導航:首頁 > 裝置知識 > 馬呂斯定律實驗裝置

馬呂斯定律實驗裝置

發布時間:2025-05-04 10:53:28

機械工程師都需要哪些知識和技能

注冊機械工程師資格考試基礎考試大綱

一. 高等數學

1.1 空間解析幾何向量代數 直線 平面 柱面 旋轉曲面 二次曲面 空間曲線

1.2 微分學極限 連續 導數 微分 偏導數 全微分 導數與微分的應用

1.3 積分學不定積分 定積分 廣義積分 二重積分 三重積分 平面曲線積分 積分應用

1.4 無窮級數數項級數 冪級數 泰勒級數 傅里葉級數

1.5 常微分方程可分離變數方程 一階線性方程 可降階方程 常系數線性方程

1.6 概率與數理統計隨機事件與概率 古典概型 一維隨機變數的分布和數字特徵 數理統計的基本概念參數估計 假設檢驗 方差分析 一元回歸分析

1.7 向量分析

1.8 線性代數行列式 矩陣 n維向量 線性方程組 矩陣的特徵值與特徵向量二次型

二. 普通物理

2.1 熱學氣體狀態參量 平衡態 理想氣體狀態方程 理想氣體的壓力和溫度的統計解釋 能量按自由度均分原理 理想氣體內能 平衡碰撞次數和平均自由程
麥克斯韋速率分布律 功 熱量 內能 熱力學第一定律及其對理想氣體等值過程和絕熱過程的應用 氣體的摩爾熱容 循環過程 熱機效率 熱力學第二定律及其統計意義
可逆過程和不可逆過程 熵

2.2 波動學機械波的產生和傳播 簡諧波表達式 波的能量 駐波 聲速 超聲波 次聲波 多普勒效應

2.3 光學相干光的獲得 楊氏雙縫干涉 光程 薄膜干涉 麥克爾干涉儀 惠更斯——菲涅耳原理 單縫衍射 光學儀器分辨本領 x射線衍射 自然光和偏振光
布儒斯特定律 馬呂斯定律 雙折射現象 偏振光的干涉 人工雙折射及應用

三. 普通化學

3.1 物質結構與物質狀態原子核外電子分布 原子、離子的電子結構式 原子軌道和電子雲 離子鍵特徵共價鍵特徵及類型 分子結構式 雜化軌道及分子空間構型
極性分子與非極性分子 分子間力與氫鍵 分壓定律及計算 液體蒸氣壓 沸點 汽化熱 晶體類型與物質性質的關系

3.2 溶液溶液的濃度及計算 非電解質稀溶液通性及計算 滲透壓 電解質溶液的電離平衡 電離常數及計算 同離子效應和緩沖溶液 水的離子積及ph值
鹽類水解平衡及溶液的酸鹼性 多相離子平衡 溶度積常數 溶解度計算

3.3 周期表周期表結構 周期 族 原子結構與周期表關系 元素性質 氧化物及其水化物的酸鹼性遞變規律

3.4 化學反應方程式 化學反應速率與化學平衡化學反應方程式寫法及計算 反應熱 熱化學反應方程式寫法 化學反應速率表示方法 濃度、溫度對反應速率的影響
速率常數與反應級數 活化能及催化劑化學平衡特徵及平衡常數表達式 化學平衡移動原理及計算 壓力熵與化學反應方向判斷

3.5 氧化還原與電化學氧化劑與還原劑 氧化還原反應方程式寫法及配平 原電池組成及符號 電極反應與電池反應 標准電極電勢 能斯特方程及電極電勢的應用
電解與金屬腐蝕

3.6 有機化學有機物特點、分類及命名 官能團及分子結構式有機物的重要化學反應:加成 取代 消去 氧化 加聚與縮聚典型有機物的分子式、性質及用途:甲烷
乙炔 苯 乙醇 酚 乙醛 乙酸 乙酯 乙胺 苯胺 聚氯乙烯 聚乙烯 聚丙烯酸 酯類 工程塑料(ABS) 橡膠 尼龍66

四. 理論力學

4.1 靜力學平衡 剛體 力 約束 靜力學公理 受力分析 力對點之矩 力對軸之矩 力偶理論 力系的簡化 主失 主矩 力系的平衡
物體系統(含平面靜定桁架)的平衡 滑動摩擦 摩擦角 自鎖 考慮滑動摩擦時物體系統的平衡 重心

4.2 運動學點的運動方式 軌跡 速度和加速度 剛體的平動 剛體的定軸轉動 轉動方式 角速度和角加速度 剛體內任一點的速度和加速度

4.3 動力學動力學基本定律 質點運動微分方程 動量 沖量 動量定理 動量守恆的條件 質心 質心運動定理 質心運動守恆的條件 動量矩 動量矩定理
動量矩守恆的條件 剛體的定軸轉動微分方程 轉動慣量 回轉半徑 轉動慣量的平行軸定理 功 動能 勢能 動能定理 機械能守恆 慣性力 剛體慣性力系的簡化 達朗伯原理
單自由度系統線性振動的微分方程 振動周期 頻率和振幅 約束 自由度 廣義坐標 虛位移 理想約束 虛位移原理

五. 材料力學

5.1 軸力和軸力圖 拉、壓桿橫截面和斜截面上的應力 強度條件 虎克定律和位移計算 應變能計算

5.2 剪切和擠壓的實用計算 剪切虎克定律 切(剪)應力互等定理

5.3 外力偶矩的計算 扭矩和扭矩圖 圓軸扭轉切(剪)應力及強度條件 扭轉角計算及剛度條件 扭轉應變能計算

5.4 靜矩和形心 慣性矩和慣性積 平行移軸公式 形心主慣性矩

5.5 梁的內力方程 切(剪)力圖和彎矩圖 分布載荷、剪力、彎矩之間的微分關系 正應力強度條件 切(剪)應力強度條件 梁的合理截面 彎曲中心概念
求梁變形的積分法 迭加法和卡式第二定理

