㈠ HPF脫硫工藝是什麼意思
1 HPF脫硫工藝介紹
HPF脫硫工藝是利用焦爐煤氣中的氨作吸收劑,以HPF為催化劑的濕法氧化脫硫,首先把煤氣中的H2S轉化成硫氫銨鹽,在空氣的氧化下轉化成元素硫,吸收液得到再生。主要有(1) 吸收反應
(2) 再生反應 (3) 付反應 。HPF在脫硫和再生全過程中均有催化作用。
此工藝流程基本與ADA脫硫相同。進入脫硫工段的煤氣依次進入串聯的空噴脫硫塔和填料脫硫塔,與脫硫液逆向接觸,煤氣脫除了H2S和HCN去脫氨;脫硫塔有自己獨立的再生系統,吸收了H2S和HCN的脫硫液分別送入各自對應的再生系統,在空氣作用下溶液得到再生,循環使用;硫泡沫自流入泡沫槽,經攪拌澄清分層,進一步熔融生成硫磺產品。
2 HPF脫硫的工藝特點
(1) 脫硫裝置在整個煤氣凈化工藝上放在吸氨,粗苯工段前,流程合理簡單,煤氣中HCN脫除率達到75 %,可取消黃血鹽工藝,對改善終冷水排污對環境的污染、減輕管道設備的腐蝕有一定益處。
(2) 該脫硫工藝脫硫脫氰效果好,脫硫效率在滿足生產條件下可大於99 %,,脫硫後煤氣H2S含量在50 mg/m3以下
(3) HPF具有極高的活性,對脫硫和再生過程均有催化作用。 同時還發現HPF具有消除脫硫塔內掛壁硫的作用,使用HPF後,填料塔阻力逐漸降低,由原來的2 500 Pa降至1 200 Pa。
(4) 由於此脫硫工藝是利用煤氣中的氨作鹼源,無須另外加鹼,煤氣中氨含量越高,氨硫比越大,則脫硫效率也越高,詳見圖2。
(5)運行成本低,動力消耗少,經濟效益好。詳見表4。
(6) 該工藝操作方便穩定,催化劑投加方式簡單易行,而且在脫硫過程中,鹽類等副產物增長速度緩慢。
3 HPF催化劑由 對苯二酚 PDS 硫酸亞鐵 組成
4 HPF法脫硫液的控制指標是
對苯二酚 0.15-0.2g/L
PDS 8-10 mg/L
硫酸亞鐵 0.1-0.2g/L
游離氨 大於5g/L
硫代硫酸氨 小於 250g/L
懸浮流 1-1.2g/L
PH 8-9
㈡ 煤氣發生爐中有脫硫,脫硝和除塵設施嗎
煤氣發生爐一般都要有除塵、脫硫裝置,這是和發生爐配套的。但是沒有脫硝裝置,脫硝裝置一般在鍋爐裝置上使用,因為鍋爐的煙氣是向大氣排放的,而煤氣發生爐生產的煤氣是用於工業生產或民用燃氣等方面的,不涉及外排的問題。
㈢ 請問用純鹼脫硫的方法
煙氣脫硫 指從煙道氣或其他工業廢氣中除去硫氧化物(SO2和SO3).
目錄
1工藝簡介
2基本原理
3工藝方法
▪ 方法簡介
▪ 乾式脫硫
▪ 噴霧脫硫
▪ 煤灰脫硫
▪ 濕法脫硫
4工藝歷史
5脫硫的防腐保護
1工藝簡介編輯
煙氣脫硫(Flue gas desulfurization,簡稱FGD),[1]在FGD技術中,按脫硫劑的種類劃分,可分為以下五種方法:以CaCO3(石灰石)為基礎的鈣法,以MgO為基礎的鎂法,以Na2SO3為基礎的鈉法,以NH3為基礎的氨法,以有機鹼為基礎的有機鹼法.[1]
2基本原理編輯
化學原理:煙氣中的SO2 實質上是酸性的,[2]可以通過與適當的鹼性物質反應從煙氣中脫除SO2.煙道氣脫最常用的鹼性物質是石灰石(碳酸鈣)、生石灰(氧化鈣,Cao)和熟石灰(氫氧化鈣).石灰石產量豐富,因而相對便宜,生石灰和熟石灰都是由石灰石通過加熱來製取.有時也用碳酸納(純鹼)、碳酸鎂和氨等其它鹼性物質.所用的鹼性物質與煙道氣中的SO2發生反應,產生了一種亞硫酸鹽和硫酸鹽的混合物(根據所用的鹼性物質不同,這些鹽可能是鈣鹽、鈉鹽、鎂鹽或銨鹽).亞硫酸鹽和硫酸鹽間的比率取決於工藝條件,在某些工藝中,所有亞硫酸鹽都轉化成了硫酸鹽.SO2與鹼性物質間的反應或在鹼溶液中發生(濕法煙道氣脫硫技術),或在固體鹼性物質的濕潤表面發生(干法或半干法煙道氣脫硫技術).
在濕法煙氣脫硫系統中,鹼性物質(通常是鹼溶液,更多情況是鹼的漿液)與煙道氣在噴霧塔中相遇.煙道氣中SO2溶解在水中,形成一種稀酸溶液,然後與溶解在水中的鹼性物質發生中和反應.反應生成的亞硫酸鹽和硫酸鹽從水溶液中析出,析出情況取決於溶液中存在的不同鹽的相對溶解性.例如,硫酸鈣的溶解性相對較差,因而易於析出.硫酸納和硫酸銨的溶解性則好得多.SO2在干法和半干法煙道氣脫硫系統中,固體鹼性吸收劑或使煙氣穿過鹼性吸收劑床噴入煙道氣流中,使其與煙道氣相接觸.無論哪種情況,SO2都是與固體鹼性物質直接反應,生成相應的亞硫酸鹽和硫酸鹽.為了使這種反應能夠進行,固體鹼性物質必須是十分疏鬆或相當細碎.在半干法煙道氣脫硫系統中,水被加入到煙道氣中,以在鹼性物質顆粒物表面形成一層液膜,SO2溶入液膜,加速了與固體鹼性物質的反應.
