❶ 微子達到超光速會如何,真的能做到超越光速嗎
曾經義大利格蘭薩索國家實驗室下屬的一個名為「OPERA」的實驗裝置,接收到來自歐洲核子研究中心的中微子。經測算,中微子在跑過這段732公里距離所用的時間,比光還快了60納秒(1納秒等於十億分之一秒)。
這一結果給科學界帶來了巨大困惑,因為這與愛因斯坦狹義相對論中光速是宇宙速度的極限,沒有任何物質的速度可以超越光速的理論相悖。正在學術界將信將疑之際,歐洲核子研究中心優化了實驗方案並開始復核中微子超光速實驗,最終認為「新的測量方法沒有改變最初的結論」。
為此各國科學機構和專家都對此採取慎之又慎的態度,並認為:從概率上來說,最大的可能性是這個實驗本身有漏洞,只不過現在還沒有被發現。為此,歐洲核子研究中心特地舉辦了一場網路發布會,詳細說明實驗的方法以及各種誤差的估算,同時邀請其他的實驗機構重復相同的實驗,來作為此結果的驗證。
今年2月,歐洲核子研究中心發現是連接GPS和電腦光纖的接頭松動造成了中微子超光速的假象,但同時另一個與GPS信號同步的振盪器故障又可能導致實驗結果低估中微子的速度。為此他們將在今年5月重新做試驗進行檢測。
諾貝爾獎獲得者格拉肖發表論文說,如果中微子真的超了光速,那麼它的能量會在地下飛行過程中損失,實驗結果會自相矛盾。因此,當務之急是重復實驗結果。
當然還有另一種觀點,認為中微子可能具有特殊性質,這樣相對論也是對的,這個實驗結果也是對的。比如說,歐洲核子研究中心發出的中微子有可能振盪到一種惰性中微子,而惰性中微子可以在多維空間中「抄近路」,然後再振盪回普通中微子,這樣看起來中微子就跑得比光快了。
也有人認為中微子的質量不是固定的,與暗能量有關聯,會隨環境變化,這樣在飛行過程中看起來比光速快。諸如此類的理論很多,不過這些理論本身就需要大量實驗來證實。
正當筆者行文至此,准備等待新的實驗結果時,好消息傳來了:據國外媒體報道,愛因斯坦可以安心了,因為最新的實驗結果顯示,之前有關中微子超光速的消息並不成立,也就是說光速仍舊是不可超越的。這條結果也平息了之前對於這一消息的諸多爭論。
歐洲核子中心研究主管賽吉爾·波特魯西在一份聲明中表示:「現有證據開始表明OPERA的實驗結果是不正確的。然而不管結果如何,OPERA小組完成了一次完美的科學實驗,並將他們的實驗結果公之於眾,接受最嚴苛的審查,並歡迎其他科學家對此進行獨立測量。」
❷ 中微子如何探測
探測中微子子方法不少,但是由於中微子發生反應的幾率很小,因此需要較大的中微子通量和足夠的反應介質才能有效地探測到中微子。
人類第一次探測到中微子,是1956年美國物理學家萊尼斯和科恩小組,利用薩瓦納河工廠的反應堆,進行的一次實驗。實驗反應堆產生強大的中子流並伴有大量的β衰變,放射出電子和反中微子,反中微子轟擊水中的質子,產生中子和正電子,當中子和正電子進入到探測器中的靶液時,中子被吸收,正電子與負電子湮滅,產生高能γ射線,從而來判定反應的產生。雖然反中微子通量高達每秒每平方厘米5×10的13次方個,但當時的探測記數每小時還不到3個。
位於日本岐阜縣的超級神岡探測器是利用「切倫科夫輻射」來探測中微子的。超級神岡探測器的主體部分是一個建設在地下1000米深處的巨大水罐,盛有約5萬噸高純度水,罐的內壁則附著1.1萬個光電倍增管,用來探測中微子穿過水中時發射出的切倫科夫光,從而捕捉到中微子的蹤跡。
所謂切倫科夫輻射是指當帶電粒子在介質中穿行時,其速度超過光在介質中的速度υ時就會發生切倫科夫輻射,發出切倫科夫光。