5.6 平面應力狀態分析的數值解法和圖解法 一點應力狀態的主應力和最大切(剪)應力 廣義虎克定律 四個常用的強度理論

5.7 斜彎曲 偏心壓縮(或拉伸) 拉—彎或壓—彎組合 扭—彎組合

5.8 細長壓桿的臨界力公式 歐拉公式的適用范圍 臨界應力總圖和經驗公式 壓桿的穩定校核

六. 流體力學

6.1 流體的主要物理性質

6.2 流體靜力學流體靜壓強重力作用下靜水壓強的分布規律 總壓力的計算

6.3 流體動力學基礎以流場為對象描述流動流體運動的總流分析 恆定總流連續性方程、能量方程和動量方程

6.4
流動阻力和水頭損失實際流體的兩種流態——層流和紊流圓管中層流運動、紊流運動的特徵沿程水頭損失和局部水頭損失邊界層附面層基本概念和繞流阻力

6.5 孔口、管嘴出流 有壓管道恆定流

6.6 明渠恆定均勻流

6.7 滲流定律 井和集水廊道

6.8 相似原理和量綱分析

6.9 流體運動參數(流速、流量、壓強)的測量

七. 計算機應用技術

7.1 計算機應用技術硬體的組成及功能 軟體的組成及功能 數制轉換

7.2 Windows操作系統基本知識、系統啟動 有關目錄、文件、磁碟及其它操作 網路功能註:以Windows98為基礎

7.3 計算機程序設計語言程序結構與基本規定 數據 變數 數組 指針 賦值語句 輸入輸出的語句 轉移語句 條件語句 選擇語句 循環語句
函數子程序(或稱過程) 順序文件 隨機文件註:鑒於目前情況,暫採用FORTRAN語言

八. 電工電子技術

8.1 電場與磁場庫侖定律 高斯定律 環路定律 電磁感應定律

8.2 直流電路電路基本組件 歐姆定律 基爾霍夫定律 迭加原理 戴維南定理

8.3 正弦交流電路正弦量三要素 有效值 復阻抗 單項和三項電路計算 功率及功率因數 串聯與並聯諧振 安全用電常識

8.4 RC和RL電路暫態過程三要素分析法

8.5 變壓器與電動機變壓器的電壓、電流和阻抗變換 三相非同步電動機的使用常用繼電—接觸器控制電路

8.6 二極體及整流、濾波、穩壓電路

8.7 三極體及單管放大電路

8.8 運算放大器理想運放組成的比例 加、減和積分運算電路

8.9 門電路和觸發器基本門電路 RS、D、JK觸發器

九. 工程經濟

9.1 現金流量構成與資金等值計算現金流量 投資 資產 固定資產折舊 成本 經營成本 銷售收入 利潤 工程項目投資設計的主要稅種
資金等值計算的常用公式及應用 復利系數表的用法

9.2 投資經濟效果評價方法和參數凈現值 內部收益率 凈年值 費用現值 費用年值 差額內部收益率 投資回收期 基準折現率 備選方案的類型
壽命相等方案與壽命不等方案的比選

9.3 不確定性分析盈虧平衡分析 盈虧平衡點 固定成本 變動成本 單因素敏感性分析 敏感因素

9.4 投資項目的財務評價工業投資項目可行性研究的基本內容投資項目財務評價的目標與工作內容 盈利能力分析 資金籌措的主要方式 資金成本
債務償還的主要方式 基礎財務報表 全投資經濟效果與自有資金經濟效果 全投資現金流量表與自有資金現金流量表財務效果計算 償債能力分析
改擴建和技術改造投資項目財務評價的特點(相對新建項目)

9.5 價值工程價值工程的內容與實施步驟 功能分析

十. 機械原理

10.1 機械、機構、機器

10.2 機構的結構分析機構的組成 平面機構的機構運動簡圖 平面機構的自由度計算 機構具有確定運動的條件
計算平面機構自由度時應注意的事項(復合鉸鏈、局部自由度、虛約束)

10.3 機械的摩擦、效率和自鎖運動副中摩擦力的確定 機械的效率 機械的自鎖 10.4 平面連桿機構及其設計連桿機構及其傳動特點
平面四桿機構的類型和應用 平面四桿機構的基本知識(有曲柄的條件、急回運動和行程速比系數、傳動角和死點) 平面四桿機構的設計(用作圖法設計四桿機構)

10.5 凸輪機構及其設計凸輪機構的應用和分類 推桿的常用運動規律 用作圖法進行平板凸輪輪廓曲線的設計(對心移動從動件) 滾子半徑選取的原則
壓力角與基圓半徑的關系

10.6 齒輪機構及其設計齒輪機構的應用及分類 輪廓曲線 漸開線齒廓的嚙合特點 漸開線標准 直齒圓柱齒輪的基本參數和幾何尺寸
漸開線直齒圓柱齒輪的嚙合傳動 漸開線直齒圓柱齒輪的變位及變位齒輪傳動的類型 斜齒圓柱齒輪傳動(基本參數與幾何尺寸計算、正確嚙合條件)
蝸桿傳動(特點、主要參數及幾何尺寸) 直齒錐齒輪傳動的幾何參數和尺寸計算