3工藝方法編輯
方法簡介
世界上普遍使用的商業化技術是鈣法,所佔比例在90%以上.按吸收劑及脫硫產物在脫硫過程中的干濕狀態又可將脫硫技術分為濕法、干法和半干(半濕)法.濕法FGD技術是用含有吸收劑的溶液或漿液在濕狀態下脫硫和處理脫硫產物,該法具有脫硫反應速度快、設備簡單、脫硫效率高等優點,但普遍存在腐蝕嚴重、運行維護費用高及易造成二次污染等問題.干法FGD技術的脫硫吸收和產物處理均在干狀態下進行,該法具有無污水廢酸排出、設備腐蝕程度較輕,煙氣在凈化過程中無明顯降溫、凈化後煙溫高、利於煙囪排氣擴散、二次污染少等優點,但存在脫硫效率低,反應速度較慢、設備龐大等問題.半干法FGD技術是指脫硫劑在乾燥狀態下脫硫、在濕狀態下再生(如水洗活性炭再生流程),或者在濕狀態下脫硫、在干狀態下處理脫硫產物(如噴霧乾燥法)的煙氣脫硫技術.特別是在濕狀態下脫硫、在干狀態下處理脫硫產物的半干法,以其既有濕法脫硫反應速度快、脫硫效率高的優點,又有干法無污水廢酸排出、脫硫後產物易於處理的優勢而受到人們廣泛的關注.按脫硫產物的用途,可分為拋棄法和回收法兩種.
目前,國內外常用的煙氣脫硫方法按其工藝大致可分為三類:濕式拋棄工藝、濕式回收工藝和干法工藝.其中變頻器在設備中的應用為節約能源做出了巨大貢獻.[3]
乾式脫硫
乾式煙氣脫硫工藝
該工藝用於電廠煙氣脫硫始於80年代初,與常規的濕式洗滌工藝相比有以下優點:投資費用較低;脫硫產物呈干態,並和飛灰相混;無需裝設除霧器及再熱器;設備不易腐蝕,不易發生結垢及堵塞.其缺點是:吸收劑的利用率低於濕式煙氣脫硫工藝;用於高硫煤時經濟性差;飛灰與脫硫產物相混可能影響綜合利用;對乾燥過程式控制制要求很高.
噴霧脫硫
噴霧乾式煙氣脫硫工藝
噴霧乾式煙氣脫硫(簡稱干法FGD),最先由美國JOY公司和丹麥NiroAtomier公司共同開發的脫硫工藝,70年代中期得到發展,並在電力工業迅速推廣應用.該工藝用霧化的石灰漿液在噴霧乾燥塔中與煙氣接觸,石灰漿液與SO2反應後生成一種乾燥的固體反應物,最後連同飛灰一起被除塵器收集.我國曾在四川省白馬電廠進行了旋轉噴霧干法煙氣脫硫的中間試驗,取得了一些經驗,為在200~300MW機組上採用旋轉噴霧干法煙氣脫硫優化參數的設計提供了依據.
煤灰脫硫
粉煤灰乾式煙氣脫硫技術
日本從1985年起,研究利用粉煤灰作為脫硫劑的乾式煙氣脫硫技術,到1988年底完成工業實用化試驗,1991年初投運了首台粉煤灰乾式脫硫設備,處理煙氣量644000Nm3/h.其特點:脫硫率高達60%以上,性能穩定,達到了一般濕式法脫硫性能水平;脫硫劑成本低;用水量少,無需排水處理和排煙再加熱,設備總費用比濕式法脫硫低1/4;煤灰脫硫劑可以復用;沒有漿料,維護容易,設備系統簡單可靠.
濕法脫硫
FGD工藝
世界各國的濕法煙氣脫硫工藝流程、形式和機理大同小異,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸鈉(Na2CO3)等漿液作洗滌劑,在反應塔中對煙氣進行洗滌,從而除去煙氣中的SO2.這種工藝已有50年的歷史,經過不斷地改進和完善後,技術比較成熟,而且具有脫硫效率高(90%~98%),機組容量大,煤種適應性強,運行費用較低和副產品易回收等優點.據美國環保局(EPA)的統計資料,全美火電廠採用濕式脫硫裝置中,濕式石灰法佔39.6%,石灰石法佔47.4%,兩法共佔87%;雙鹼法佔4.1%,碳酸鈉法佔3.1%.在中國的火電廠鋼廠,90%以上採用濕式石灰/石灰石-石膏法煙氣脫硫工藝流程.但是在中國台灣,日本等脫硫處理較早的國家和地區基本採用鎂法脫硫,佔到95%以上.
濕式鎂法主要的化學反應機理為:
其主要優點是脫硫效率高,同步運行率高,且其吸收劑的資源豐富,副產品可吸收,商業價值高.目前,鎂法脫硫在日本等煙氣控制嚴格的地區引用較多,尤其最早進行脫硫開發的日本地區有100多例應用,台灣電站有95%以上是用的鎂法.對硫煤要求不高,適應性好.無論是高硫煤還是低硫煤都有很好的脫出率,可達到98%以上.