具體來說,當中微子束穿過水中時,與水原子核發生核反應,生成高能量的負μ子。由於負μ子在水中以0.99倍光速前進,超過了水中的光速(0.75倍光速),所以它在水中穿越六七米長的路徑便會發生「切倫科夫效應」,輻射出所謂的「切倫科夫光」。這種光不但囊括了0.38-0.76微米范圍內的所有連續分布的可見光,而且具有確定的方向性。因此,只要用高靈敏度的光電倍增列陣將「切倫科夫光」全部收集起來,也就探測到了中微子束。
而加拿大的薩德伯里中微子觀測站位於地下2000米處,使用1000噸超純重水,通過觀察中微子與重水發生反應變成質子的過程,來探測抵達地球的太陽中微子數目。
❸ 誰偷走了核電站的中微子大亞灣新發現:也許算錯了核反應
責任編輯:韓聲江
在大亞灣核電站附近幾百米的深山裡,潛伏著世界上最好的中微子探測器。它本是用來確認中微子的第三種變身模式的,幾年前已經完成任務。如今順手取得另一項引人矚目的成果——解釋核反應堆為何產生那麼少的中微子。
近日,大亞灣反應堆中微子實驗的論文《大亞灣反應堆中微子流強和能譜的演化》在《物理評論快報》上發表,同時配發法國科學家法羅的文章《弄清反中微子反常》。最神秘的基本粒子中微子,又引起了人們的興趣。
反應堆產生的中微子為啥不夠多?
實驗探測到的反應堆中微子數目總比理論模型預期的少,這就是近幾年物理學家困惑的「反應堆中微子反常」現象。2011年發現,計算方法與實驗結果相差了6%。
中科院高能物理所的曹俊研究員在博客中介紹說:大部分核反應堆使用鈾235、鈾238、鈈239和鈈241,中微子來自它們裂變產物的後續衰變,大約帶走5%的能量。現在主要採用的模型,是20世紀80年代實驗測得幾種裂變材料釋放的電子能譜後推出的中微子能譜。這種模型不符合實驗結果。
之前物理學家傾向於所謂「惰性中微子」假說,即中微子變化成難以探查的形式。而大亞灣實驗的新論文則給出了更簡單的解釋:我們對核燃料產生多少中微子的計算錯了。
曹俊說:「反應堆一般以恆定的功率發電。每次裂變時,這4種同位素釋放的能量都差不多,但釋放的中微子數目和能量則不一樣。因此,隨著核燃料成分的演化,反應堆釋放的中微子數目和能量分布將會發生變化。」
科學家監測了長時間周期內,大亞灣反應堆中4種同位素對能量的貢獻比例。曹俊說:「大亞灣實驗4年的運行積累了超過200萬個中微子事例。利用這些數據,可以比較不同核燃料成分時的中微子數目,從而推算各個同位素的中微子產額。實驗發現,核燃料中最主要的成分鈾235產生的中微子數目與模型預期不一致,主流模型的預期比實際觀測高了8%。而第二重要的成分鈈239則與模型預期一致。」
曹俊說:「如果中微子反常是普通中微子振盪到惰性中微子所致,那麼不同燃料成分應該具有相同比例的中微子缺失,因為中微子振盪與產生它的是鈾還是鈈無關。實驗數據看上去不符合這項假設。」據此大亞灣實驗的新結果認為,反應堆中微子反常很可能是鈾235的中微子產額計算不正確,而不是有「惰性中微子」。
中微子的質量怎麼就測不出?
雖然「反應堆中微子反常」現象似乎被破解了,但關於中微子仍有很多未解之謎。中微子是隱士,它很少跟別的粒子反應。捕獲不易,所知甚少,就連它的質量至今都還沒搞清楚。
起初很長一段時間,大家公認的基本粒子標准模型里,中微子是沒有質量的。但戴維斯檢測到太陽中微子,小柴昌俊發現超新星中微子時,都證明了中微子有質量。標准模型綻開一道裂口。
既然有質量,那麼中微子的質量到底是多少?