10.7 齒輪系及其設計齒輪系及其分類 定軸輪系的傳動比 周轉輪系的傳動比 復合輪系的傳動比 輪系的功用

10.8 機械的平衡回轉件的靜平衡 動平衡

十一. 機械設計

11.1 機械設計的主要內容 設計機器的一般程序

11.2 螺紋連接螺紋 螺紋牙的類型和緊固件 螺紋連接的預緊和防松 螺紋連接的強度計算 螺栓組連接的設計計算 緊固件的性能等級及許用應力

11.3 撓性傳動帶傳動的類型 V帶的類型與結構 帶傳動的受力分析 V帶傳動的設計計算 鏈傳動的特點及應用 滾子鏈的結構 鏈傳動的運動特性
鏈傳動的受力分析

11.4 齒輪傳動特點 失效形式 設計准則 計算載荷 常用材料及其選擇原則 標準直齒圓柱齒輪傳動的強度計算、設計參數、許用應力與精度選擇
標准斜齒圓柱齒輪的受力分析

11.5 蝸桿傳動特點 失效形式 受力分析 設計准則 常用材料 普通圓柱蝸桿傳動的主要參數、幾何尺寸計算、傳動效率、潤滑和熱平衡計算

11.6 滑動軸承滑動摩擦的類型及其特點 滑動軸承的失效形式 常用材料及潤滑劑選擇 普通徑向滑動軸承的主要結構型式 軸瓦結構與設計計算

11.7 滾動軸承基本結構 主要類型 代號和使用性能 滾動軸承類型的選擇、尺寸的選擇(承載能力與壽命) 滾動軸承裝置(支撐結構)的設計

11.8 聯軸器和離合器主要類型 特點 選用原則

11.9 軸與軸轂連接軸的分類與材料 軸的強度計算(按扭轉強度計算,按彎扭合成強度計算) 軸的結構設計 平鍵和花鍵連接的類型、特點及強度校核

11.10 彈簧類型 應用

十二. 工程材料及機械製造

12.1 金屬材料的主要力學性質

12.2 鐵碳合金相圖及其應用

12.3 金屬塑性變形的微觀機制及對金屬組織的性能的影響 再結晶對冷變形金屬組織和性能的影響

12.4 鋼在熱處理過程中的組織轉變及組織的形態和性能 常用熱處理工藝及應用

12.5 金屬材料的表面處理技術及應用

12.6 常用鋼材、鑄鐵的牌號、性能及應用

12.7 常用鋁合金、銅合金、軸承合金的牌號、性能及應用

12.8 常用工程塑料、合成橡膠、工程陶瓷、復合材料的性能及應用

12.9 工程材料的選用原則和一般步驟

12.10 合金的鑄造性能及其對鑄件質量的影響

12.11 鑄鋼、鑄鐵及鑄鋁件生產的過程和特點

12.12 砂型鑄造的主要工序和場用設備 砂型鑄造澆築位置和分型面的選擇 金屬型鑄造、壓鑄及熔模鑄造的特點和選用

12.13 金屬鍛造性能及其影響因素

12.14 自由鍛和錘上模鍛的特點及其工藝過程 其它模鍛方法的特點

12.15 板料沖壓的特點、工藝過程及應用

12.16 焊接冶金過程及其對焊接質量的影響 焊接熱過程對焊接接頭組織、性能的影響

12.17 金屬材料的焊接性 常用金屬材料焊接方法及相關焊接材料的選用

12.18 常用焊接接頭和坡口的形式 焊縫布置的主要原則 焊接結構的工藝性 12.19 常用機械零件毛坯的特點及選用原則

12.20 機械加工機械加工過程 零件表面的形成與切削運動 切削要素 工件裝夾 定位原理

12.21 機床與夾具金屬切削機床的分類、特點、應用及主要技術參數 數控機床的特點及應用 機床夾具的組成、分類及應用

12.22 金屬切削原理金屬切削過程 常用刀具材料 刀具幾何角度 切削力 切削熱 刀具磨損 刀具壽命 切削用量及其選擇

12.23 機械加工精度與表面質量機械加工精度及其影響因素 機械加工表面質量及其影響因素 提高機械加工精度和表面質量的措施

12.24 機械加工工藝規程常用機械加工方法及可達到的經濟精度 機械加工工藝規程編制的步驟和方法 機械加工工藝規程編制的主要問題
加工餘量及工序尺寸的確定 工時定額

12.25 機械裝配常用機械裝配方法特點及應用規范

12.26 特種加工常用特種加工方法的原理、特點及應用

十三. 機械工程式控制制

13.1 反饋概念 系統的分類 對控制系統的基本要求

13.2 機械繫統的模型系統的微分方程 系統的傳遞函數 傳遞函數方框圖及其簡化 反饋控制系統的傳遞函數

13.3 時間響應時間響應及分析方法 典型輸入信號 一階系統 二階系統 系統誤差分析

13.4 頻率特性頻率特性及其圖示方法 閉環頻率特性 頻率特性的特徵量

13.5 系統的穩定性系統穩定性 勞斯穩定判據 乃奎斯特穩定判據 伯德穩定判據

十四. 熱工

14.1 熱能轉換的定律熱力系 狀態及狀態參數 平衡狀態 狀態方程 准平衡態過程與可逆過程 功與熱量 熱力循環熱力學第一定律 閉口系統能量方程
穩定

流動系統能量方程及其應用熱力學第二定律 卡諾循環及卡諾定理 熵 孤立系統的熵增原理 能量的品質和能量貶值原理

14.2 工質的熱力性質和熱力過程物質的三態及相變過程 理想氣體的熱力性質和熱力過程 蒸汽的熱力性質和熱力過程 濕空氣及其熱力過程 理想氣體混合物
14.3 熱量傳遞導熱 穩態導熱的計算 非穩態導熱對流換熱 自然對流換熱及其實驗關聯式 強迫對流換熱及其實驗關聯式凝結和沸騰時的對流換熱輻射換熱的定律
黑體間的輻射換熱和角系數 灰體間的輻射換熱