鎂法脫硫主要的問題是吸收劑單價較高,副產品設備復雜.但是優點是高脫除率,高運行率,副產品經濟效益好等.
濕法FGD工藝較為成熟的還有:海水法;氫氧化鈉法;美國DavyMckee公司Wellman-LordFGD工藝;氨法等.
在濕法工藝中,煙氣的再熱問題直接影響整個FGD工藝的投資.因為經過濕法工藝脫硫後的煙氣一般溫度較低(45℃),大都在露點以下,若不經過再加熱而直接排入煙囪,則容易形成酸霧,腐蝕煙囪,也不利於煙氣的擴散.所以濕法FGD裝置一般都配有煙氣再熱系統.目前,應用較多的是技術上成熟的再生(回轉)式煙氣熱交換器(GGH).GGH價格較貴,占整個FGD工藝投資的比例較高.近年來,日本三菱公司開發出一種可省去無泄漏型的GGH,較好地解決了煙氣泄漏問題,但價格仍然較高.前德國SHU公司開發出一種可省去GGH和煙囪的新工藝,它將整個FGD裝置安裝在電廠的冷卻塔內,利用電廠循環水余熱來加熱煙氣,運行情況良好,是一種十分有前途的方法.
4工藝歷史編輯
1927年英國為了保護倫敦高層建築的需要,在泰吾士河岸的巴特富安和班支賽德兩電廠(共120MW),首先採用石灰石脫硫工藝.
據統計,1984年有SO2控制工藝189種,目前已超過200種.主要可分為四類:(1)燃燒前控制-原煤凈化(2)燃燒中控制-硫化床燃燒(CFB)和爐內噴吸收劑(3)燃燒後控制-煙氣脫硫(4)新工藝(如煤氣化/聯合循環系統、液態排渣燃燒器)其中大多數國家採用燃燒後煙氣脫硫工藝.煙氣脫硫則以濕式石灰石/石膏法脫硫工藝作為主流.
自本世紀30年代起已經進行過大量的濕式石灰石/石膏法研究開發,60年代末已有裝置投入商業運行.ABB公司的第一套實用規模的濕法煙氣脫硫系統於1968年在美國投入使用.1977年比曉夫公司製造了歐洲第一台石灰/石灰石石膏法示範裝置.IHI(石川島播磨)的首台大型脫硫裝置1976年在磯子火電廠1、2號機組應用,採用文丘里管2塔的石灰石石膏法混合脫硫法.三菱重工於1964年完成第一套設備,根據其運轉實績,進行煙氣脫硫裝置的開發.
第一代FGD系統:在美國和日本從70年代開始安裝.早期的FGD系統包括以下一些流程:石灰基流質;鈉基溶液;石灰石基流質;鹼性飛灰基流質;雙鹼(石灰和鈉);鎂基流質;Wellman-Lord流程.採用了廣泛的吸收類型,包括通風型、垂直逆流噴射塔、水平噴射塔,並採用了一些內部結構如托盤、填料、玻璃球等來增進反應.
第一代FGD的效率一般為70%~85%
除少數外,副產品無任何商用價值只能作為廢料排放,只有鎂基法和Wellman-Lord法產出有商用價值的硫和硫酸.特徵是初投資不高,但運行維護費高而系統可靠性低.結垢和材料失效是最大的問題.隨著經驗的增長,對流程做了改進,降低了運行維護費提高可靠性.
第二代FGD系統
在80年代早期開始安裝.為了克服第一代系統中的結垢和材料問題,出現了干噴射吸收器,爐膛和煙道噴射石灰和石灰石也接近了商業運行.然而佔主流的FGD技術還是石灰基、石灰石基的濕清洗法,利用填料和玻璃球等的通風清洗法消失了.改進的噴射塔和淋盤塔是最常見的.流程不同其效率也不同.最初的干噴射FGD可達到70%~80%,在某些改進情形下可達到90%,爐膛和煙道噴射法可達到30%~50%,但反應劑消耗量大.隨著對流程的改進和運行經驗的提高,可達到90%的效率.美國所有第二代FGD系統的副產物都作為廢物排走了.然而在日本和德國,在石灰石基濕清洗法中把固態副產品強制氧化,得到在某些工農業領域中有商業價值的石膏.第二代FGD系統在運行維護費用和系統可靠性方面都有所進步.
第三代FGD系統
爐膛和煙道噴射流程得到了改進,而LIFAC和流化床技術也發展起來了.通過廣泛採用強制氧化和鈍化技術,影響石灰、石灰石基系統可靠性的結垢問題基本解決了.隨著對化學過程的進一步了解和使用二基酸(DBA)這樣的添加劑,這些系統的可靠性可以達到95%以上.鈍化技術和DBA都應用於第二代FGD系統以解決存在的問題.許多這些系統的脫硫效率達到了95%或更高.有些系統的固態副產品可以應用於農業和工業.在德國和日本,生產石膏已是電廠的一個常規項目.隨著設備可靠性的提高,設置冗餘設備的必要性減小了,單台反應器的煙氣處理量越來越大.在70年代因投資大、運行費用高和存在腐蝕、結垢、堵塞等問題,在火電廠中聲譽不佳.經過15年實踐和改進,工作性能與可靠性有很大提高,投資和運行費用大幅度降低,使它的下列優點較為突出:(1)有在火電廠長期應用的經驗;(2)脫硫效率和吸收利用率高(有的機組在Ca/S接近於1時,脫硫率超過90%);(3)可用性好(最近安裝的機組,可用性已超過90%).人們對濕法的觀念,從而發生轉變.