中微子根據與外界作用方式不同,分3種味道——電子中微子、繆子中微子和陶子中微子。而中微子的質量和味道不能同時測准。
大亞灣實驗測出了中微子的第三種振盪。
振盪的意思是中微子在奔跑時從一種味道變另一種味道,賓士變寶馬,寶馬變奧迪,奧迪變賓士。這意味著如果測「賓士」中微子的質量,能得到3種不同結果,按照概率隨機出現。
曹俊介紹,之前的中微子振盪實驗研究只能測出中微子的質量平方差,不能給出絕對質量。現有的直接測量以及宇宙學測量只能說明中微子的質量不足電子質量的百萬分之一。這些研究結果還不足以求得中微子的質量。
中微子絕對質量的測量,要通過中微子非振盪物理研究來得出結論。曹俊介紹,這種研究可以通過精確測量衰變的電子能量端點,或者測量無中微子雙衰變(假如存在這類衰變的話),或者通過宇宙學測量。這樣可以得到中微子質量的另一個關系式,結合上述已知的條件,就能解出3種中微子的質量。不過,無論哪種情況,要算出中微子的質量,都必須先知道中微子的質量順序。
但目前中微子的質量順序也還是一個謎,科學家知道中微子的3種質量狀態不同,但是卻並不知道哪個最重,哪個最輕。而我國正在建設中的江門中微子實驗裝置(JUNO)的目標就是找到中微子質量順序的更多證據,希望未來它能幫我們解開中微子質量之謎。
中微子的反粒子就是它自己?
在科學家看來,中微子跟電子是近親,只是不帶電荷,這也讓它免受宇宙間各種電荷作用的羈絆。
已知物質與反物質的區別是電荷,比如電子帶一個負電荷,其反物質帶一個正電荷,兩者相撞會湮滅並放光。中微子不帶電荷,那麼中微子可能會是其自身的反粒子嗎?如果中微子並非自己的反粒子,那麼物質與反物質的區別就不止是電荷,也許是一種未知的對稱性。
「無中微子雙β衰變」實驗或許可以照亮迷霧。該實驗的理論基礎是:兩個中子同時衰變為質子,會產生兩個電子及兩個反中微子;如果中微子是其自身反粒子,產生的這兩個反中微子就可以發生湮滅,從而只有電子從衰變中產生出來。
一些建設中的實驗將搜尋「無中微子雙β衰變」,例如加拿大SNO+實驗、義大利的CUORE實驗、美國位於廢物隔離試驗廠的EXO-200實驗、美國礦井中的MAJORANA實驗等。
暗物質候選人「惰性中微子」真存在?
在解釋「反應堆中微子反常」現象時,科學家們猜想這種現象與「惰性中微子」有關。什麼是惰性中微子?惰性中微子是否存在?