十五. 測試技術

15.1 信號分析信號與信息 信號分類 周期信號、非周期信號和隨機信號的時域和頻域特徵

15.2 工程中常用感測器的轉換原理及應用

15.3 測試裝置測試裝置的靜態響應特性和動態響應特性 不失真測試的條件 測試裝置對典型輸入信號的響應

15.4 電橋轉換原理 信號的調制與解調 濾波器原理 模/數和數/模轉換原理

15.5 信號分析儀及微機測試系統 虛擬儀器及工程應用

15.6 典型非電量參量的測量方法位移 速度 加速度 雜訊 溫度 壓力測量

十六. 職業法規

16.1 我國有關基本建設、建築、環保、安全及節能方面的法律與法規

16.2 工程設計人員的職業道德與行為規范

⑵ 求一份馬呂斯實驗報告

實驗原理:裝置馬呂斯定律表述為:一束強度為I0的線偏振光通過檢偏器後的強度為I=I0cos2α(1)如圖1所示,由起偏器PA產生一線偏振光,強度為I0,其透振方向為MM′,通過檢偏器PB後,出射光強為I0cos2α,其中α是PB的透振方向與PA透振方向的夾角.

試驗方法:利用光電池接收入射的偏振光,通過A/D轉換晶元(ICL7170),將電壓值顯示在LED上

實驗儀器

WGZ-Ⅱ型光強分布測試儀配有起偏、檢偏裝置和光電探頭及數字檢流計,可以在垂直於光傳播方向的

平面內方便地調整檢偏器轉角θ,實驗光路如圖2所示。圖2WGZ-Ⅱ型光強分布測試裝置簡圖

⑶ 什麼實驗說明光具有波動性什麼現象說明光具有粒子性

波動性:光的干涉,衍射,偏振光透過偏振器件光強所遵循的馬呂斯定律也可以說明光的波動性。

粒子性:光電效應,康普頓效應。

a粒子的散射實驗證明的是原子的核式結構,而不是光的粒子性。

如果能量不足以使其躍遷到更外層的軌道,電子就會進行加速運動,並以波的形式釋放能量。如果躍遷之後剛好填補了所在軌道的空位,從激發態到達穩定態,電子就停止躍遷。否則電子會再次躍遷回之前的軌道,並且以波的形式釋放能量。



(3)馬呂斯定律實驗裝置擴展閱讀:

光在同種均勻介質中沿直線傳播。小孔成像、日食和月食還有影子的形成都證明了這一事實。

撇開光的波動本性,以光的直線傳播為基礎,研究光在介質中的傳播及物體成像規律的學科,稱為幾何光學。在幾何光學中,以一條有箭頭的幾何線代表光的傳播方向,叫做光線 。

幾何光學把物體看作無數物點的組合(在近似情況下,也可用物點表示物體),由物點發出的光束,看作是無數幾何光線的集合,光線的方向代表光能的傳遞方向。

⑷ 法拉第效應的實驗原理

法拉第效應是磁場引起介質折射率變化而產生的旋光現象,實驗結果表明,光在磁場的作用下通過介質時,光波偏振面轉過的角度(磁致旋光角)與光在介質中通過的長度L及介質中磁感應強度在光傳播方向上的分量B成正比,即:
θ=VBL
式中V稱為費爾德常數,它表徵物質的磁光特性。幾種材料的費爾德常數值如下表。
法拉第效應實驗裝置如圖所示。由光源產生的復合白光通過小型單色儀後可以獲得波長在360~800nm的單色光,經過起偏鏡成為單色線偏振光,然後穿過電磁鐵。電磁鐵採用直流供電,中間磁路有通光孔,保證人射光與磁場B方向一致。根據勵磁電流的大小可以求得對應的磁場值。入射光穿過樣品後從電磁鐵的另一極穿出人射到檢偏器上,透過檢偏器的光進入光電倍增管,由數顯表顯示光電流的大小,即出射光強的大小。根據出射光強最大(或最小)時檢偏器的位置讀數即可得出旋光角。檢偏器的角度位置讀數也由數顯表讀出。
由經典電子論對色散的解釋可得出介質的折射率和入射光頻率w 的關系為:
式中ω0是電子的固有頻率,磁場作用使電子固有頻率改變為(ωL±ω0)(ωL是電子軌道在外磁場中的進動頻率)。使折射率變為:
由菲涅耳的旋光理論可知,平面偏振光可看成由兩個左、右旋圓偏振迭加而成,上式中的正負號反映了這兩個圓偏振光折射率有差異,以R n 和L n 表示。它們通過長度為L的介質後產生的光程差為:
由它們合成的平面偏振光的磁致旋光角為:
通常,nR,nL,和n,相差甚微,故
將此代入上式,又因ωL≪ω可略去ωL項,得:
可見括弧項即為費爾德常數,表示V 值和介質在無磁場時的色散率、入射光波長等有關。由馬呂斯定律可知,平面偏振光通過磁場中的介質和檢偏器後的光強為:
α為檢偏器和起偏器透光軸的夾角,θ為法拉第磁致旋光角。當α=π/4時,
若磁場變化則:
表示此時由檢偏器輸出的光強將隨產生磁場的電流i(調制電流)線性地變化,這就是光強度的磁光調制原理。在α=π/4時,dI/d= 1,即此時調制系統的信號檢測靈敏度最高,失真最小。

⑸ 幫忙高手給我寫下偏振現象實驗的原理和步驟,謝謝了

光的干涉和衍射現象表明了光的波動本性,而光的偏振現象則進一步揭示了光的橫波性質。光波是電磁波,電磁波中起光的作用的是電場矢量,所以電矢量又叫光矢量。由於電磁波是橫波,所以光波中光矢量的振動方向總和光的傳播方向垂直。在垂直於光傳播方向內,光矢量可能有不同的振動狀態,這種振動狀態通常稱為光的偏振態。本實驗通過觀察光的偏振現象,加深對光的偏振的基本規律的認識。通過本實驗可以熟悉常用的起偏振和檢偏振的方法,同時了解橢圓偏振光、圓偏振光的產生方法和波片的作用原理。