5脫硫的防腐保護編輯
脫硫系統中常見的主要設備為吸收塔、煙道、煙囪、脫硫泵、增壓風機等主要設備,濕法脫硫等工藝具有介質腐蝕性強、處理煙氣溫度高、SO2吸收液固體含量大、磨損性強、設備防腐蝕區域大、施工技術質量要求高、防腐蝕失效維修難等特點.因此,該裝置的腐蝕控制一直是影響裝置長周期安全運行的重點問題之一.脫硫的防腐主要有以下幾個方面:
1、吸收塔、煙囪中的應用
2、雙流式塔盤防腐保護
某電廠在2010年對洗滌器升級時安裝了新型雙流式塔盤.在2011年的檢驗中表明,在塔盤較低表面上形成的沉積物區域下面,基底金屬產生了較深的點蝕.用高壓水將沉積物清洗干凈,改變流量噴嘴試著控制結垢.被腐蝕的區域現在需要進行塗層保護,以防止進一步的破壞.採用阿克-20防腐塗層為塔盤替換下來的陳舊的「碗狀物」進行塗層,效果非常好.
3、煙道脫硫防腐保護
研發新陰極防腐系統,可用於燃燒系統的廢氣處理或者空氣污染控制設施的保護–有效控制(電流控制)高溫/極酸腐蝕環境(150ºC,pH-2)薄塗層解決方案.
㈣ 煤氣爐脫硫塔安裝製作價格
煤氣爐的脫硫塔應該不大。具體價格要看塔的高度、直徑、具體的施工條件等,一般的製作安裝費在2500-3000之間,不含50噸以上汽車吊。
㈤ 煤氣脫硫塔如何設計及其設計參數
簡單說兩句:
首先確定設計所必須的條件:
1,煤氣處理量xxxxxNM3/H 2,初始H2S含量g/Nm3 3,最終H2S含量g/Nm3 4,當地海拔Km
5,煤氣入口溫度℃ 6,煤氣入口壓力Pa 7,煤氣入口壓力Pa
設計脫硫塔時應考慮的數據:
1,空塔速度 0.4~0.75m/s
2,填料比表面積95~120m-1
3,溶液入口流速2~3.5m/s
4,溶液出口流速0.2~1.2m/s
以上是設計的前題然後根據以上數據計算出脫硫塔的塔徑及高度。不知道這些東西能不能幫助你.
㈥ 鍋爐煙氣脫硫設計(浮閥塔)
硫技術
通過對國內外脫硫技術以及國內電力行業引進脫硫工藝試點廠情況的分析研究,目前脫硫方法一般可劃分為燃燒前脫硫、燃燒中脫硫和燃燒後脫硫等3類。
其中燃燒後脫硫,又稱煙氣脫硫(Flue gas desulfurization,簡稱FGD),在FGD技術中,按脫硫劑的種類劃分,可分為以下五種方法:以CaCO3(石灰石)為基礎的鈣法,以MgO為基礎的鎂法,以Na2SO3為基礎的鈉法,以NH3為基礎的氨法,以有機鹼為基礎的有機鹼法。世界上普遍使用的商業化技術是鈣法,所佔比例在90%以上。按吸收劑及脫硫產物在脫硫過程中的干濕狀態又可將脫硫技術分為濕法、干法和半干(半濕)法。濕法FGD技術是用含有吸收劑的溶液或漿液在濕狀態下脫硫和處理脫硫產物,該法具有脫硫反應速度快、設備簡單、脫硫效率高等優點,但普遍存在腐蝕嚴重、運行維護費用高及易造成二次污染等問題。干法FGD技術的脫硫吸收和產物處理均在干狀態下進行,該法具有無污水廢酸排出、設備腐蝕程度較輕,煙氣在凈化過程中無明顯降溫、凈化後煙溫高、利於煙囪排氣擴散、二次污染少等優點,但存在脫硫效率低,反應速度較慢、設備龐大等問題。半干法FGD技術是指脫硫劑在乾燥狀態下脫硫、在濕狀態下再生(如水洗活性炭再生流程),或者在濕狀態下脫硫、在干狀態下處理脫硫產物(如噴霧乾燥法)的煙氣脫硫技術。特別是在濕狀態下脫硫、在干狀態下處理脫硫產物的半干法,以其既有濕法脫硫反應速度快、脫硫效率高的優點,又有干法無污水廢酸排出、脫硫後產物易於處理的優勢而受到人們廣泛的關注。按脫硫產物的用途,可分為拋棄法和回收法兩種。
1.1脫硫的幾種工藝
(1)石灰石——石膏法煙氣脫硫工藝
石灰石——石膏法脫硫工藝是世界上應用最廣泛的一種脫硫技術,日本、德國、美國的火力發電廠採用的煙氣脫硫裝置約90%採用此工藝。
它的工作原理是:將石灰石粉加水製成漿液作為吸收劑泵入吸收塔與煙氣充分接觸混合,煙氣中的二氧化硫與漿液中的碳酸鈣以及從塔下部鼓入的空氣進行氧化反應生成硫酸鈣,硫酸鈣達到一定飽和度後,結晶形成二水石膏。經吸收塔排出的石膏漿液經濃縮、脫水,使其含水量小於10%,然後用輸送機送至石膏貯倉堆放,脫硫後的煙氣經過除霧器除去霧滴,再經過換熱器加熱升溫後,由煙囪排入大氣。由於吸收塔內吸收劑漿液通過循環泵反復循環與煙氣接觸,吸收劑利用率很高,鈣硫比較低,脫硫效率可大於95% 。
(2)旋轉噴霧乾燥煙氣脫硫工藝