惰性中微子性情孤僻,不參加除引力之外的任何相互作用。天文學家曾經認為,宇宙中有引力效應卻看不著的暗物質,或許就是中微子。但實驗顯示,中微子質量太微不足道了,不到電子質量的百萬分之一,怕是擔綱不起暗物質的量級。而假設中的惰性中微子足夠重,是暗物質的「理想人選」。
超新星爆炸會射出大量中微子,如果惰性中微子存在,它的反作用力能夠推動超新星殘骸,而天文學家的確觀察到了超新星殘骸的加速;惰性中微子還可能衰變成X射線光子,有些天文台發現的X射線就暗示存在比電子重100倍的惰性中微子。
但現有證據還遠遠不足。為此,科學家們還要研究短距離運動的中微子。費米實驗室的科學家們將利用3種探測器搜尋惰性中微子,包括短基線中微子探測器、MicroBooNE和ICARUS。義大利也將啟動SOX實驗搜尋惰性中微子。
(原標題:誰偷走了核電站的中微子 大亞灣新發現:也許我們算錯了核反應)
文章轉載於澎湃新聞
❹ 來自宇宙的「高能信號」,究竟告訴我們什麼
這次的極高能中微子事件發生於2017年9月22日,它的能量約為290 TeV,遠超以往的任何一次高能中微子的觀測值。
很巧合的是,大約兩周後,一些監測極高能光子的望遠鏡紛紛觀測到,在這顆極高能中微子來源方向幾十億光年開外,一個超大質量黑洞導致的「耀變體」,亮度比平時增強了6倍左右。
這一事件在國內天文學界也引起發了廣泛關注和熱議。我們就此采訪了國內相關領域的幾位科學家,請他們談了談對於這次極高能中微子事件的看法——
本期科學家
曹俊:中國科學院高能物理所研究員,從事大亞灣反應堆中微子實驗研究
陳學雷:中國科學院國家天文台研究員
張帆:北京師范大學天文系副教授並兼任美國西弗吉利亞大學助理教授
苟利軍:中國科學院國家天文台研究員,中國科學院大學教授
這次的發現主要說明了什麼?
曹俊:
自從1912年發現宇宙線以來,它的起源一直困擾著我們。對這些能量極其大的宇宙粒子,我們既不知道它們從哪兒來,也不知道什麼機制能將它們加速到那麼高的能量。南極的「冰立方」天文台就是為尋找宇宙線起源而建。它利用了中微子不帶電,不受宇宙中磁場影響,能夠直指源頭的特點。
上世紀80年代晚期開始,Francis
Halzen提出在南極冰層下建立天文台。在90年代「阿曼達實驗」、2000年代「阿曼達」二代的基礎上,2010年建成了冰立方天文台,佔地一立方公里。2013年找到了兩個超高能中微子事件,後來又發現了更多事件,但似乎沒什麼規律,跟天上的哪個源都對不上。2016年有一些模糊的證據。這次終於找到了一個比較可靠的證據,證實巨大黑洞產生的噴流是超高能宇宙線粒子的源頭之一。
張帆:
這次的研究不僅解開了高能中微子的源本身的謎團,伽馬射線的協同觀測也說明類星體可以把質子加速到很高的能量。
陳學雷:
在這項研究之前探測到的天體源中微子,主要包括宇宙線粒子與地球大氣作用形成的中微子、太陽核反應產生的中微子,以及超新星爆發產生的中微子,還有一些不知道來源的中微子。而這次探測到的中微子能量極高,並可能來自黑洞。
苟利軍:
這項研究首次確認了高能中微子的產生源頭,所以非常重要,之前僅僅是探測到了太陽系之外的中微子,但是不知道是哪個天體產生的。
❺ 宇宙中來無影去無冬的幽靈粒子,是靠純凈水檢測的嗎
江門中微子實驗(JUNO)於2015年1月開工建設。若順利,明年年中,施工人員將開始在地下實驗廳中組裝巨大的球形探測器。這是中國最復雜的高能物理實驗裝置,預計2022年建成。與當前最好的國際同類設備相比,它的規模要大20倍,精度提高近一倍。
這么大的玻璃球,給工程建設帶來了挑戰。江門中微子實驗項目組先後請來幾個知名力學團隊幫忙設計,並搭建了專門實驗室,測試有機玻璃的力學性能和老化情況,還造了一個直徑3米的小球來驗證計算和測試是否准確。
