導航:首頁 > 裝置知識 > 齒輪傳動裝置設計與實例下載

齒輪傳動裝置設計與實例下載

發布時間:2023-09-16 05:43:08

機械設計課程設計(設計壓碎機的傳動裝置(含一級斜齒圓柱齒輪減速器))

減速器的 我能

❷ 急求帶式輸送機傳動裝置中的二級圓柱齒輪減速器畢業設計

前 言

機械設計綜合課程設計在機械工程學科中佔有重要地位,它是理論應用於實際的重要實踐環節。本課程設計培養了我們機械設計中的總體設計能力,將機械設計系列課程設計中所學的有關機構原理方案設計、運動和動力學分析、機械零部件設計理論、方法、結構及工藝設計等內容有機地結合進行綜合設計實踐訓練,使課程設計與機械設計實際的聯系更為緊密。此外,它還培養了我們機械繫統創新設計的能力,增強了機械構思設計和創新設計。
本課程設計的設計任務是展開式二級圓柱齒輪減速器的設計。減速器是一種將由電動機輸出的高轉速降至要求的轉速比較典型的機械裝置,可以廣泛地應用於礦山、冶金、石油、化工、起重運輸、紡織印染、制葯、造船、機械、環保及食品輕工等領域。
本次設計綜合運用機械設計及其他先修課的知識,進行機械設計訓練,使已學知識得以鞏固、加深和擴展;學習和掌握通用機械零件、部件、機械傳動及一般機械的基本設計方法和步驟,培養學生工程設計能力和分析問題,解決問題的能力;提高我們在計算、制圖、運用設計資料(手冊、 圖冊)進行經驗估算及考慮技術決策等機械設計方面的基本技能,同時給了我們練習電腦繪圖的機會。
最後藉此機會,對本次課程設計的各位指導老師以及參與校對、幫助的同學表示衷心的感謝。
由於缺乏經驗、水平有限,設計中難免有不妥之處,懇請各位老師及同學提出寶貴意見。

帶式輸送機概論

帶式輸送機是一種摩擦驅動以連續方式運輸燃料的機械。應用它可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。它既可以進行碎散物料的輸送,也可以進行成件物品的輸送。除進行純粹的物料輸送外,還可以與各工業企業生產流程中的工藝過程的要求相配合,形成有節奏的流水作業運輸線。所以帶式輸送機廣泛應用於現代化的各種工業企業中。在礦山的井下巷道、礦井地面運輸系統、露天采礦場及選礦廠中,廣泛應用帶式輸送機。它用於水平運輸或傾斜運輸。使用非常方便。
輸送機發展歷史
中國古代的高轉筒車和提水的翻車,是現代斗式提升機和刮板輸送機的雛形;17世紀中,開始應用架
空索道輸送散狀物料;19世紀中葉,各種現代結構的輸送機相繼出現。
1868年,在英國出現了帶式輸送機;1887年,在美國出現了螺旋輸送機;1905年,在瑞士出現了鋼帶式輸送機;1906年,在英國和德國出現了慣性輸送機。此後,輸送機受到機械製造、電機、化工和冶金工業技術進步的影響,不斷完善,逐步由完成車間內部的輸送,發展到完成在企業內部、企業之間甚至城市之間的物料搬運,成為材料搬運系統機械化和自動化不可缺少的組成部分。
輸送機的特點
帶式輸送機是煤礦最理想的高效連續運輸設備,與其他運輸設備(如機車類)相比具有輸送距離長、運量大、連續輸送等優點,而且運行可靠,易於實現自動化和集中化控制,尤其對高產高效礦井,帶式輸送機已成為煤炭開采機電一體化技術與裝備的關鍵設備。
帶式輸送機主要特點是機身可以很方便的伸縮,設有儲帶倉,機尾可隨採煤工作面的推進伸長或縮短,結構緊湊,可不設基礎,直接在巷道底板上鋪設,機架輕巧,拆裝十分方便。當輸送能力和運距較大時,可配中間驅動裝置來滿足要求。根據輸送工藝的要求,可以單機輸送,也可多機組合成水平或傾斜的運輸系統來輸送物料。
帶式輸送機廣泛地應用在冶金、煤炭、交通、水電、化工等部門,是因為它具有輸送量大、結構簡單、維修方便、成本低、通用性強等優點。
帶式輸送機還應用於建材、電力、輕工、糧食、港口、船舶等部門。
一、 設計任務書
設計一用於帶式運輸機上同軸式二級圓柱齒輪減速器
1. 總體布置簡圖

2. 工作情況
工作平穩、單向運轉
3. 原始數據
運輸機捲筒扭矩(N•m) 運輸帶速度(m/s) 捲筒直徑(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 設計內容
(1) 電動機的選擇與參數計算
(2) 斜齒輪傳動設計計算
(3) 軸的設計
(4) 滾動軸承的選擇
(5) 鍵和聯軸器的選擇與校核
(6) 裝配圖、零件圖的繪制
(7) 設計計算說明書的編寫
5. 設計任務
(1) 減速器總裝配圖1張(0號或1號圖紙)
(2) 齒輪、軸、軸承零件圖各1張(2號或3號圖紙)
(3) 設計計算說明書一份
二、 傳動方案的擬定及說明
為了估計傳動裝置的總傳動比范圍,以便選擇合適的傳動機構和擬定傳動:方案,可由已知條件計算其驅動捲筒的轉速nw:

三. 電動機的選擇
1. 電動機類型選:Y行三相非同步電動機
2. 電動機容量
(1) 捲筒軸的輸出功率

(2) 電動機的輸出功率

傳動裝置的總效率
式中, 為從電動機至捲筒軸之間的各傳動機構和軸承的效率。由《機械設計課程設計》(以下未作說明皆為此書中查得)表2-4查得:V帶傳動 ;滾動軸承 ;圓柱齒輪傳動 ;彈性聯軸器 ;捲筒軸滑動軸承 ,則


(3) 電動機額定功率
由第二十章表20-1選取電動機額定功率
由表2-1查得V帶傳動常用傳動比范圍 ,由表2-2查得兩級展開式圓柱齒輪減速器傳動比范圍 ,則電動機轉速可選范圍為

可選符合這一范圍的同步轉速的電動3000 。

根據電動機所需容量和轉速,由有關手冊查出只有一種使用的電動機型號,此種傳動比方案如下表:
電動機型號 額定功率
電動機轉速
傳動裝置傳動比
Y100L-2 3 同步 滿載 總傳動比 V帶 減速器
3000 2880 62.06 2

三、 計算傳動裝置總傳動比和分配各級傳動比
1. 傳動裝置總傳動比

2. 分配各級傳動比
取V帶傳動的傳動比 ,則兩級圓柱齒輪減速器的傳動比為

按展開式布置考慮潤滑條件,為使兩級大齒輪直徑相近由圖12展開式曲線的
則i
所得 符合一般圓柱齒輪傳動和兩級圓柱齒輪減速器傳動比的常用范圍。
四、計算傳動裝置的運動和動力參數:

按電動機軸至工作機運動傳遞路線推算,得到各軸的運動和動力參數
1.各軸轉速:

2.各軸輸入功率:

Ⅰ~Ⅲ軸的輸出功率分別為輸入功率乘軸承效率0.99,捲筒軸輸出功率則為輸入功率乘捲筒的傳動效率0.96,計算結果見下表。

3. 各軸輸入轉矩:

Ⅰ~Ⅲ軸的輸出轉矩分別為輸入轉矩乘軸承效率0.99,捲筒軸輸出轉矩則為輸入轉矩乘捲筒的傳動效率0.96,計算結果見下表。

綜上,傳動裝置的運動和動力參數計算結果整理於下表:

軸名 功率
轉矩
轉速

傳動比

效率

輸入 輸出 輸入 輸出
電機軸 2.3 7.63 2880 2
0.96
I軸 2.21 14.65 1440
7.13
0.95
II軸 2.1 99.29 201. 96
4.35 0.95
III軸
2.0 410.58 46.43
1.00 0.98
捲筒軸 1.94 398.34

第三章 主要零部件的設計計算
§3.1 展開式二級圓柱齒輪減速器齒輪傳動設計

§3.1.1 高速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,大齒輪為正火處理,小齒輪熱處理均為調質處理且大、小齒輪的齒面硬度分別為260HBS,215HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 。
2. 按齒面接觸強度設計
由設計公式進行試算,即

(1) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩:
3) 查6-12(機械設計基礎)表選取齒寬系數 ,查圖6-37(機械設計基礎)按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

4)計算應力循環次數

5) 按接觸疲勞壽命系數

(2) 計算:

1) 帶入 中較小的值,求得小齒輪分度圓直徑 的最小值為

3) 計算齒寬: 取 ,
4) 計算分度圓直徑與模數、中心距:
模數: 取第一系列標准值m=1.5
分度圓直徑:

中心距:
5) 校核彎曲疲勞強度:
符合齒形因數 由圖6-40得 =4.35, =3.98
彎曲疲勞需用應力:
1) 查圖6-41得彎曲疲勞強度極限 : ;
2) 查圖6-42取彎曲疲勞壽命系數
3) 計算彎曲疲勞許用應力.
取彎曲疲勞安全系數S=1,得

4) 校核計算:
<
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級

§3.1.2 低速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,熱處理均為正火調質處理且大、小齒輪的齒面硬度分別為200HBS,250HBS,二者材料硬度差為40HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 ,取 。
2. 按齒面接觸強度設計
由設計公式進行試算,即

2) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩
3) 查表及其圖選取齒寬系數 ,由圖6-37按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
4) 計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

5) 查圖6-42取彎曲疲勞壽命系數

按接觸疲勞壽命系數

模數: 由表6-2取第一系列標准模數
分度圓直徑:
中心距:
齒寬:
校核彎曲疲勞強度:
復合齒形因數 由圖6-40得
6)計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

校核計算: <
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級
對各個軸齒輪相關計算尺寸
表6-3高速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z

模數

壓力角

齒高系數

頂隙系數

齒距 P

齒槽寬 e

齒厚 s

齒頂高

齒根高

齒高 h

分度圓直徑 d

基圓直徑

齒頂圓直徑

齒根圓直徑

中心距

表6-3低速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z

模數

壓力角

齒高系數

頂隙系數

齒距 P

齒槽寬 e

齒厚 s

齒頂高

齒根高

齒高 h

分度圓直徑 d

基圓直徑

齒頂圓直徑

齒根圓直徑

中心距

V帶的設計
1)計算功率

2)選擇帶型
據 和 =2880由圖10-12<械設計基礎>選取z型帶
3)確定帶輪基準直徑
由表10-9確定 <械設計基礎>

1) 驗算帶速
因為 故符合要求
2) 驗算帶長
初定中心距

由表10-6選取相近
3) 確定中心距

4) 驗算小帶輪包角
故符合要求
5) 單根V帶傳遞額定功率
據 和 查圖10-9得
8) 時單根V帶的額定功率增量:據帶型及 查表10-2<械設計基礎>得
10)確定帶根數
查表10-3 查表10-4 <械設計基礎>

11) 單根V帶的初拉力
查表10-5

12)用的軸上的力

13帶輪的結構和尺寸
以小帶輪為例確定其結構和尺寸,由圖10-11<械設計基礎>帶輪寬
§3.3 軸系結構設計
§3.3.1 高速軸的軸系結構設計
一、軸的結構尺寸設計
根據結構及使用要求,把該軸設計成階梯軸且為齒輪軸,共分七段,其中第5段為齒輪,如圖2所示:

圖2
由於結構及工作需要將該軸定為齒輪軸,因此其材料須與齒輪材料相同,均為合金鋼,熱處理為調制處理, 材料系數C為118。
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表6 高速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)

13.6

16

60
第2段
(由唇形密封圈尺寸確定)

20(18.88)

50
第3段 由軸承尺寸確定
(軸承預選6004 B1=12)

20

23
第4段

24(23.6)

145
第5段 齒頂圓直徑
齒寬
33

38
第6段

24

10
第7段

20

23
二、軸的受力分析及計算
軸的受力模型簡化(見圖3)及受力計算
L1=92.5 L2=192.5 L3=40

三、軸承的壽命校核
鑒於調整間隙的方便,軸承均採用正裝.預設軸承壽命為3年即12480h.
校核步驟及計算結果見下表:
表7 軸承壽命校核步驟及計算結果
計算步驟及內容 計算結果
6007軸承

A端 B端
由手冊查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
計算Fs=eFr(7類)、Fr/2Y(3類) FsA=1809.55 FsB=1584.66
計算比值Fa/Fr FaA /FrA>e FaB /FrB< e
確定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查載荷系數fP 1.2
計算當量載荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
計算軸承壽命

9425.45h
小於
12480h
由計算結果可見軸承6007合格.

表8 中間軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
由軸承尺寸確定
(軸承預選6008 )

33.6

40

25

第2段
(考慮鍵槽影響)

45(44.68)

77.5
第3段

50

12.5
第4段

99

109

第5段

46

39
考慮到低速軸的載荷較大,材料選用45,熱處理調質處理,取材料系數
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表10 低速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)
(由聯軸器寬度尺寸確定)

52.49
60(55.64)

142

第2段
(由唇形密封圈尺寸確定)

64(63.84)

50
第3段

66
16

第4段 由軸承尺寸確定
(軸承預選6014C )

70

24
第5段

78

75
第6段
20

88

20
第7段
齒寬+10
80(79.8)

119
§3.3.4 各軸鍵、鍵槽的選擇及其校核
因減速器中的鍵聯結均為靜聯結,因此只需進行擠壓應力的校核.
一、 高速級鍵的選擇及校核:
帶輪處鍵:按照帶輪處的軸徑及軸長選 鍵B8X7,鍵長50,GB/T1096
聯結處的材料分別為: 45鋼(鍵) 、40Cr(軸)
二、中間級鍵的選擇及校核:
(1) 高速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B14X9GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、20Cr(軸)
此時, 鍵聯結合格.
三、低速級級鍵的選擇及校核
(1)低速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B22X14,鍵長 GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其

該鍵聯結合格
(2)聯軸器處鍵: 按照聯軸器處的軸徑及軸長選 鍵16X10,鍵長100,GB/T1096
聯結處的材料分別為: 45鋼 (聯軸器) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其

該鍵聯結合格.