噴霧乾燥法脫硫工藝以石灰為脫硫吸收劑,石灰經消化並加水製成消石灰乳,消石灰乳由泵打入位於吸收塔內的霧化裝置,在吸收塔內,被霧化成細小液滴的吸收劑與煙氣混合接觸,與煙氣中的SO2發生化學反應生成CaSO3,煙氣中的SO2被脫除。與此同時,吸收劑帶入的水分迅速被蒸發而乾燥,煙氣溫度隨之降低。脫硫反應產物及未被利用的吸收劑以乾燥的顆粒物形式隨煙氣帶出吸收塔,進入除塵器被收集下來。脫硫後的煙氣經除塵器除塵後排放。為了提高脫硫吸收劑的利用率,一般將部分除塵器收集物加入制漿系統進行循環利用。該工藝有兩種不同的霧化形式可供選擇,一種為旋轉噴霧輪霧化,另一種為氣液兩相流。
噴霧乾燥法脫硫工藝具有技術成熟、工藝流程較為簡單、系統可靠性高等特點,脫硫率可達到85%以上。該工藝在美國及西歐一些國家有一定應用范圍(8%)。脫硫灰渣可用作制磚、築路,但多為拋棄至灰場或回填廢舊礦坑。
(3) 磷銨肥法煙氣脫硫工藝
磷銨肥法煙氣脫硫技術屬於回收法,以其副產品為磷銨而命名。該工藝過程主要由吸附(活性炭脫硫制酸)、萃取(稀硫酸分解磷礦萃取磷酸)、中和(磷銨中和液制備)、吸收( 磷銨液脫硫制肥)、氧化(亞硫酸銨氧化)、濃縮乾燥(固體肥料制備)等單元組成。它分為兩個系統:
煙氣脫硫系統——煙氣經高效除塵器後使含塵量小於200mg/Nm3,用風機將煙壓升高到7000Pa,先經文氏管噴水降溫調濕,然後進入四塔並列的活性炭脫硫塔組(其中一隻塔周期性切換再生),控制一級脫硫率大於或等於70%,並製得30%左右濃度的硫酸,一級脫硫後的煙氣進入二級脫硫塔用磷銨漿液洗滌脫硫,凈化後的煙氣經分離霧沫後排放。
肥料制備系統——在常規單槽多漿萃取槽中,同一級脫硫製得的稀硫酸分解磷礦粉(P2O5 含量大於26%),過濾後獲得稀磷酸(其濃度大於10%),加氨中和後製得磷氨,作為二級脫硫劑,二級脫硫後的料漿經濃縮乾燥製成磷銨復合肥料。
(4)爐內噴鈣尾部增濕煙氣脫硫工藝
爐內噴鈣加尾部煙氣增濕活化脫硫工藝是在爐內噴鈣脫硫工藝的基礎上在鍋爐尾部增設了增濕段,以提高脫硫效率。該工藝多以石灰石粉為吸收劑,石灰石粉由氣力噴入爐膛850~1150℃溫度區,石灰石受熱分解為氧化鈣和二氧化碳,氧化鈣與煙氣中的二氧化硫反應生成亞硫酸鈣。由於反應在氣固兩相之間進行,受到傳質過程的影響,反應速度較慢,吸收劑利用率較低。在尾部增濕活化反應器內,增濕水以霧狀噴入,與未反應的氧化鈣接觸生成氫氧化鈣進而與煙氣中的二氧化硫反應。當鈣硫比控制在2.0~2.5時,系統脫硫率可達到65~80%。由於增濕水的加入使煙氣溫度下降,一般控制出口煙氣溫度高於露點溫度10~15℃,增濕水由於煙溫加熱被迅速蒸發,未反應的吸收劑、反應產物呈乾燥態隨煙氣排出,被除塵器收集下來。
該脫硫工藝在芬蘭、美國、加拿大、法國等國家得到應用,採用這一脫硫技術的最大單機容量已達30萬千瓦。
(5)煙氣循環流化床脫硫工藝
煙氣循環流化床脫硫工藝由吸收劑制備、吸收塔、脫硫灰再循環、除塵器及控制系統等部分組成。該工藝一般採用干態的消石灰粉作為吸收劑,也可採用其它對二氧化硫有吸收反應能力的乾粉或漿液作為吸收劑。
由鍋爐排出的未經處理的煙氣從吸收塔(即流化床)底部進入。吸收塔底部為一個文丘里裝置,煙氣流經文丘里管後速度加快,並在此與很細的吸收劑粉末互相混合,顆粒之間、氣體與顆粒之間劇烈摩擦,形成流化床,在噴入均勻水霧降低煙溫的條件下,吸收劑與煙氣中的二氧化硫反應生成CaSO3 和CaSO4。脫硫後攜帶大量固體顆粒的煙氣從吸收塔頂部排出,進入再循環除塵器,被分離出來的顆粒經中間灰倉返回吸收塔,由於固體顆粒反復循環達百次之多,故吸收劑利用率較高。
此工藝所產生的副產物呈乾粉狀,其化學成分與噴霧乾燥法脫硫工藝類似,主要由飛灰、CaSO3、CaSO4和未反應完的吸收劑Ca(OH)2等組成,適合作廢礦井回填、道路基礎等。
典型的煙氣循環流化床脫硫工藝,當燃煤含硫量為2%左右,鈣硫比不大於1.3時,脫硫率可達90%以上,排煙溫度約70℃。此工藝在國外目前應用在10~20萬千瓦等級機組。由於其佔地面積少,投資較省,尤其適合於老機組煙氣脫硫。
(6)海水脫硫工藝