光波電矢量振動的空間分布對於光的傳播方向失去對稱性的現象。只有橫波才能產生偏振現象,故光的偏振是光的波動性的又一例證。在垂直於傳播方向的平面內,包含一切可能方向的橫振動,且平均說來任一方向上具有相同的振幅,這種橫振動對稱於傳播方向的光稱為自然光(非偏振光)。凡其振動失去這種對稱性的光統稱偏振光。
[編輯本段]偏振光
①線偏振光:在光的傳播過程中,只包含一種振動,其振動方向始終保持在同一平面內,這種光稱為線偏振光(或平面偏振光)。你可以通過一個實驗想像這是一種什麼景象:你把一根繩子的一頭拴在鄰居院子里的樹上,另一頭拿在你手裡。再假定繩子是從籬笆的兩根竹子的正當中穿過去的。如果你現在拿繩子上下振動,繩子產生的波就會從兩根竹子之間通過,並從你的手傳到那棵樹上。這時,那座籬笆對你的波來說是"透明的"。但是,要是你讓繩子左右波動,繩子就會撞在兩根竹子上,波就不會通過籬笆了,這時這座籬笆就相當於一個起偏振器件。
②部分偏振光:光波包含一切可能方向的橫振動,但不同方向上的振幅不等,在兩個互相垂直的方向上振幅具有最大值和最小值,這種光稱為部分偏振光。自然光和部分偏振光實際上是由許多振動方向不同的線偏振光組成。
當光線從空氣(嚴格地說應該是真空)射入介質時,布儒斯特角的正切值等於介質的折射率n。由於介質的折射率是與光波長有關的,對同樣的介質,布儒斯特角的大小也是與光波長有關的。以光學玻璃折射率1.4-1.9計算,布儒斯特角大約為54-62度左右。當入射角偏離布儒斯特角時,反射光將是部分偏振光。
③橢圓偏振光:在光的傳播過程中,空間每個點的電矢量均以光線為軸作旋轉運動,且電矢量端點描出一個橢圓軌跡,這種光稱為橢圓偏振光。迎著光線方向看,凡電矢量順時針旋轉的稱右旋橢圓偏振光,凡逆時針旋轉的稱左旋橢圓偏振光。橢圓偏振光中的旋轉電矢量是由兩個頻率相同、振動方向互相垂直、有固定相位差的電矢量振動合成的結果(見波片)。
④圓偏振光:旋轉電矢量端點描出圓軌跡的光稱圓偏振光,是橢圓偏振光的特殊情形。在我們的觀察時間段中平均後,園偏振光看上去是與自然光一樣的。但是園偏振光的偏振方向是按一定規律變化的,而自然光的偏振方向變化是隨機的,沒有規律的。
[編輯本段]偏振現象的發現
1809年,馬呂斯在試驗中發現了光的偏振現象。在進一步研究光的簡單折射中的偏振時,他發現光在折射時是部分偏振的。因為惠更斯曾提出過光是一種縱波,而縱波不可能發生這樣的偏振,這一發現成為了反對波動說的有利證據。
參見馬呂斯定律
1811年,布呂斯特在研究光的偏振現象時發現了光的偏振現象的經驗定律。
光的偏振度
在部分偏振光的總強度中,完全偏振光所佔的成分叫做偏振度。
偏振度的數值愈接近1,光線的偏振化程度就愈純粹,一般偏振度都小於1。
[編輯本段]產生偏振光的方法
從自然光獲得線偏振光的方法有以下四種:利用反射和折射、利用二向色性、利用晶體的雙折射、利用散射。
另外,線偏振光可以經過波晶片產生圓偏振光和橢圓偏振光。
[編輯本段]光的偏振的應用
1. 在攝影鏡頭前加上偏振鏡消除反光
在拍攝表面光滑的物體,如玻璃器皿、水面、陳列櫥櫃、油漆表面、塑料表面等,常常會出現耀斑或反光,這是由於光線的偏振而引起的。在拍攝時加用偏振鏡,並適當地旋轉偏振鏡面,能夠阻擋這些偏振光,藉以消除或減弱這些光滑物體表面的反光或亮斑。要通過取景器一邊觀察一邊轉動鏡面,以便觀察消除偏振光的效果。當觀察到被攝物體的反光消失時,既可以停止轉動鏡面。
2. 攝影時控制天空亮度,使藍天變暗。
由於藍天中存在大量的偏振光,所以用偏振鏡能夠調節天空的亮度,加用偏振鏡以後,藍天變的很暗,突出了藍天中的白雲。偏振鏡是灰色的,所以在黑白和彩色攝影中均可以使用。
3. 使用偏振鏡看立體電影
在觀看立體電影時,觀眾要戴上一副特製的眼鏡,這副眼鏡就是一對透振方向互相垂直的偏振片。
立體電影是用兩個鏡頭如人眼那樣從兩個不同方向同時拍攝下景物的像,製成電影膠片.在放映時,通過兩個放映機,把用兩個攝影機拍下的兩組膠片同步放映,使這略有差別的兩幅圖像重疊在銀幕上.這時如果用眼睛直接觀看,看到的畫面是模糊不清的,要看到立體電影,就要在每架電影機前裝一塊偏振片,它的作用相當於起偏器.從兩架放映機射出的光,通過偏振片後,就成了偏振光.左右兩架放映機前的偏振片的偏振化方向互相垂直,因而產生的兩束偏振光的偏振方向也互相垂直.這兩束偏振光投射到銀幕上再反射到觀眾處,偏振光方向不改變.觀眾用上述的偏振眼鏡觀看,每隻眼睛只看到相應的偏振光圖象,即左眼只能看到左機映出的畫面,右眼只能看到右機映出的畫面,這樣就會像直接觀看那樣產生立體感覺.這就是立體電影的原理.
當然,實際放映立體電影是用一個鏡頭,兩套圖象交替地印在同一電影膠片上,還需要一套復雜的裝置.
光在晶體中的傳播與偏振現象密切相關,利用偏振現象可了解晶體的光學特性,製造用於測量的光學器件,以及提供諸如岩礦鑒定、光測彈性及激光調制等技術手段。