第四章 減速器箱體及其附件的設計
§4.1箱體結構設計
根據箱體的支撐強度和鑄造、加工工藝要求及其內部傳動零件、外部附件的空間位置確定二級齒輪減速器箱體的相關尺寸如下:(表中a=322.5)
表12 箱體結構尺寸
名稱 符號 設計依據 設計結果
箱座壁厚 δ 0.025a+3=11 11
考慮鑄造工藝,所有壁厚都不應小於8
箱蓋壁厚 δ1 0.02a+3≥8 9.45
箱座凸緣厚度 b 1.5δ 16.5
箱蓋凸緣厚度 b1 1.5δ1 14.18
箱座底凸緣厚度 b2 2.5δ 27.5
地腳螺栓直徑 df 0.036a+12 24(23.61)
地腳螺栓數目 n 時,n=6
6
軸承旁聯結螺栓直徑 d1 0.75df 18
箱蓋與箱座聯接螺栓直徑 d 2 (0.5~0.6)df 12
軸承端蓋螺釘直徑和數目 d3,n (0.4~0.5)df,n 10,6
窺視孔蓋螺釘直徑 d4 (0.3~0.4)df 8
定位銷直徑 d (0.7~0.8) d 2 9
軸承旁凸台半徑 R1 c2 16
凸台高度 h 根據位置及軸承座外徑確定,以便於扳手操作為准 34
外箱壁至軸承座端面距離 l1 c1+c2+ (5~10) 42
大齒輪頂圓距內壁距離 ∆1 >1.2δ 11
齒輪端面與內壁距離 ∆2 >δ 10
箱蓋、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
軸承端蓋凸緣厚度 t (1~1.2) d3 10
軸承端蓋外徑 D2 D+(5~5.5) d3 120
軸承旁邊連接
螺栓距離

S
120
第五章 運輸、安裝和使用維護要求
1、減速器的安裝
(1)減速器輸入軸直接與原動機連接時,推薦採用彈性聯軸器;減速器輸出軸與工作機聯接時,推薦採用齒式聯軸器或其他非剛性聯軸器。聯軸器不得用錘擊裝到軸上。
(2)減速器應牢固地安裝在穩定的水平基礎上,排油槽的油應能排除,且冷卻空氣循環流暢。
(3)減速器、原動機和工作機之間必須仔細對中,其誤差不得大於所用聯軸器的許用補償量。
(4)減速器安裝好後用手轉動必須靈活,無卡死現象。
(5)安裝好的減速器在正式使用前,應進行空載,部分額定載荷間歇運轉1~3h後方可正式運轉,運轉應平穩、無沖擊、無異常振動和雜訊及滲漏油等現象,最高油溫不得超過100℃;並按標准規定檢查輪齒面接觸區位置、面積,如發現故障,應及時排除。
2、使用維護
本類型系列減速器結構簡單牢固,使用維護方便,承載能力范圍大,公稱輸入功率0.85—6660kw,公稱輸出轉矩100—410000N.m,不怕工況條件惡劣,是適用性很好,應用量大面廣的產品。可通用於礦山、冶金、運輸、建材、化工、紡織、輕工、能源等行業的機械傳動。但有以下限制條件:
1.減速器高速軸轉速不高於1000r/min;
2.減速器齒輪圓周速度不高於20m/s;
3.減速器工作環境溫度為—40~45℃,低於0℃時,啟動前潤滑油應預熱到8℃以上,高於45℃時應採取隔熱措施。
3、減速器潤滑油的更換:
(1)減速器第一次使用時,當運轉150~300h後須更換潤滑油,在以後的使用中應定期檢查油的質量。對於混入雜質或變質的油須及時更換。一般情況下,對於長期工作的減速器,每500~1000h必須換油一次。對於每天工作時間不超過8h的減速器,每1200~3000h換油一次。
(2)減速器應加入與原來牌號相同的油,不得與不同牌號的油相混用。牌號相同而粘度不同的油允許混合用。
(3)換油過程中,蝸輪應使用與運轉時相同牌號的油清洗。
(4)工作中,當發現油溫溫升超過80℃或油池溫度超過100℃及產生不正常的雜訊等現象時,應停止使用,檢查原因。如因齒面膠合等原因所致,必須排除故障,更換潤滑油後,方可繼續運轉。
減速器應定期檢修。如發現擦傷、膠合及顯著磨損,必須採用有效措施制止或予以排除。備件必須按標准製造,更新的備件必須經過跑合和負荷試驗後才能正式使用。 用戶應有合理的使用維護規章制度,對減速器的運轉情況和檢驗中發現的問題應做認真的記錄 。

小 結
轉眼兩周的時間過去了,感覺時間過得真快,忙忙碌碌終於把機械設計做出來了。我通過這次設計學到了很多東西。使我對機械設計的內容有了進一步的了解.
因為剛結束課程就搞設計,還沒有來得及復習,所以剛開始遇到好多的問題,都感覺很棘手.因為機械設計是把我們這學期所學知識全部綜合起來了,還用到了許多先前開的課程,例如金屬工藝學,材料力學,機械原理等.
首先,我們要運用知識想好用什麼結構,然後進行軸大小長短的設計,要校核,選軸承。最後還要校核低速軸,看能否用。鍵也是一件重要的零件,校核也不可避免。所有這些都用到了力學和機械設計得內容,可是我當時力學沒有學好,機械設計又沒完全掌握,做這次設計真是不容易啊!.
但通過這次機械設計學到了許多,不僅是在知識方面,重要是在觀念方面。以往我們不管做什麼都有現成的東西,而我們只要算別人現有的東西就可以了,其實那就是抄。但現在很多是自己設計,沒有約束了反而不知所措了。其次,我在這次設計中出現了許多問題,經過常老師得指點,我學到了許多課本上沒有的東西他並且給我們講了一些實際用到的經驗.收獲真是破多啊!最後就是我們大學的課程開了這么多,我們一定要把基礎打牢,為以後的綜合運用打下基礎啊.這次機械設計課程就體現了,我們現在很缺乏把自己學的東西聯系起來的能力.
最後我總結一下通過這次機械設計我學到的。實踐出真知,不假。通過設計我現在可以了解真正的設計是一個怎樣的程序啊.而且其中出現了許多錯誤,為以後工作增加經驗。雖然機設很累,但我很充實,我學到了許多知識,我增加了社會競爭力,我又多了解了機械,又進步了。總之,這次機械設計雖然很累,但是我學到了好多自己從前不知道和沒有經歷的經驗。

參 考 文 獻

1 <<機械設計>>第八版 濮良貴主編 高等教育出版社 ,2006
2 <<機械設計課程設計>>第1版 . 王昆,何小柏主編 .機械工業出版社 ,2004
3 <<機械原理>> 申永勝主編 清華大學出版社 ,1999
4 <<材料力學 >> 劉鴻文主編 高等教育出版社 ,2004
5 <<幾何公差與測量>>第五版 甘永力主編 上海科學技術出版社 ,2003
6 <<機械制圖>>

❸ 機械設計課程設計---設計盤磨機傳動裝置!!!