❻ 高能粒子的實驗
1930年,美國物理學家勞倫斯發明了迴旋加速器,並因此獲得了諾貝爾獎,但由於相對論效應,粒子的加速會使質量增大,從而只能使粒子獲得幾百keV的能量。
同步加速器的發明克服了這一缺點,美國費米實驗室的質子同步加速器軌道半徑為1km,利用超導磁場,可將質子加速到1TeV。
同步加速器產生的同步輻射進一步限制了粒子能量的增大,故近年來物理學家們又開始發展直線加速器,因為直線運動的粒子沒有同步輻射。20世紀的最後幾十年是對撞機的時代,弱點統一理論預言的中間玻色子也在對撞機中被發現。歐洲質子對撞機對撞能量已達14TeV,並且已經開始建造更大型的對撞機,希望能夠找到與質量起源聯系密切的希格斯玻色子。對撞機還可以利用兩個重粒子的對撞模擬宇宙大爆炸。
電子感應加速器是一種利用感生電場來加速電子的新型加速器,同步加速器適合加速重粒子(如質子),但是很難加速電子,感應加速器克服了這一困難。如今感應加速器中產生的γ射線可以做光核反應研究,還可以用於工業無損、探傷和醫療等領域。先進的高能加速器和對撞機主要用於前沿科學,而低能加速器卻已經廣泛轉為民用,在材料科學、固體物理、分子生物學、地理、考古等學科有重要應用。
被加速的粒子可以通過輻照改變材料的性質或者誘發植物基因的突變培育新品種,可以診斷並治療腫瘤,還可以生產大量同位素,用於工、農業生產。當然,加速器只能加速帶電粒子,現如今廣泛應用的中子探傷技術、中子干涉測量技術、中子非彈性散射等所用的中子是由核反應堆中產生的。 在高能粒子物理散射實驗中,僅僅有高能粒子還不夠,還必須有先進的粒子探測器來收集信息。粒子探測器是利用粒子與物質的相互作用原理來產生信號的。帶電粒子在物質中運動的主要能量損失是電離損失,通過測量單位路程的能量損失可以判別粒子的類型。
低能在物質中運動的主要能量損失是光電效應,其次較弱的因素還有康普敦散射、瑞利散射、布里淵散射、拉曼散射等,能量大於1MeV的光子能量損失主要原因是產生了正負電子對。高能電子入射到物質中時,由於突然減速,會產生高能軔致輻射,高能光子又會激發正負電子對……如此產生一連串的連鎖反應,可以形成電磁簇射,簇射深度稱為輻射長度,與粒子能量和介質密度有關,高能光子也可以形成簇射。
當帶電粒子在介質中的速度大於介質中的光速時,會產生一種類似於聲學中的「沖擊波」一樣的輻射,稱為切連科夫輻射。切連科夫因為發現這種輻射而獲得了諾貝爾獎。 高能粒子實驗裝置指的是用以發現高能粒子並研究和了解其特性的主要實驗工具。高能物理實驗需要三大條件:一是粒子源;其次是探測器,用以觀察、記錄各種高能粒子,大體上可以分成電探測器和徑跡探測器兩類;第三是用於信息獲取和處理的核電子學系統。
徑跡探測器包括雲室、泡室等探測裝置。在歷史上,人們曾利用這類探測器在科學上得到重要成果。例如,1932年,C.D.安德森用雲室發現了正電子。1960年,中國科學家王淦昌發現反西格馬負超子所用的探測器就是24升丙烷泡室。但是,這類探測器已不屬於現代的主要實驗裝置。
在同步加速器上進行高能物理實驗,常使用前向譜儀。這是在束流前進方向上有目的地安排一系列電探測器,包括閃爍描跡器、多絲正比室、漂移室、契侖科夫計數器、全吸收量能器等探測裝置。例如,用來發現J粒子的雙臂譜儀就是一種前向譜儀。
在對撞機上進行高能物理實驗時,所用譜儀的安排則另有特點。探測器在結構上應盡可能地從各方麵包住對撞區,形成接近4π的立體角。例如,束流管道外包以漂移室,再包以閃爍計數器,外面再包以簇射計數器。簇射計數器外面有大型磁鐵形成軸向磁場。磁鐵外麵包以μ子計數器等,形成多層疊套結構。中國正在興建的第一台正負電子對撞機上所用的探測裝置即屬此類型。