⑹ 馬呂斯定律馬呂斯定律驗證實驗

馬呂斯定律是關於線偏振光通過檢偏器時的光強變化規律。該定律表明,當線偏振光的振動方向與檢偏器透光軸的夾角為θ時,透過的光強I與起偏器產生的光強I0之間的關系遵循公式I = I0 * cos²θ。在實驗中,首先由起偏器P a產生強度為I0的線偏振光,其振動方向為MM'。經過檢偏器P b後,透射光強I會按照馬呂斯定律衰減為i0 * cos²θ,其中i0與I0成比例。


為了測量透射光的強度,實驗中使用了光電池,其輸出電流i與透射光強I成正比。因此,光電池的輸出電流i可以表示為i = i0 * cos²θ。實驗中採用的WGZ-Ⅱ型光強分布測試儀是一套完備的儀器,它包括起偏器、檢偏器、光電探頭以及數字檢流計,能夠在垂直於光傳播方向的平面上方便地調整檢偏器的轉角θ,以進行精確的測量。如圖所示,這套裝置的簡圖見圖2。


實驗裝置的光路布局如圖2所示,通過精確控制和測量,可以直觀驗證馬呂斯定律的實際效果。


(6)馬呂斯定律實驗裝置擴展閱讀

馬呂斯指出:強度為Io的線偏振光,透過檢偏片後,透射光的強度(不考慮吸收)為I=Io(cosa)^2。

⑺ 偏振現象的研究。求報告

課 題 偏振光現象的研究
1.觀察光的偏振現象,掌握產生與檢驗偏振光的條件和方法;
教 學 目 的 2.測量布儒斯特角;
3.驗證馬呂斯定律。
重 難 點 1.激光器與光具組的共軸調節;
2.布儒斯特角的測定。
教 學 方 法 講授、討論、實驗演示相結合。
學 時 3個學時

一、前言
光的偏振是指光的振動方向與光的傳播方向的不對稱性.偏振現象是證明光為橫波的最有力的證據,在科學上具有極其重要的意義。它不但豐富了光的波動說的內容,而且具有重要的應用價值。
自然光是各方向的振幅相同的光,對自然光而言,它的振動方向在垂直於光的傳播方向的平面內可取所有可能的方向,沒有一個方向佔有優勢.若把所有方向的光振動都分解到相互垂直的兩個方向上,則在這兩個方向上的振動能量和振幅都相等.線偏振光是在垂直於傳播方向的平面內,光矢量只沿一個固定方向振動.起偏器是將非偏振光變成線偏振光的器件;檢偏器是用於鑒別光的偏振狀態的器件。
二、實驗儀器
He-Ne激光器,光具座,光靶,光學測角台,偏振片,黑玻璃鏡,1/2波片,1/4波片,白屏,光功率計等
三、實驗原理
1.光的偏振性
光波是波長較短的電磁波,電磁波是橫波,光波中的電矢量與波的傳播方向垂直。光的偏振觀象清楚地顯示了光的橫波性。光大體上有五種偏振態,即線偏振光、圓偏振光、橢圓偏振光、自然光和部分偏振光。而線偏振光和圓偏振光又可看作橢圓偏振光的特例。
(1)自然光
光是由光源中大量原子或分子發出的。普通光源中各個原子發出的光的波列不僅初相彼此不相關,而且光振動方向也是彼此不相關的,呈隨機分布。在垂直於光傳播方向的平面內,沿各個方向振動的光矢量都有。平均說來,光矢量具有軸對稱而且均勻的分布,各方向光振動的振幅相同,各個振動之間沒有固定的相聯系,這種光稱為自然光或非偏振光(見下圖)。

 我們設想把每個波列的光矢量都沿任意取定的x軸和y軸分解,由於各波列的光矢量的相和振動方向都是無規則分布的,將所有波列光矢量的x分量和y分量分別疊加起來,得到的總光矢量的分量Ex和Ey之間沒有固定的相關系,因而它們之間是不相乾的。同時Ex和Ey的振幅是相等的,即Ax=Ay。這樣,我們可以把自然光分解為兩束等幅的、振動方向互相垂直的、不相乾的線偏振光。這就是自然光的線偏振表示,如下圖(a)所示。分解的兩束線偏振光具有相等的強度Ix=Iy,又因 自然光強度

I=Ix+Iy 
所以每束線偏振光的強度是自然光強度的1/2,即

通常用圖(b)的圖示法表示自然光。圖中用短線和點分別表示在紙面內和垂直於紙面的光振動,點和短線交替均勻畫出,表示光矢量對稱而均勻的分布。
(2)線偏振光

 光矢量只沿一個固定的方向振動時,這種光稱為線偏振光,又稱為平面偏振光。光矢量的方向和光的傳播方向所構成的平面稱為振動面,如圖(a)所示。線偏振光的振動面是固定不動的,圖(b)所示是線偏振光的表示方法,圖中短豎線表示光振動在紙面內,點表示光振動垂直於紙面。
(3)部分偏振光
這是介於線偏振光與自然光之間的一種偏振光,在垂直於這種光的傳播方向的平面內,各方向的光振動都有,但它們的振幅不相等,如圖(a)所示。這種部分偏振光用數目不等的點和短線表示。在圖(b)中,上圖表示在紙面內的光振動較強,下圖表示垂直紙面的光振動較強。要注意,這種偏振光各方向的光矢量之間也沒有固定的相的關系。