我也在做這個題也 老兄
我只能提供樣本給你哈 具體的還是得靠你自己啦
目 錄

一 課程設計書 2

二 設計要求 2

三 設計步驟 2

1. 傳動裝置總體設計方案 3
2. 電動機的選擇 4
3. 確定傳動裝置的總傳動比和分配傳動比 5
4. 計算傳動裝置的運動和動力參數 5
6. 齒輪的設計 8
7. 滾動軸承和傳動軸的設計 19
8. 鍵聯接設計 26
9. 箱體結構的設計 27
10.潤滑密封設計 30
11.聯軸器設計 30

四 設計小結 31
五 參考資料 32

一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級齒輪減速器.運輸機連續單向運轉,載荷有輕微沖擊,工作環境多塵,通風良好,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限10年(300天/年),三班制工作,滾筒轉速容許速度誤差為5%,車間有三相交流,電壓380/220V。
參數:
皮帶有效拉力F(KN) 3.2
皮帶運行速度V(m/s) 1.4
滾筒直徑D(mm) 400

二. 設計要求
1.減速器裝配圖1張(0號)。
2.零件工作圖2-3張(A2)。
3.設計計算說明書1份。
三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 齒輪的設計
6. 滾動軸承和傳動軸的設計
7. 鍵聯接設計
8. 箱體結構設計
9. 潤滑密封設計
10. 聯軸器設計
1.傳動裝置總體設計方案:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:

圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器。
傳動裝置的總效率
為V帶的傳動效率, 為軸承的效率,
為對齒輪傳動的效率,(齒輪為7級精度,油脂潤滑)
為聯軸器的效率, 為滾筒的效率
因是薄壁防護罩,採用開式效率計算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.電動機的選擇
電動機所需工作功率為: P =P/η =3200×1.4/1000×0.760=3.40kW
滾筒軸工作轉速為n= = =66.88r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。

方案 電動機型號 額定功 率
P
kw 電動機轉速

電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動 比 V帶傳 動 減速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90

3.確定傳動裝置的總傳動比和分配傳動比

(1)總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/66.88=17.05
(2)分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3(實際的傳動比要在設計V帶傳動時,由所選大、小帶輪的標準直徑之比計算),則減速器傳動比為
= =17.05/2.3=7.41
根據展開式布置,考慮潤滑條件,為使兩級大齒輪直徑相近,查圖得高速級傳動比為 =3.24,則 = =2.29

4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各軸輸入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
則各軸的輸出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各軸輸入轉矩
= × × N•m
電動機軸的輸出轉矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
輸出轉矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.40 22.55 1440
1軸 3.26 3.19 49.79 48.79 626.09
2軸 3.04 2.98 151.77 148.73 193.24
3軸 2.83 2.77 326.98 320.44 84.38
4軸 2.75 2.70 307.52 301.37 84.38
5.齒輪的設計
(一)高速級齒輪傳動的設計計算
1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1)齒輪材料及熱處理
① 材料:高速級小齒輪選用45#鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用45#鋼正火,齒面硬度為大齒輪 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。

2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計

確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26

②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5

[ ] = =0.96×450=432
許用接觸應力

⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d

=
②計算圓周速度

③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式

⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN•m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774
⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78
⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =

大齒輪的數值大.選用.
⑵ 設計計算
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的

(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用45鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用45鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度

6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN•m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y

(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的

查課本由 圖10-20c得齒輪彎曲疲勞強度極限

查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較

大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度

圓整後取

低速級大齒輪如上圖:

齒輪各設計參數附表
1. 各軸轉速n
(r/min)
(r/min)
(r/min)
(r/min)

626.09 193.24 84.38 84.38

2. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)

3.26 3.04 2.83 2.75

3. 各軸輸入轉矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)

49.79 151.77 326.98 307.52

6.傳動軸承和傳動軸的設計
1. 傳動軸承的設計
⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圓周力F ,徑向力F 及軸向力F 的方向如圖示:
⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取

輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取

因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑
⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.

D B

軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 從動軸的設計
對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.
④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則

至此,已初步確定了軸的各端直徑和長度.
5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.

傳動軸總體設計結構圖:

(從動軸)

(中間軸)

(主動軸)
從動軸的載荷分析圖:

6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全
7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力

截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:


經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以

綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅳ左側的彎矩M為 M=133560
截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.鍵的設計和計算
①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50
②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:

名稱 符號 計算公式 結果
箱座壁厚

10
箱蓋壁厚

9
箱蓋凸緣厚度

12
箱座凸緣厚度

15
箱座底凸緣厚度

25
地腳螺釘直徑

M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑

M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚

9 8.5

軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離

120(1軸)125(2軸)
150(3軸)
10. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
11.聯軸器設計
1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器.
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm

❹ 機械設計-課程設計-帶式運輸機傳動裝置-二級齒輪減速器

一、 設計題目:二級直齒圓柱齒輪減速器
1. 要求:擬定傳動關系:由電動機、V帶、減速器、聯軸器、工作機構成。
2. 工作條件:雙班工作,有輕微振動,小批量生產,單向傳動,使用5年,運輸帶允許誤差5%。
3. 知條件:運輸帶捲筒轉速 ,
減速箱輸出軸功率 馬力,
二、 傳動裝置總體設計:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。 其傳動方案如下:

三、 選擇電機
1. 計算電機所需功率 : 查手冊第3頁表1-7:
-帶傳動效率:0.96
-每對軸承傳動效率:0.99
-圓柱齒輪的傳動效率:0.96
-聯軸器的傳動效率:0.993
—捲筒的傳動效率:0.96
說明:
-電機至工作機之間的傳動裝置的總效率:

2確定電機轉速:查指導書第7頁表1:取V帶傳動比i=2 4
二級圓柱齒輪減速器傳動比i=8 40所以電動機轉速的可選范圍是:

符合這一范圍的轉速有:750、1000、1500、3000
根據電動機所需功率和轉速查手冊第155頁表12-1有4種適用的電動機型號,因此有4種傳動比方案如下:
方案 電動機型號 額定功率 同步轉速
r/min 額定轉速
r/min 重量 總傳動比
1 Y112M-2 4KW 3000 2890 45Kg 152.11
2 Y112M-4 4KW 1500 1440 43Kg 75.79
3 Y132M1-6 4KW 1000 960 73Kg 50.53
4 Y160M1-8 4KW 750 720 118Kg 37.89
綜合考慮電動機和傳動裝置的尺寸、重量、和帶傳動、減速器的傳動比,可見第3種方案比較合適,因此選用電動機型號為Y132M1-6,其主要參數如下:

額定功率kW 滿載轉速 同步轉速 質量 A D E F G H L AB
4 960 1000 73 216 38 80 10 33 132 515 280
四 確定傳動裝置的總傳動比和分配傳動比:
總傳動比:
分配傳動比:取 則
取 經計算
註: 為帶輪傳動比, 為高速級傳動比, 為低速級傳動比。
五 計算傳動裝置的運動和動力參數:
將傳動裝置各軸由高速到低速依次定為1軸、2軸、3軸、4軸
——依次為電機與軸1,軸1與軸2,軸2與軸3,軸3與軸4之間的傳動效率。
1. 各軸轉速:

2各軸輸入功率:

3各軸輸入轉矩:

運動和動力參數結果如下表:
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.67 36.5 960
1軸 3.52 3.48 106.9 105.8 314.86
2軸 3.21 3.18 470.3 465.6 68
3軸 3.05 3.02 1591.5 1559.6 19.1
4軸 3 2.97 1575.6 1512.6 19.1
六 設計V帶和帶輪:
1.設計V帶
①確定V帶型號
查課本 表13-6得: 則
根據 =4.4, =960r/min,由課本 圖13-5,選擇A型V帶,取 。
查課本第206頁表13-7取 。
為帶傳動的滑動率 。
②驗算帶速: 帶速在 范圍內,合適。
③取V帶基準長度 和中心距a:
初步選取中心距a: ,取 。
由課本第195頁式(13-2)得: 查課本第202頁表13-2取 。由課本第206頁式13-6計算實際中心距: 。
④驗算小帶輪包角 :由課本第195頁式13-1得: 。
⑤求V帶根數Z:由課本第204頁式13-15得:
查課本第203頁表13-3由內插值法得 。

EF=0.1
=1.37+0.1=1.38

EF=0.08

查課本第202頁表13-2得 。
查課本第204頁表13-5由內插值法得 。 =163.0 EF=0.009
=0.95+0.009=0.959


取 根。
⑥求作用在帶輪軸上的壓力 :查課本201頁表13-1得q=0.10kg/m,故由課本第197頁式13-7得單根V帶的初拉力:
作用在軸上壓力:

七 齒輪的設計:
1高速級大小齒輪的設計:
①材料:高速級小齒輪選用 鋼調質,齒面硬度為250HBS。高速級大齒輪選用 鋼正火,齒面硬度為220HBS。
②查課本第166頁表11-7得: 。
查課本第165頁表11-4得: 。
故 。
查課本第168頁表11-10C圖得: 。
故 。
③按齒面接觸強度設計:9級精度製造,查課本第164頁表11-3得:載荷系數 ,取齒寬系數 計算中心距:由課本第165頁式11-5得:
考慮高速級大齒輪與低速級大齒輪相差不大取
則 取
實際傳動比:
傳動比誤差: 。
齒寬: 取
高速級大齒輪: 高速級小齒輪:
④驗算輪齒彎曲強度:
查課本第167頁表11-9得:
按最小齒寬 計算:
所以安全。
⑤齒輪的圓周速度:
查課本第162頁表11-2知選用9級的的精度是合適的。
2低速級大小齒輪的設計:
①材料:低速級小齒輪選用 鋼調質,齒面硬度為250HBS。
低速級大齒輪選用 鋼正火,齒面硬度為220HBS。
②查課本第166頁表11-7得: 。
查課本第165頁表11-4得: 。
故 。
查課本第168頁表11-10C圖得: 。
故 。
③按齒面接觸強度設計:9級精度製造,查課本第164頁表11-3得:載荷系數 ,取齒寬系數
計算中心距: 由課本第165頁式11-5得:

取 則 取
計算傳動比誤差: 合適
齒寬: 則取
低速級大齒輪:
低速級小齒輪:
④驗算輪齒彎曲強度:查課本第167頁表11-9得:
按最小齒寬 計算:
安全。
⑤齒輪的圓周速度:
查課本第162頁表11-2知選用9級的的精度是合適的。
八 減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
箱座厚度

10
箱蓋厚度

9
箱蓋凸緣厚度

12
箱座凸緣厚度

15
箱座底凸緣厚度

25
地腳螺釘直徑

M24
地腳螺釘數目
查手冊 6
軸承旁聯結螺栓直徑

M12
蓋與座聯結螺栓直徑
=(0.5 0.6)
M10
軸承端蓋螺釘直徑
=(0.4 0.5)

10
視孔蓋螺釘直徑
=(0.3 0.4)
8
定位銷直徑
=(0.7 0.8)
8
, , 至外箱壁的距離
查手冊表11—2 34
22
18
, 至凸緣邊緣距離
查手冊表11—2 28
16
外箱壁至軸承端面距離
= + +(5 10)
50
大齒輪頂圓與內箱壁距離
>1.2
15
齒輪端面與內箱壁距離
>
10
箱蓋,箱座肋厚

9
8.5
軸承端蓋外徑
+(5 5.5)
120(1軸)
125(2軸)
150(3軸)
軸承旁聯結螺栓距離

120(1軸)
125(2軸)
150(3軸)
九 軸的設計:
1高速軸設計:
①材料:選用45號鋼調質處理。查課本第230頁表14-2取 C=100。
②各軸段直徑的確定:根據課本第230頁式14-2得: 又因為裝小帶輪的電動機軸徑 ,又因為高速軸第一段軸徑裝配大帶輪,且 所以查手冊第9頁表1-16取 。L1=1.75d1-3=60。
因為大帶輪要靠軸肩定位,且還要配合密封圈,所以查手冊85頁表7-12取 ,L2=m+e+l+5=28+9+16+5=58。
段裝配軸承且 ,所以查手冊62頁表6-1取 。選用6009軸承。
L3=B+ +2=16+10+2=28。
段主要是定位軸承,取 。L4根據箱體內壁線確定後在確定。
裝配齒輪段直徑:判斷是不是作成齒輪軸:
查手冊51頁表4-1得:
得:e=5.9<6.25。
段裝配軸承所以 L6= L3=28。
2 校核該軸和軸承:L1=73 L2=211 L3=96
作用在齒輪上的圓周力為:
徑向力為
作用在軸1帶輪上的外力:
求垂直面的支反力:

求垂直彎矩,並繪制垂直彎矩圖:

求水平面的支承力:
由 得
N
N
求並繪制水平面彎矩圖:

求F在支點產生的反力:

求並繪制F力產生的彎矩圖:

F在a處產生的彎矩:

求合成彎矩圖:
考慮最不利的情況,把 與 直接相加。

求危險截面當量彎矩:
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )

計算危險截面處軸的直徑:
因為材料選擇 調質,查課本225頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:

因為 ,所以該軸是安全的。
3軸承壽命校核:
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取
按最不利考慮,則有:

則 因此所該軸承符合要求。
4彎矩及軸的受力分析圖如下:

5鍵的設計與校核:
根據 ,確定V帶輪選鑄鐵HT200,參考教材表10-9,由於 在 范圍內,故 軸段上採用鍵 : ,
採用A型普通鍵:
鍵校核.為L1=1.75d1-3=60綜合考慮取 =50得 查課本155頁表10-10 所選鍵為:
中間軸的設計:
①材料:選用45號鋼調質處理。查課本第230頁表14-2取 C=100。
②根據課本第230頁式14-2得:
段要裝配軸承,所以查手冊第9頁表1-16取 ,查手冊62頁表6-1選用6208軸承,L1=B+ + + =18+10+10+2=40。
裝配低速級小齒輪,且 取 ,L2=128,因為要比齒輪孔長度少 。
段主要是定位高速級大齒輪,所以取 ,L3= =10。
裝配高速級大齒輪,取 L4=84-2=82。
段要裝配軸承,所以查手冊第9頁表1-16取 ,查手冊62頁表6-1選用6208軸承,L1=B+ + +3+ =18+10+10+2=43。
③校核該軸和軸承:L1=74 L2=117 L3=94
作用在2、3齒輪上的圓周力:
N
徑向力:

求垂直面的支反力

計算垂直彎矩:

求水平面的支承力:

計算、繪制水平面彎矩圖:

求合成彎矩圖,按最不利情況考慮:

求危險截面當量彎矩:
從圖可見,m-m,n-n處截面最危險,其當量彎矩為:(取摺合系數 )

計算危險截面處軸的直徑:
n-n截面:
m-m截面:
由於 ,所以該軸是安全的。
軸承壽命校核:
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取

則 ,軸承使用壽命在 年范圍內,因此所該軸承符合要求。
④彎矩及軸的受力分析圖如下:
⑤鍵的設計與校核:
已知 參考教材表10-11,由於 所以取
因為齒輪材料為45鋼。查課本155頁表10-10得
L=128-18=110取鍵長為110. L=82-12=70取鍵長為70
根據擠壓強度條件,鍵的校核為:

所以所選鍵為:
從動軸的設計:
⑴確定各軸段直徑
①計算最小軸段直徑。
因為軸主要承受轉矩作用,所以按扭轉強度計算,由式14-2得:
考慮到該軸段上開有鍵槽,因此取
查手冊9頁表1-16圓整成標准值,取
②為使聯軸器軸向定位,在外伸端設置軸肩,則第二段軸徑 。查手冊85頁表7-2,此尺寸符合軸承蓋和密封圈標准值,因此取 。
③設計軸段 ,為使軸承裝拆方便,查手冊62頁,表6-1,取 ,採用擋油環給軸承定位。選軸承6215: 。
④設計軸段 ,考慮到擋油環軸向定位,故取
⑤設計另一端軸頸 ,取 ,軸承由擋油環定位,擋油環另一端靠齒輪齒根處定位。
⑥ 輪裝拆方便,設計軸頭 ,取 ,查手冊9頁表1-16取 。
⑦設計軸環 及寬度b
使齒輪軸向定位,故取 取
,
⑵確定各軸段長度。
有聯軸器的尺寸決定 (後面將會講到).

因為 ,所以
軸頭長度 因為此段要比此輪孔的長度短

其它各軸段長度由結構決定。
(4).校核該軸和軸承:L1=97.5 L2=204.5 L3=116
求作用力、力矩和和力矩、危險截面的當量彎矩。
作用在齒輪上的圓周力:

徑向力:

求垂直面的支反力:

計算垂直彎矩:

.m
求水平面的支承力。

計算、繪制水平面彎矩圖。

求F在支點產生的反力

求F力產生的彎矩圖。

F在a處產生的彎矩:

求合成彎矩圖。
考慮最不利的情況,把 與 直接相加。

求危險截面當量彎矩。
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )

計算危險截面處軸的直徑。
因為材料選擇 調質,查課本225頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:

考慮到鍵槽的影響,取
因為 ,所以該軸是安全的。
(5).軸承壽命校核。
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取
按最不利考慮,則有:
則 ,
該軸承壽命為64.8年,所以軸上的軸承是適合要求的。
(6)彎矩及軸的受力分析圖如下:
(7)鍵的設計與校核:
因為d1=63裝聯軸器查課本153頁表10-9選鍵為 查課本155頁表10-10得
因為L1=107初選鍵長為100,校核 所以所選鍵為:
裝齒輪查課本153頁表10-9選鍵為 查課本155頁表10-10得
因為L6=122初選鍵長為100,校核
所以所選鍵為: .
十 高速軸大齒輪的設計
因 採用腹板式結構
代號 結構尺寸和計算公式 結果
輪轂處直徑

72
輪轂軸向長度

84
倒角尺寸

1
齒根圓處的厚度

10
腹板最大直徑

321.25
板孔直徑

62.5
腹板厚度

25.2
電動機帶輪的設計

代號 結構尺寸和計算公式 結果

手冊157頁 38mm

68.4mm

取60mm

81mm

74.7mm

10mm

15mm

5mm
十一.聯軸器的選擇:
計算聯軸器所需的轉矩: 查課本269表17-1取 查手冊94頁表8-7選用型號為HL6的彈性柱銷聯軸器。
十二潤滑方式的確定:
因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度。
十三.其他有關數據見裝配圖的明細表和手冊中的有關數據。
十四.參考資料:
《機械設計課程設計手冊》(第二版)——清華大學 吳宗澤,北京科技大學 羅聖國主編。
《機械設計課程設計指導書》(第二版)——羅聖國,李平林等主編。
《機械課程設計》(重慶大學出版社)——周元康等主編。
《機械設計基礎》(第四版)課本——楊可楨 程光蘊 主編。

❺ 江湖告急-機械設計課程設計 設計傳動裝置

僅供參考

一跡正、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉滾或速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶大州伍 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.

放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20

(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2

(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3

D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.

九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。

十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。

十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版

❻ 求幫忙設計帶式輸送機傳動裝置--一級圓柱齒輪減速器

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

❼ 2018-08-23 齒輪傳動

11.1 齒輪傳動的失效形式和設計准則

11.1.1 失效形式

齒輪傳動的失效通常發生在輪齒部位,其主要失效形式有輪齒折斷、齒面點蝕、齒面膠合、齒面磨損和齒麵塑性變形。

輪齒折斷。齒輪傳動時,齒根處的彎曲應力最大,當齒根彎曲應力超過材料的彎曲疲勞極限應力且多次重復作用時,在齒根受拉一側就會產生疲勞裂紋,裂紋逐步擴展,致使輪齒疲勞折斷。此外,用脆性材料製成的齒輪,當受到嚴重過載或很大沖擊時,輪齒容易突然折斷。提高輪齒抗折斷能力的措施如下:增大齒根過度圓角半徑,消除加工刀痕,減小齒根應力集中;增大軸及支承的剛度,使輪齒接觸線上受載較為均勻;採用合適的熱處理,使輪齒芯部材料具有足夠的韌性;採用噴丸、滾壓等工藝,對齒根表層進行強化處理。

齒面點蝕。齒輪傳動時,齒面間的接觸就相當於軸線平行的兩圓柱滾子間的接觸,在接觸處將產生脈動循環變化的接觸應力。在接觸應力的反復作用下,輪齒表面產生疲勞裂紋,裂紋逐漸發展導致輪齒表面金屬小片脫落,形成疲勞點蝕。齒面點蝕是軟齒面閉式齒輪傳動的主要失效形式。而在開式齒輪傳動中,不會發生點蝕。為避免點蝕失效,應進行齒面接觸疲勞強度計算,提高齒面硬度,降低齒面粗糙度值,增加潤滑油粘度,都能提高齒面的抗點蝕能力。

