下達到額定功率,從而滿足了波浪能發電系統對發電機的技術要求,提高了效率。
2.2 發電機輸出電壓穩定控制器設計
發電機的三相輸出接到風光互補控制器上,通過控制器可以得到48V的穩定電壓,可將穩定的電能存儲在蓄電池中。控制器的原理是將輸入的交流電流通過三相橋式全控整流電路轉化成直流電流,直流電流通過升降壓斬波電路將電壓輸出控制在48V。值得注意的是發電機轉速達到54r/min控制器輸出端才會有電流輸出。控制器如圖2所示,經過控制器流出的電流為直流,將控制器後面的電池組“+”“-”接到蓄電池的介面即可,反面細節如圖3所示。
2.3 直驅電機工作原理
2.3.1 三相橋式全控整流電路
在三相橋式全控整流電路中,如圖4所示,晶閘管KP1和KP4接a相,晶閘管KP3和KP6接b相,晶管KP5和KP2接c相。晶閘管KP1、KP3、KP5組成共陰極組,而晶閘管KP2、KP4、KP6組成共陽極組。
2.3.2 升降壓斬波電路原理
如圖5所示為升降壓斬波電路原理,V通時,電源E經V向L供電使其貯能,此時電流為i1。同時,C維持輸出電壓恆定並向負載R供電。V斷時,L的能量向負載釋放,電流為i2。負載電壓極性為上負下正,與電源電壓極性相反,該電路也稱作反極性斬波電路。
3 實驗分析
在實驗室中模擬不同工況水流下輪機所具有的轉數,並以可控轉數電動機帶動發電機測試其發電性能。為此,我們搭建了發電機測試平台。發電機測試平台如圖7所示,通過機架將發電機固定,通過聯軸器與感測器相連。在發電機測試平台中,右邊是直流電動機,模擬水輪機的作用,作為動力的出入。通過聯軸器與電動機相連的是感測器,這種感測器連接顯示屏後可以看到瞬態的扭矩、轉速、功率。其中功率可是為發電機的輸入功率,這樣我們測出輸出功率後可以得到發電機的效率。電阻箱、整流器與扭矩儀如圖8所示,扭矩儀上的3個顯示屏即為扭矩、轉速、功率。
發電機所發出的是三相交流電,三相交流電輸入電子測試平台,通過電子測試平台,可以得到三相交流電的瞬態電壓、電流、功率、功率因數。流出整流器的電流經過整流變為直流電流,流入功率計,並將滑動變阻箱串聯到整個電路中。
4 電機方案總結與展望
方案採用直驅式發電形式不僅增加了發電效率,而且提高的發電裝置的可靠性,無障礙運行時間滿足了要求。發電機採用盤式發電機結構,其能夠在低轉速下達到額定功率,從而滿足了波浪能發電系統對發電機的技術要求,提高了效率。裝置發出的三相交流電通過控制器後,經實際測量,電壓基本維持在48V左右,且為直流電,這將電能存儲到蓄電池中提供了條件,並最終達到了我們的要求。
但是發電機組安裝在海平面或海水之中,經受嚴寒酷暑,海水腐蝕、溫度變化大,環境條件惡劣,容易遭受海水腐蝕,因此今後可以做的研究方向還有以下幾個方面:
1)發電機本身要具有良好的機械密封設計,評估不同海水深度、壓力下密封系統的可靠性。研究海水環流條件下,涉海材料在淤泥、深海、淺海、浪花飛濺、海霧等不同區域環境下,其腐蝕規律,設計相應的耐腐蝕材料;
2)發電機外部可增設防水箱,使發電機與海水具有了隔離層,不僅達到了防水的效果,也使發電機無需浸泡在海水中。
【參考文獻】
[1]游亞戈.我國海洋波浪能的發展進展[J].中國科技成果,2006(2):17-19.
[2]李允武.海洋能源開發[M].海洋出版社,2008.