(4)圓偏振光和橢圓偏振光

 這兩種光的特點是在垂直於光的傳播方向的平面內,光矢量按一定頻率旋轉(左旋或右旋)。如果光矢量端點軌跡是一個圓,這種光叫圓偏振光(見圖(a))。如果光矢量端點軌跡是一個橢圓,這種光叫橢圓偏振光(見圖(b))。
2. 布儒斯特角
當光從折射率為n1的介質(例如空氣)入射到折射率為n2的介質(例如玻璃)交界面,而入射角又滿足

時,反射光即成完全偏振光,其振動面垂直於入射面。iB稱布儒斯特角,上式即布儒斯特定律。顯然,θB角的大小因相關物質折射率大小而異。若n1表示的是空氣折射率,(數值近似等於1)上式可寫成

3.馬呂斯定律
如果光源中的任一波列(用振動平面E表示)投射在起偏器P上(如下圖),只有相當於它的成份之一的Ey(平行於光軸方向的矢量)能夠通過,另一成份Ex(=E cosθ)則被吸收。與此類似,若投射在檢偏器A上的線偏振光的振幅為E0,則透過A的振幅為E0 cosθ(這里θ是P與A偏振化方向之間的夾角)。由於光強與振幅的平方成正比,可知透射光強I隨θ而變化的關系為

這就是馬呂斯定律。

4.波片
若使線偏振光垂直入射一透光面平行於光軸,厚度為d的晶片,此光因晶片的各向異性而分裂成遵從折射定律的尋常光(o光)和不遵從折射定律的非常光(e光)。因o光和e光

在晶體中這兩個相互垂直的振動方向有不同的光速,分別稱做快軸和慢軸。設入射光振幅為A,振動方向與光軸夾角為θ,入射晶面後o光和e光振幅分別為Asin θ和Acos θ,出射後相位差

式中λ0是光在真空中的波長,no和ne分別是o光和e光的折射率。
這種能使相互垂直振動的平面偏振光產生一定相位差的晶片就叫做波片。
如果以平行於波片光軸方向為x坐標,,垂直於光軸方向為y坐標出射的o光和e光可用兩個簡諧振動方程式表示:

該兩式的合振動方程式可寫成

一般說來,這是一個橢圓方程,代表橢圓偏振光。但是當
(k=1、2、3…)或
(k=0、1、2…)
時,合振動變成振動方向不同的線偏振光。後一種情況,晶片厚度

可使o光和e光產生(2k+1)λ/2的光程差,這樣的晶片稱做半波片,而當
(k=1、2、3…)
時,合振動方程化為正橢圓方程

這時晶片厚度,稱做1/4波片。它能使線偏振光改變偏振態,變成橢圓偏振光。但是當入射光振動面與波片光軸夾角θ=45°時,Ae=Ao,合振動方程可寫成
即獲得圓偏振光。
四、實驗內容與步驟
1.布儒斯特角的測定
在光具座上,由氦氖激光器發出的光束擦盤直接入射到立在光學測角台直徑上的黑玻璃鏡面,先轉動測角台,使反射光束原路返回,由此定出入射光束的零度方位,利用滑動座的升降微調裝置適當降低角度盤,然後再從入射角為10°~85°范圍內尋找反射光束通過檢偏器後,光強變到最小(甚至為零)時的角度(器件布置示如下圖,也可直接用白屏觀察)。這里的檢偏器是一個能在支架上轉動的偏振片,支架鎖緊在測角台的轉臂上。用檢偏器檢查任一反射光束,都是偏振光,在改變入射角的過程中,檢偏器透振軸指向水平方向(為什麼?)。為了更准確的測量,可以選取48°~64°角的入射角范圍,根據消光位置找出布儒斯特角。測量5次,取平均值,將數據填入表(一)。

2.馬呂斯定律的驗證
如果光源中的任一波列(用振動平面E表示)投射在起偏器P上,只有相當於它的成分之一的(平行於光軸方向的矢量)能夠通過,另一成分則被吸收。若投射在檢偏器A上的線偏振光的振幅為E0,則透過A的振幅為(這里

是P與A偏振方向之間的夾角)。由於光強與振幅的平方成正比,所以透射光強I隨而變化的關系為

這就是馬呂斯定律。
實驗內容:讓激光束垂直通過起偏器成為偏振光,用檢偏器檢查時,使兩個偏振器的透振方向的夾角在從0°轉動一周的過程中,用連接光電流放大器的光電探頭測量透射光強的相對值I,每10°讀取一次數據。將數據填入表(二),然後畫出I-關系曲線,或將實驗數據輸入計算機列印出關系曲線。

3.分析半波片的作用(選做)
在由布儒斯特窗和偏振棱鏡聯合組成的起偏器D和檢偏器A之間加入半波片H,並使其繞水平軸轉動360°,觀察屏幕上發生消光現象的次數;然後使起偏器的偏振面與檢偏器的光軸正交,加入半波片後,將它轉到消光位置,再分別轉動15°,30°,45°,60°,75°和90°,相應記錄每次將A逐次轉到消光位置所需轉動的角度,根據實驗數據分析半波片的作用。將數據填入表(三)中,並作解釋。