齒面膠合。當齒面瞬時溫度過高時,潤滑實效,致使相嚙合兩齒面金屬直接接觸而發生黏連。在運動時較軟的齒面沿滑動方向被撕下而形成溝紋,稱為齒面膠合。提高齒面硬度,降低齒面粗糙度值,採用抗膠合能力強的潤滑油和齒輪材料等,均可提高齒面抗膠合的能力。

齒面磨損。齒面磨損導致齒廓失去正確的形狀,從而引起沖擊、振動和雜訊,嚴重時會因齒厚減薄而發生輪齒折斷。採用閉式齒輪傳動,提高齒面硬度,降低齒面粗糙度值,過濾潤滑油,均能提高抗磨損能力。

齒麵塑性變形。由於在過大的應力作用下,輪齒材料處於屈服狀態而產生的塑性流動所造成的。提高齒面硬度,採用高粘度潤滑油可以防止或減輕輪齒的塑性變形。

11.1.2 設計准則

齒輪的設計准則由可能生效的失效形式確定。通常只按保證齒根彎曲疲勞強度及保證齒面接觸疲勞強度兩准則進行計算,對於高速大功率的齒輪傳動還要進行齒面抗膠合計算。

軟齒面閉式齒輪傳動中,主要失效形式為齒面點蝕,故通常先按齒面接觸疲勞強度進行設計,然後再按齒根彎曲疲勞強度校核。

硬齒面閉式齒輪傳動中,齒面接觸承載能力較強,故通常先按齒根彎曲疲勞強度計算,然後再按齒面接觸疲勞強度校核。

開式齒輪傳動中,主要失效形式時齒面磨損,而且輪齒磨薄之後往往會發生輪齒折斷,故通常只按齒根彎曲疲勞強度進行設計,並考慮到磨損的影響將模數值加大10%~15%。

11.2 齒輪材料和熱處理

常用材料是鋼,其次是鑄鐵,在某些場合也用非金屬材料。

11.2.1 鍛鋼

鍛鋼是首選的齒輪材料。

軟齒面齒輪。軟齒面齒輪的材料選用中碳鋼或中碳合金鋼,熱處理方法為調質或正火。一般熱處理後切齒,切齒後即為成品。製造簡便,生產率高,但承載能力低,傳動尺寸大,一般用於結構緊湊和精度要求不高,載荷和速度一般或較低的場合。由於小齒輪嚙合次數比大齒輪多,為了使大小齒輪接近等強度,常採用調質的小齒輪和正火的大齒輪配對,使小齒輪的齒面硬度比大齒輪的齒面硬度高25~50 HBS。

硬齒面齒輪。硬齒面齒輪的材料可以用低碳鋼或低碳合金鋼及中碳鋼或中碳合金鋼,熱處理方法可選擇整體淬火、表面淬火、滲碳淬火和氮化等。一般是在正火或調質處理後切齒,再經表面硬化處理,最後進行磨齒等精加工。精度高,強度大,價格較貴,一般用於高速、重載及要求尺寸緊湊的場合。採用硬齒面齒輪傳動是當前的發展趨勢。

11.2.2 鑄鋼

鑄鋼主要用於製造要求有較高力學性能的大齒輪,熱處理方法為正火,必要時也可進行調質或表面淬火。

11.2.3 鑄鐵

灰鑄鐵的鑄造性能和切削性能好,價格便宜,但抗彎強度和沖擊韌性較差,通常用於低速、無沖擊和大尺寸或開式傳動的場合。

球墨鑄鐵的力學性能和抗沖擊性能高於灰鑄鐵,可替代調質鋼製造某些大齒輪。

11.2.4 非金屬材料

在高速、輕載,以及要求低雜訊而精度要求不高的齒輪傳動中,可採用塑料、夾布膠木和尼龍等非金屬材料。由於非金屬材料的導熱性差,故要與齒面光潔的金屬齒輪配對使用,以利於散熱。

11.3 直齒圓柱齒輪傳動的作用力及計算載荷

11.3.1 輪齒上的作用力

圓周力 Ft = 2T₁/d₁ ,徑向力 Fr = Ft·tan α ,法向力 Fn = Ft/cos α 。其中,d₁是小齒輪的分度圓直徑,T₁是小齒輪傳遞的轉矩,α是壓力角。

根據作用力與反作用力的關系,作用在主動輪和從動輪上的各力大小相等,方向相反,主動輪所受的圓周力是工作阻力,其方向與力作用點圓周速度方向相反,從動輪所受到的圓周力是驅動力,其方向與力作用點圓周速度方向相同。徑向力則指向各自的輪心。

11.3.2 計算載荷

由齒輪傳遞的額定功率及轉速所計算出的載荷為齒輪傳動的名義載荷。考慮到原動機和工作機的不平衡,輪齒嚙合時產生的動載荷,載荷在同時嚙合的齒對間分配的不均勻及沿同一齒面接觸線分布不均勻等因素對齒輪強度的不利影響,在計算齒輪傳動的強度時,應對名義載荷Fn乘以載荷系數K,即按計算載荷KFn計算。

11.4 直齒圓柱齒輪傳動的強度計算

11.4.1 齒面接觸疲勞強度計算

目的是防止齒輪在預定壽命期限內發生疲勞點蝕。強度條件式為σH ≤ [σH]。令Ze = {1/Π·[(1-μ₁²)/E₁+(1-μ₂²)/E₂]}½,稱為彈性系數,Zh = [2/(sinαcosα)]½,稱為區域系數,對於標准齒輪來說,Zh = 2.5。齒面接觸強度的校核公式 σH = 2.5Ze[(2KT₁/bd₁²)·(u±1)/u]½ ≤ [σH] ,設計公式為 d₁ ≥ 2.32[(KT₁/φd)·(u±1)/u·(Ze/[σH])²]⅓ ,[σH] = σHlim/Sh,σHlim為接觸疲勞強度極限,與齒面硬度有關,Sh為安全系數,一般工業用可取1。配對齒輪的齒面接觸應力是相等的。

11.4.2 齒根彎曲疲勞強度計算

目的是防止在預定壽命期限內發生輪齒疲勞折斷,強度條件為σF ≤ [σF]。輪齒彎曲強度的校核公式 σF = (KFt/bm)·Yf·Ys = 2KT₁YfYs/bm²z₁ ≤ [σF] ,其中Ys為修正系數。輪齒彎曲強度的設計公式 m ≥ [(2KT₁/φdz₁²)·(YfYs/[σF])]⅓ ,其中[σF] = σFE/Sf,σFE為齒根彎曲疲勞強度極限,若輪次兩面工作,應將Yf乘以0.7,;Sf為安全系數,一般工業用可取1.25。校核彎曲強度時,應該對大、小齒輪分別進行驗算,計算m時,YfYs/[σF]應該代入Yf₁Ys₁/[σF₁]和Yf₂Ys₂/[σF₂]中的較大者。傳遞動力的齒輪,模數不宜小於1.5mm。