[3]盛松偉,游亞戈,馬玉久.一種波浪能實驗裝置水動力學分析與優化設計[J].海洋工程,2006,24(3):107-112.
[4]張峰,游亞戈,吳必軍,李甫傑.中國海洋能專利研究[J].可再生能源,2007,25(2):79-81.
Ⅱ 優化設計是指什麼
優化設計(Optimal Design)是近年來發展起來的一門新學科,是最優化技術和計算機計算技術在設計領域應用的結果。優化設計為工程設計提供了一種重要的科學設計方法,使得在解決復雜設計問題時,能從眾多的設計方案中尋到盡可能完善的或最適宜的設計方案。在設計過程中,常常需要根據產品設計的要求,合理確定各種參數,例如,重量、成本、性能、承載能力等,以達到最佳的設計目標。這就是說,一項工程設計總是要求在一定的技術和物質條件下,取得一個技術經濟指標為最佳的設計方案。優化設計就是在這樣一種思想的指導下產生和發展起來的。
目前優化設計方法在結構設計、化工系統設計、電氣傳動設計、製造工藝設計等各專業中都有廣泛的應用。實踐證明,在工程設計中採用優化設計方法,不僅可以減輕機械設備重量,降低材料消耗與製造成本,而且可以提高產品的質量與工作性能。因此,優化設計已成成為現代機械設計理論和方法中的一個重要領域,並且越來越受到從事機械設計的科學工作者和工程技術人員的重視。
機械優化設計是使某項機械設計在規定的各種設計限制條件下,優選設計參數,使某項或幾項設計指標獲得最優值。工程設計上的「最優值」(Optimum)或「最佳值」是指在滿足多種設計目標和約束條件下所獲得的最令人滿意、最適宜的值。它反映了人們的意圖和目的,這不同於表示事物本身規律的極值——最大值和最小值,但是在很多情況下,也可以用最大值或最小值來代表最優值。最優值的概念是相對的,隨著科學技術的發展及設計條件的變動,最優化的標准也將發生變化。也就是說,優化設計反映了人們對客觀世界認識的深化,它要求人們根據事物的客觀規律,在一定的物質基礎和技術條件之下,充分發揮人的主觀能動性,得出最優的設計方案。
最優化技術,是優化設計全過程中各種方法技術的總稱。它主要包含兩部分內容:優化設計問題的建模技術和優化設計問題的求解技術。如何將一個實際的設計問題抽象成一個優化設計問題,並建立起符合實際設計要求的優化設計數學模型,這是建模技術要解決的問題。建立實際問題的優化數學模型,不僅需要熟悉掌握優化設計方法的基本理論;設計問題抽象和數學模型處理的基本技能;更重要的是要具有該設計領域的豐富設計經驗。此外,在進行優化設計求解過程中,要不斷地分析實際問題,以及數學模型之間存在的差距,不斷地修正優化設計數學模型,只有這樣,才能建立起正確的數學模型,求解得到的最優解才具有實際意義。
優化設計的基本思想是搜索、迭代和逼近。首先確定設計變數和目標函數構造優化模型,從某一點x出發,根據目標函數和約束函數在該點的某些信息,確定本次迭代計算的一個方向和適當的步長,去尋找新的迭代點x′,然後用x′代替x,x′點的目標函數值應比原x點的目標函數值小一些。這樣一步步的重復迭代,逐步改進目標函數值,直到最終逼近極值點。這樣一個逐步尋優的過程,即尋找極小點(無約束或約束極小點)的過程比喻為向「山」的頂峰攀登的過程,始終保持向「高」的方向前進,直至達到「山頂」。當然,「山頂」可以理解為目標函數的極大值,也可以理解為極小值,前者稱為上升演算法,後者稱為下降演算法。這兩種演算法都有一個共同的特點,就是每前進一步都應該使目標函數值有所改善,同時還要為下一步移動的方向提供有用的信息,如圖4-22所示。
圖4-22優化設計