海水脫硫工藝是利用海水的鹼度達到脫除煙氣中二氧化硫的一種脫硫方法。在脫硫吸收塔內,大量海水噴淋洗滌進入吸收塔內的燃煤煙氣,煙氣中的二氧化硫被海水吸收而除去,凈化後的煙氣經除霧器除霧、經煙氣換熱器加熱後排放。吸收二氧化硫後的海水與大量未脫硫的海水混合後,經曝氣池曝氣處理,使其中的SO32-被氧化成為穩定的SO42-,並使海水的PH值與COD調整達到排放標准後排放大海。海水脫硫工藝一般適用於靠海邊、擴散條件較好、用海水作為冷卻水、燃用低硫煤的電廠。海水脫硫工藝在挪威比較廣泛用於煉鋁廠、煉油廠等工業爐窯的煙氣脫硫,先後有20多套脫硫裝置投入運行。近幾年,海水脫硫工藝在電廠的應用取得了較快的進展。此種工藝最大問題是煙氣脫硫後可能產生的重金屬沉積和對海洋環境的影響需要長時間的觀察才能得出結論,因此在環境質量比較敏感和環保要求較高的區域需慎重考慮。
(7) 電子束法脫硫工藝
該工藝流程有排煙預除塵、煙氣冷卻、氨的充入、電子束照射和副產品捕集等工序所組成。鍋爐所排出的煙氣,經過除塵器的粗濾處理之後進入冷卻塔,在冷卻塔內噴射冷卻水,將煙氣冷卻到適合於脫硫、脫硝處理的溫度(約70℃)。煙氣的露點通常約為50℃,被噴射呈霧狀的冷卻水在冷卻塔內完全得到蒸發,因此,不產生廢水。通過冷卻塔後的煙氣流進反應器,在反應器進口處將一定的氨水、壓縮空氣和軟水混合噴入,加入氨的量取決於SOx濃度和NOx濃度,經過電子束照射後,SOx和NOx在自由基作用下生成中間生成物硫酸(H2SO4)和硝酸(HNO3)。然後硫酸和硝酸與共存的氨進行中和反應,生成粉狀微粒(硫酸氨(NH4)2SO4與硝酸氨NH4NO3的混合粉體)。這些粉狀微粒一部分沉澱到反應器底部,通過輸送機排出,其餘被副產品除塵器所分離和捕集,經過造粒處理後被送到副產品倉庫儲藏。凈化後的煙氣經脫硫風機由煙囪向大氣排放。
(8)氨水洗滌法脫硫工藝
該脫硫工藝以氨水為吸收劑,副產硫酸銨化肥。鍋爐排出的煙氣經煙氣換熱器冷卻至90~100℃,進入預洗滌器經洗滌後除去HCI和HF,洗滌後的煙氣經過液滴分離器除去水滴進入前置洗滌器中。在前置洗滌器中,氨水自塔頂噴淋洗滌煙氣,煙氣中的SO2被洗滌吸收除去,經洗滌的煙氣排出後經液滴分離器除去攜帶的水滴,進入脫硫洗滌器。在該洗滌器中煙氣進一步被洗滌,經洗滌塔頂的除霧器除去霧滴,進入脫硫洗滌器。再經煙氣換熱器加熱後經煙囪排放。洗滌工藝中產生的濃度約30%的硫酸銨溶液排出洗滌塔,可以送到化肥廠進一步處理或直接作為液體氮肥出售,也可以把這種溶液進一步濃縮蒸發乾燥加工成顆粒、晶體或塊狀化肥出售。
1。2燃燒前脫硫
燃燒前脫硫就是在煤燃燒前把煤中的硫分脫除掉,燃燒前脫硫技術主要有物理洗選煤法、化學洗選煤法、煤的氣化和液化、水煤漿技術等。洗選煤是採用物理、化學或生物方式對鍋爐使用的原煤進行清洗,將煤中的硫部分除掉,使煤得以凈化並生產出不同質量、規格的產品。微生物脫硫技術從本質上講也是一種化學法,它是把煤粉懸浮在含細菌的氣泡液中,細菌產生的酶能促進硫氧化成硫酸鹽,從而達到脫硫的目的;微生物脫硫技術目前常用的脫硫細菌有:屬硫桿菌的氧化亞鐵硫桿菌、氧化硫桿菌、古細菌、熱硫化葉菌等。煤的氣化,是指用水蒸汽、氧氣或空氣作氧化劑,在高溫下與煤發生化學反應,生成H2、CO、CH4等可燃混合氣體(稱作煤氣)的過程。煤炭液化是將煤轉化為清潔的液體燃料(汽油、柴油、航空煤油等)或化工原料的一種先進的潔凈煤技術。水煤漿(Coal Water Mixture,簡稱CWM)是將灰份小於10%,硫份小於0.5%、揮發份高的原料煤,研磨成250~300μm的細煤粉,按65%~70%的煤、30%~35%的水和約1%的添加劑的比例配製而成,水煤漿可以像燃料油一樣運輸、儲存和燃燒,燃燒時水煤漿從噴嘴高速噴出,霧化成50~70μm的霧滴,在預熱到600~700℃的爐膛內迅速蒸發,並拌有微爆,煤中揮發分析出而著火,其著火溫度比干煤粉還低。
燃燒前脫硫技術中物理洗選煤技術已成熟,應用最廣泛、最經濟,但只能脫無機硫;生物、化學法脫硫不僅能脫無機硫,也能脫除有機硫,但生產成本昂貴,距工業應用尚有較大距離;煤的氣化和液化還有待於進一步研究完善;微生物脫硫技術正在開發;水煤漿是一種新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一樣的流動性和穩定性,被稱為液態煤炭產品,市場潛力巨大,目前已具備商業化條件。
煤的燃燒前的脫硫技術盡管還存在著種種問題,但其優點是能同時除去灰分,減輕運輸量,減輕鍋爐的沾污和磨損,減少電廠灰渣處理量,還可回收部分硫資源。
1.3 燃燒中脫硫,又稱爐內脫硫