11.5 圓柱齒輪傳動的設計

11.5.1 齒輪傳動主要參數的選擇

齒數比u。u由傳動比而定,避免大齒輪齒數過多,導致徑向尺寸過大,應使u≤7。

模數m和齒數z。模數m主要影響齒根彎曲強度,對齒面接觸強度沒有直接影響,齒面接觸強度主要與d₁和齒數比u有關。對於閉式齒輪傳動,在滿足彎曲疲勞強度情況下,宜採用較多的齒數和較小的模數,以增加重合度,提高傳動的平穩性,減小沖擊振動,可以取小輪齒數z₁=20~40。在抗彎曲強度設計時,應取較大的模數,因而齒數應少一些,一般取z₁=17~20.對於開式齒輪傳動,為了彌補齒面磨損造成的輪齒減薄,強度削弱,通常將計算得到的模數加大10%~15%。

齒寬系數φd及齒寬b。增大齒寬可減小齒輪直徑和傳動中心距,但齒寬越大,齒向的載荷分布越不均勻,因此必須合理選擇齒寬系數。對於圓柱齒輪的齒寬,可按b=φd·d₁計算後再做適當調整,而且為了避免安裝時大小齒輪軸向錯位導致嚙合齒寬減小,通常將小輪的齒寬加大5~10mm。

11.5.2 齒輪精度的選擇

製造和安裝齒輪傳動裝置時,不可避免的會產生誤差。按照誤差特性及它們對傳動性能的主要影響,將齒輪的各項公差分為三個組,分別反映傳遞運動的准確性、傳動的平穩性和載荷分布的均勻性。共13個精度等級,其中0級最高,12級最低,常用的是6~9級。

11.6 斜齒圓柱齒輪傳動

11.6.1 輪齒上的作用力

圓周力 Ft = 2T₁/d₁ ,徑向力 Fr = Ft·tan αn/cos β ,軸向力 Fa = Ft·tanβ 。其中,αn是法面壓力角,對於標准齒輪為20°;β是螺旋角,β越大,斜齒輪傳動越平穩,承載能力越大,但軸向力Fa也越大,影響軸承部件結構,因此,一般取8°~20°。

11.6.2 強度計算

齒面接觸疲勞強度校核式為 σH = 3.54ZeZβ[(KT₁/bd₁²)·(u±1)/u]½ ≤ [σH] ,設計式為 d₁ ≥ 2.32[(KT₁/φd)·(u±1)/u·(ZeZβ/[σH])²]⅓ ,其中Zβ=(cos β)½是螺旋角系數。齒根彎曲疲勞強度校核式為 σF = 2KT₁YfYs/bd₁mn ≤ [σF] ,設計式為 m ≥ [(2KT₁/φdz₁²)·(YfYs/[σF])·cos²β]½ ,其中Yf是齒形系數,按當量齒數z/cos³β查取,Ys是應力修正系數,按當量齒數查取。

11.7 直齒圓錐齒輪傳動

11.7.1 輪齒上的作用力

圓周力 Ft = 2T₁/dm₁,徑向力 Fr = Ft·tan α·cos δ,軸向力 Fa = Ft·tan α·sin δ。其中,T₁是小齒輪傳遞的轉矩;dm₁是小齒輪齒寬中點分度圓直徑;α是分度圓壓力角,標准齒輪為20°。

11.7.2 強度計算

齒面接觸疲勞強度計算校核公式 σH = 2.5Ze[4KT₁/0.85φr(1-0.5φr)²d₁³u]½ ≤ [σH] ,設計公式為 d₁ ≥ 1.84{[4KT₁/0.85φr(1-0.5φr)²u]·(Ze/[σH])²]½ 。其中d₁是小齒輪的分度圓直徑;K是載荷系數;φr = b/R,其中b為齒寬,R為錐距,一般取φr = 0.25~0.35,u = z₂/z₁,一般u≤5;Ze為彈性系數。

齒根彎曲疲勞強度校核公式 σF = 4KT₁YfYs/0.85φr(1-0.5φr)²z₁²m³(1+u²)½ ≤ [σF] ,設計公式為 m ≥ {[4KT₁/0.85φr(1-0.5φr)²z₁²(1+u²]½·(YfYs/[σF])}½

11.8 齒輪構造。

齒輪的輪緣、輪輻的結構形式和尺寸大小,需要由結構設計確定。設計時根據齒輪尺寸、材料、製造方法等選擇合適的結構形式,再根據經驗公式確定具體尺寸。

對於直徑較小的鋼制齒輪,當齒根圓直徑與軸徑接近時,可將齒輪與軸做成一體,稱為齒輪軸。當齒頂圓直徑≤160mm時,可以做成實心結構;當齒頂圓直徑≤500mm時,通常採用腹板式齒輪,可鑄造可鍛造;當直徑較大,大於等於400mm時,多採用輪輻式的鑄造齒輪。

11.9 齒輪傳動的潤滑和效率

11.9.1 齒輪傳動的潤滑

齒輪傳動的潤滑方式。對於開式齒輪傳動,因速度低,一般是人工定期加油或在齒面塗抹潤滑脂。對於閉式齒輪傳動,潤滑方式取決於齒輪的圓周速度v。當v≤12m/s時,可採用浸油潤滑;當v>12m/s時,應採用噴油潤滑。

潤滑劑的選擇。選擇潤滑劑時,要考慮齒面上的載荷和齒輪的圓周速度以及工作溫度,以使齒面上能保持一定厚度且能承受一定壓力的潤滑油膜。

11.9.2 齒輪傳動的效率

齒輪傳動的功率損耗主要包括:嚙合中的摩擦損耗;攪動潤滑油的油阻損耗;軸承中的摩擦損耗。

閱讀全文

與齒輪傳動裝置設計與實例下載相關的資料

熱點內容
超聲波清洗噴油嘴用什麼液體 瀏覽:850
水庫自動抽水裝置 瀏覽:991
膠封軸承耐溫多少 瀏覽:712
閥門轉軸了怎麼辦 瀏覽:504
光明閥門廠生產和銷售熱電廠用閥門 瀏覽:385
鑄造專業進什麼公司好 瀏覽:723
迷你世界自動的發射裝置 瀏覽:486
五彩灣五金機電有限公司 瀏覽:131
單個零件自動送料裝置 瀏覽:633
大學聲速測量儀器怎麼調 瀏覽:474
江陰什麼機械廠搬到南通 瀏覽:983
鑄造廠開箱工是干什麼工作 瀏覽:193
東北家裡暖氣閥門圖 瀏覽:253
小學科學工具箱購買 瀏覽:925
冰櫃嘎啦嘎啦響不製冷是怎麼回事 瀏覽:159
螺紋單閘閥門銹死擰不開怎麼辦 瀏覽:55
暖氣片的閥門進水和回水 瀏覽:65
新空調不製冷只吹風是怎麼回事外機不轉 瀏覽:508
自動上彈裝置圖 瀏覽:617
藝術裝置設計牆 瀏覽:88