4.分析1/4波片的作用(選做)
先使線偏振光的偏振面P與檢偏器A的光軸正交(這時通過A的光強顯示最小),然後在兩個偏振棱鏡之間加入1/4波片Q,並轉動Q,直到通過A的光強恢復到最小。從此位置每當Q轉動15°,30°,45°,60°,75°和90°時,都將A轉動360°,將數據填入表(四)中,並作解釋。
五、數據表格及數據處理
1. θB的測定
表 (一)
θB1 θB2 θB3 θB4 θB5
57.5° 57.9° 57.0° 56.5° 56.3°
θB平均值=57.0°
不確定度的計算:
2. 馬呂斯定律的驗證
表 (二)
10° 20° 30° 40° 50° 60° 70° 80° 90° 100° 110° 120°
I 758 670 558 450 300 171 67 22 12 45 132 248

130° 140° 150° 160° 170° 180° 190° 200° 210° 220° 230° 240° 250°
380 515 640 737 794 803 777 720 602 470 322 186 85

260° 270° 280° 290° 300° 310° 320° 330° 340° 350° 360°
19 11 38 118 239 377 501 640 718 775 793
畫出I-關系曲線

3. 分析半波片的作用
表 (三)
λ/2波片轉動角度 15° 30° 45° 60° 75° 90°
檢偏器轉動角
4.分析1/4波片的作用
表 (四)
λ/4波片轉動角度 15° 30° 45° 60° 75° 90°
檢偏器轉動360°
過程中看到的現象
六、注意事項
1、保護光學元件的光學表面,不得觸摸光學元件的光學表面。
2、激光管兩端的高壓引線頭是裸露的,且激光電源空載輸出電壓高達數千伏,要警惕誤觸。
3、激光束光強極高,切勿用眼睛對視,防止視網膜遭永久性損傷。
七、思考題
1、有四束光,它們的偏振態分別是:線偏振光,圓偏振光,橢圓偏振光和自然光,怎樣鑒別它們?
答:用一塊檢偏振器分別對四束光迎光旋轉檢驗,當檢偏振器旋轉一周,發現出射光強兩個方位最大,兩個方位為零時,該光就是線偏振光;出射光強兩個方位最大,兩個方位變小時,該光即是橢圓偏振光;當出射光強不變時為圓偏振光和自然光.然後再區別圓偏振光和自然光.將這兩束光分別通過l/4波片.通過l/4波片後,自然光還是自然光,用旋轉的檢偏振器檢驗,仍然光強不變;而圓偏振光通過l/4波片後變為線偏振光,用檢偏振器檢驗,出現兩次最大,兩次零光強.
2. 三塊外形相同的偏振片、1/2波片、1/4波片被弄混了,能否把它們區分開來?需要藉助什麼工具?
答:用實驗室中的光滑桌面(或玻璃板面)反射鈉光,透過三塊未知的偏振器件觀看反射的鈉光,在此過程中,一邊旋轉偏振器件,一邊改變反射光方向,三塊偏振器件中必有一塊出現"兩明兩零"的現象,它就是偏振片.此時,鈉光的入射角就是布儒斯特角,反射光是振動面垂直於入射面的線偏振光.另兩塊是波片,無論怎樣旋轉它,無論怎樣改變反射光線的方向,光強都不發生變化.現在有了一塊偏振片,還有已知振動方向的線偏振光.將兩塊波片分別迎著線偏振光旋轉,用偏振片檢驗出射光強的變化.如果不管在什麼方位,總是出現"兩明兩零"的現象,這塊波片一定是l/2波片,因為線偏振光經過l/2波片後仍然是線偏振光.而線偏振光通過l/4波片,僅在線偏振光的振動方向平行(或垂直)l/4波片晶軸的情況下,才會出射線偏振光.在線偏振光振動方向與晶軸成450角時,出射圓偏振光,一般情況下出射橢圓偏振光.
3、用怎樣的措施獲得圓偏振光? 答:讓自然光通過起偏鏡,得到振動方向平行於起偏鏡透振方向的線偏振光.再讓線偏振光通過一塊1 /4波片,波片晶軸z與線偏振光振動方向成45度角,自l/4波片出射的就是圓偏振光.選取l/4波片使分解的o光和e光有±π/2的相位差,光軸z與入射線偏振光振動方向45度的夾角,可使分解的o光和e光有相等振幅.
八、教學後記
一定要對學生強調激光器切不可用眼睛直視,以免出現人生傷害事故;本實驗要測量的數據較多,實驗的實際操作比較繁瑣,因而學生感到完成實驗有一定難度,因此在授課中強調學生一定要耐心;實驗中要讓學生在出現故障時,學會排除故障,並且能夠自己動手解決問題,培養學生的動手能力。
執筆人:陳晨

閱讀全文

與馬呂斯定律實驗裝置相關的資料

熱點內容
檢查實驗裝置漏氣的原理 瀏覽:863
設備什麼堪用 瀏覽:12
普通閥門閥芯材質是什麼 瀏覽:689
滑板軸承不轉怎麼處理 瀏覽:671
柵欄自動清洗裝置 瀏覽:725
124是什麼軸承 瀏覽:797
暖氣閥門的扳手顏色什麼意思 瀏覽:901
空調製冷三通表怎麼看 瀏覽:439
東莞市金來利五金製品 瀏覽:981
怎麼看閥門是單向密封和雙向密封 瀏覽:894
給車弄機械增壓多少錢 瀏覽:266
星球大戰帝國所有機械裝置 瀏覽:34
互動裝置設計漂浮 瀏覽:159
暖氣注水試壓關閉閥門還是打開 瀏覽:111
馬呂斯定律實驗裝置 瀏覽:982
vr設備廠價值多少 瀏覽:136
機床接地線就跳閘怎麼回事 瀏覽:253
長城聯營輸送機械廠怎麼樣 瀏覽:139
長安奔奔工具箱在哪 瀏覽:195
製冷液多少錢一個 瀏覽:868