爐內脫硫是在燃燒過程中,向爐內加入固硫劑如CaCO3等,使煤中硫分轉化成硫酸鹽,隨爐渣排除。其基本原理是:
CaCO3→CaO+CO2↑
CaO+SO2→CaSO3
CaSO3+1/2×O2→CaSO4
(1) LIMB爐內噴鈣技術
早在本世紀60年代末70年代初,爐內噴固硫劑脫硫技術的研究工作已開展,但由於脫硫效率低於10%~30%,既不能與濕法FGD相比,也難以滿足高達90%的脫除率要求。一度被冷落。但在1981年美國國家環保局EPA研究了爐內噴鈣多段燃燒降低氮氧化物的脫硫技術,簡稱LIMB,並取得了一些經驗。Ca/S在2以上時,用石灰石或消石灰作吸收劑,脫硫率分別可達40%和60%。對燃用中、低含硫量的煤的脫硫來說,只要能滿足環保要求,不一定非要求用投資費用很高的煙氣脫硫技術。爐內噴鈣脫硫工藝簡單,投資費用低,特別適用於老廠的改造。
(2) LIFAC煙氣脫硫工藝
LIFAC工藝即在燃煤鍋爐內適當溫度區噴射石灰石粉,並在鍋爐空氣預熱器後增設活化反應器,用以脫除煙氣中的SO2。芬蘭Tampella和IVO公司開發的這種脫硫工藝,於1986年首先投入商業運行。LIFAC工藝的脫硫效率一般為60%~85%。
加拿大最先進的燃煤電廠Shand電站採用LIFAC煙氣脫硫工藝,8個月的運行結果表明,其脫硫工藝性能良好,脫硫率和設備可用率都達到了一些成熟的SO2控制技術相當的水平。我國下關電廠引進LIFAC脫硫工藝,其工藝投資少、佔地面積小、沒有廢水排放,有利於老電廠改造。
1.4 燃燒後脫硫,又稱煙氣脫硫(Flue gas desulfurization,簡稱FGD)
燃煤的煙氣脫硫技術是當前應用最廣、效率最高的脫硫技術。對燃煤電廠而言,在今後一個相當長的時期內,FGD將是控制SO2排放的主要方法。目前國內外火電廠煙氣脫硫技術的主要發展趨勢為:脫硫效率高、裝機容量大、技術水平先進、投資省、佔地少、運行費用低、自動化程度高、可靠性好等。
1.3.1乾式煙氣脫硫工藝
該工藝用於電廠煙氣脫硫始於80年代初,與常規的濕式洗滌工藝相比有以下優點:投資費用較低;脫硫產物呈干態,並和飛灰相混;無需裝設除霧器及再熱器;設備不易腐蝕,不易發生結垢及堵塞。其缺點是:吸收劑的利用率低於濕式煙氣脫硫工藝;用於高硫煤時經濟性差;飛灰與脫硫產物相混可能影響綜合利用;對乾燥過程式控制制要求很高。
(1) 噴霧乾式煙氣脫硫工藝:噴霧乾式煙氣脫硫(簡稱干法FGD),最先由美國JOY公司和丹麥Niro Atomier公司共同開發的脫硫工藝,70年代中期得到發展,並在電力工業迅速推廣應用。該工藝用霧化的石灰漿液在噴霧乾燥塔中與煙氣接觸,石灰漿液與SO2反應後生成一種乾燥的固體反應物,最後連同飛灰一起被除塵器收集。我國曾在四川省白馬電廠進行了旋轉噴霧干法煙氣脫硫的中間試驗,取得了一些經驗,為在200~300MW機組上採用旋轉噴霧干法煙氣脫硫優化參數的設計提供了依據。
(2) 粉煤灰乾式煙氣脫硫技術:日本從1985年起,研究利用粉煤灰作為脫硫劑的乾式煙氣脫硫技術,到1988年底完成工業實用化試驗,1991年初投運了首台粉煤灰乾式脫硫設備,處理煙氣量644000Nm3/h。其特點:脫硫率高達60%以上,性能穩定,達到了一般濕式法脫硫性能水平;脫硫劑成本低;用水量少,無需排水處理和排煙再加熱,設備總費用比濕式法脫硫低1/4;煤灰脫硫劑可以復用;沒有漿料,維護容易,設備系統簡單可靠。
1.3.2 濕法FGD工藝
世界各國的濕法煙氣脫硫工藝流程、形式和機理大同小異,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸鈉(Na2CO3)等漿液作洗滌劑,在反應塔中對煙氣進行洗滌,從而除去煙氣中的SO2。這種工藝已有50年的歷史,經過不斷地改進和完善後,技術比較成熟,而且具有脫硫效率高(90%~98%),機組容量大,煤種適應性強,運行費用較低和副產品易回收等優點。據美國環保局(EPA)的統計資料,全美火電廠採用濕式脫硫裝置中,濕式石灰法佔39.6%,石灰石法佔47.4%,兩法共佔87%;雙鹼法佔4.1%,碳酸鈉法佔3.1%。世界各國(如德國、日本等),在大型火電廠中,90%以上採用濕式石灰/石灰石-石膏法煙氣脫硫工藝流程。
石灰或石灰石法主要的化學反應機理為:
石灰法:SO2+CaO+1/2H2O→CaSO3•1/2H2O
石灰石法:SO2+CaCO3+1/2H2O→CaSO3•1/2H2O+CO2
其主要優點是能廣泛地進行商品化開發,且其吸收劑的資源豐富,成本低廉,廢渣既可拋棄,也可作為商品石膏回收。目前,石灰/石灰石法是世界上應用最多的一種FGD工藝,對高硫煤,脫硫率可在90%以上,對低硫煤,脫硫率可在95%以上。
傳統的石灰/石灰石工藝有其潛在的缺陷,主要表現為設備的積垢、堵塞、腐蝕與磨損。為了解決這些問題,各設備製造廠商採用了各種不同的方法,開發出第二代、第三代石灰/石灰石脫硫工藝系統。
濕法FGD工藝較為成熟的還有:氫氧化鎂法;氫氧化鈉法;美國Davy Mckee公司Wellman-Lord FGD工藝;氨法等。
在濕法工藝中,煙氣的再熱問題直接影響整個FGD工藝的投資。因為經過濕法工藝脫硫後的煙氣一般溫度較低(45℃),大都在露點以下,若不經過再加熱而直接排入煙囪,則容易形成酸霧,腐蝕煙囪,也不利於煙氣的擴散。所以濕法FGD裝置一般都配有煙氣再熱系統。目前,應用較多的是技術上成熟的再生(回轉)式煙氣熱交換器(GGH)。GGH價格較貴,占整個FGD工藝投資的比例較高。近年來,日本三菱公司開發出一種可省去無泄漏型的GGH,較好地解決了煙氣泄漏問題,但價格仍然較高。前德國SHU公司開發出一種可省去GGH和煙囪的新工藝,它將整個FGD裝置安裝在電廠的冷卻塔內,利用電廠循環水余熱來加熱煙氣,運行情況良好,是一種十分有前途的方法。
1.5等離子體煙氣脫硫技術
等離子體煙氣脫硫技術研究始於70年代,目前世界上已較大規模開展研究的方法有2類:
(1) 電子束輻照法(EB)
電子束輻照含有水蒸氣的煙氣時,會使煙氣中的分子如O2、H2O等處於激發態、離子或裂解,產生強氧化性的自由基O、OH、HO2和O3等。這些自由基對煙氣中的SO2和NO進行氧化,分別變成SO3和NO2或相應的酸。在有氨存在的情況下,生成較穩定的硫銨和硫硝銨固體,它們被除塵器捕集下來而達到脫硫脫硝的目的。
(2) 脈沖電暈法(PPCP)
脈沖電暈放電脫硫脫硝的基本原理和電子束輻照脫硫脫硝的基本原理基本一致,世界上許多國家進行了大量的實驗研究,並且進行了較大規模的中間試驗,但仍然有許多問題有待研究解決。
1.6 海水脫硫
海水通常呈鹼性,自然鹼度大約為1.2~2.5mmol/L,這使得海水具有天然的酸鹼緩沖能力及吸收SO2的能力。國外一些脫硫公司利用海水的這種特性,開發並成功地應用海水洗滌煙氣中的SO2,達到煙氣凈化的目的。
海水脫硫工藝主要由煙氣系統、供排海水系統、海水恢復系統等組成。
㈦ 燃氣電廠有沒有脫硫裝置,用的是什麼類型的閥門
根據抄環保部門規定,燃氣電廠必須有脫硫裝置,而且要達標。
所用閥門,煙道氣採用煙氣專用的閥門,液體可以用閘閥、截止閥或蝶閥,材料可以用不銹鋼或鋼(包括鑄鐵)襯塑料或襯膠,但是最好是襯PE或襯PO(塑料),因為光滑且成本低。
建議找國外的脫硫公司,技術比較過硬,脫硫效果好,價格相對比國內還要低一些。
㈧ HPF脫硫是什麼意思hpf化學式的全稱是怎麼寫的
HPF 法由中國自主開發, 是以氨為鹼源、HPF為復合催化劑的濕式液相催化氧化脫硫脫氰工藝,已成功應用於多家國內焦化企業, 是目前採用較多。
HPF 氨法脫硫工藝是根據煤氣中同時存在NH3、H2S和HCN 的情況下, 使3種組分在溶液中相互作用, 並在催化劑的作用下, 脫出H2 S的一種濕式氧化脫硫法。把H2S氧化成單質S。
脫硫工藝HPF氨法脫硫其實是酸鹼中和反應。
HPF脫硫的催化劑是由H(對苯二酚)、PDS(雙環酞氰酤六磺酸銨)、F(硫酸亞鐵)組成的水溶液。
㈨ 一塔式焦爐煤氣脫硫工藝具體流程
我只做脫硫填料.對其他不太了解.要找工藝還是只能找個設計院咨詢下
脫硫塔填料要根據你的進出口硫化氫來定,對規整填料來說,不易堵,但是氣液接觸面積小,脫硫效率要低,散裝填料進口硫化氫高的話,易堵,但是脫硫效率要比規整填料高。
㈩ 焦爐煤氣 脫苯 硫胺 脫硫 工藝流程
以焦爐煤氣為原料,壓縮至2.1 MPa後進入精脫硫裝置,將氣體中的總硫脫至0.1 ppm以下.焦爐氣中甲烷含量達22.4%,採用純氧催化部分氧化轉化工藝,將氣體中甲烷及少量多碳烴轉化為合成甲醇用的一氧化碳和氫;經壓縮進入甲醇合成裝置.甲醇合成採用5.3 MPa低壓合成技術,精餾採用3塔流程.