所有這些探測高能粒子的實驗裝置,一般體積都在100~200米3以上,重量達數百噸。然而,其定位精度要求達到10-4米量級,定時精度達到10-10 秒量級,信號通道數達104~105,數據率到107位每秒量級,連續工作時間達103小時以上。因此,完成這樣高指標的信息測量工作,必須擁有龐大、復雜、精密的核電子學系統。 利用這些相互作用原理,針對不同的要求,可以設計出不同類型和功能的粒子探測器。較早的有威爾遜雲室,後來又發明了氣泡室、乳膠室、多絲正比室、漂移室等,最後又發明了切連科夫探測器。
超級神岡中微子探測器是專門用來探測宇宙中最難束縛的幽靈:中微子的,探測器用了50500噸水作為切連科夫探測器,探測到的光(切連科夫輻射)輸入計算機。實驗結果證實了中微子振盪的存在,並且揭示了太陽中微子的失蹤之謎。這些探測器配合粒子加速器可以用來探測多種粒子的軌跡、能量、類型等,它們是加速器的眼睛。
粒子物理實驗所得到的粒子散射截面等數據,結合大爆炸宇宙學恰好可以解釋宇宙中元素的組成和相對豐度。
137億年前,宇宙誕生並開始膨脹,原始宇宙處於超高溫和超高密度的狀態,超高能光子激發出大量的粒子,光子們走不了幾步就會與某個粒子(比如電子)碰撞,光根本透不出來,不得不與其它粒子形成了熱平衡(平衡輻射又叫普朗克輻射)。
❼ 誰提出了一種實驗驗證中微子的方案
法國物理學家提出了一個實驗方案,希望能搜尋到第四種中微子的「芳蹤」。科學家們表示,如果實驗證實第四種中微子確實存在,那麼,不僅會給中微子科學帶來巨大影響,也將改變人類對物質組成的根本理解。相關研究發表在最新一期的《物理評論快報》雜志上。
粒子物理學的標准模型認為,存在著三種類型的中微子:電子中微子、μ(繆)中微子和τ(陶)中微子。科學家們已探測到這三種中微子並觀察到相互間的轉化—中微子振盪。
早在上世紀90年代初期,美國洛斯阿拉莫斯國家實驗室的液體閃爍中微子探測器(LSND)實驗發現,一束反μ介子撞擊一個目標時,反電子中微子振盪發生的速度比預期快。最近,法國原子能委員會(CEA)的物理學家們對核反應堆中反中微子的生成速度進行了重新計算,結果發現,該速度比預測值高3%,隨後,他們對20多個反應堆中微子實驗的結果進行了重新分析,發現了更多實驗結果與預期不一致的情況。
科學家們認為,對這種偏差最簡單的合理解釋是存在著第四種類型的中微子,他們也推測出了其質量並認為它不會像其他中微子那樣通過弱核力與物質發生反應,這使得它很難被探測到,甚至有科學家認為它可能是一種暗物質。
現在,CEA的邁克爾·克瑞貝爾等人設計了一個實驗,希望能准確測試第四個中微子是否存在。
科學家們的設想是,讓一個活度為1.85PBq的反電子中微子同位素源朝位於大型液體閃爍探測器(LLSD)中央的一個目標開火。隨後,利用位於義大利格蘭薩索國家實驗室的巨型BOREXINO探測儀或位於日本「神岡礦」的KamLAND探測儀進行探測。
該反電子中微子同位素源將由一個輻射源—諸如鈰核組成,為了獲得准確的結果,實驗可能歷時一年。如果轟擊實驗產生了一個不反應的中微子,他們將測量一個獨特的振盪信號以證實第四種中微子的存在。
目前他們面臨的最大技術挑戰是構建出一個反中微子源並建造一個厚厚的遮蔽材料來包裹它,實驗也需要千噸級的探測器。
❽ 南極脈沖瞬態天線探測高能中微子,它的探測方式是什麼
這是漂浮在表面35公里上空的神奇天線,旨在探測宇宙中高能中微子,其原理是高能中微子與南極冰原相互作用後發出的無線脈沖信號的阿斯卡林效應。它由32個無線天線陣列組成,高約5米,半徑約3米,工作時由氦氣帶中的高空組成!高能粒子與緻密介質相互作用時,如果以比光速更快的速度運動,就會產生具有各向異性電荷的二次離子。它的輻射可以被標准無線電天線檢測到。冰的光速是23萬公里/秒,所以中微子在冰中是超光速(不違反相對性)!
IceCube對ANITA不敏感,但提供高能中微子的大致方向。在對ICE立方體中約50個中微子事件進行分析後,研究小組推測是明亮的類星體發送的。為了證明這個想法,他們查閱了俄羅斯RATAN-600無線望遠鏡觀測資料。類星體發現無線閃光火花就能檢測到中微子。研究人員認為,類星體特別活躍時,會發生伽馬射線爆炸和閃光火花,如果伽馬射線與周圍原子碰撞,還會觸發中微子爆炸。中微子以接近光速的速度傳播,所以它們幾乎在無線電爆炸的同時到達地球。因此,我認為類星體的超質量黑洞是高能中微子的來源。
❾ 超微型中微子探測器取得巨大成功的意義是什麼
現在,設在南極的一台大型中微子觀測站正在對中微子進行監測,並希望能夠藉此回答有關宇宙的一些基本問題。近日,美國密歇根州立大學的科學家們在華盛頓召開的美國物理學會會議上報告了有關南極「冰立方」(IceCube)中微子觀測站獲得的最新觀測結果。
他們的觀測結果將有助於填補粒子物理學標准模型中的一項重要缺口,這項理論能夠幫助解釋宇宙中絕大部分基本粒子的行為。
全球各地大部分的中微子探測器都會使用巨大的水槽,裡面灌滿大量的高純度水,四周則布滿高性能探測器,用於捕捉中微子與水中氫或氧原子核迎頭撞擊時產生的微弱閃光信號。
❿ 中微子的研究過程
1930年,奧地利物理學家泡利提出存在中微子的假設。1956年,柯溫(C.L.Cowan)和弗雷德里克·萊因斯利用核反應堆產物的β衰變產生反中微子,觀測到了中微子誘發的反應:
這是第一次從實驗上得到中微子存在的證據。
泡利的中微子假說和費米的β衰變理論雖然逐漸被人們接受,但終究還蒙上了一層迷霧:誰也沒有見到中微子。就連泡利本人也曾說過,中微子是永遠測不到的。在泡利提出中微子假說的時候,我國物理學家王淦昌正在德國柏林大學讀研究生,直到回國,他還一直關心著β衰變和檢驗中微子的實驗。1941年,王淦昌寫了一篇題為《關於探測中微子的一個建議》的文章,發表在次年美國的《物理評論》雜志上。1942年6月,該刊發表了美國物理學家艾倫根據王淦昌方案作的實驗結果,證實了中微子的存在,這是這一年中世界物理學界的一件大事。但當時的實驗不是非常成功,直到1952年,艾倫與羅德巴克合作,才第一次成功地完成了實驗,同一年,戴維斯也實現了王淦昌的建議,並最終證明中微子不是幾個而是一個。
在電子俘獲試驗證實了中微子的存在以後,進一步的工作就是測量中微子與質子相互作用引起的反應,直接探測中微子。由於中微子與物質相互作用極弱,這種實驗是非常困難的。直到1956年,這項實驗才由美國物理學家弗雷德里克·萊因斯完成。首先實驗需要一個強中微子源,核反應堆就是合適的源。這是由於核燃料吸收中子後會發生裂變,分裂成碎片時又放出中子,從而使其再次裂變。裂變碎片大多是β放射性的,反應堆中有大量裂變碎片,因此它不僅是強大的中子源,也是一個強大的中微子源。因為中微子反應幾率很小,要求用大量的靶核,萊因斯選用氫核(質子)作靶核,使用了兩個裝有氯化鎘溶液的容器,夾在三個液體閃爍計數器中。這種閃爍液體是是一種在射線下能發出熒光的液體,每來一個射線就發出一次熒光。由於中微子與構成原子核的質子碰撞時發出的明顯的頻閃很有特異性,從而證實了中微子的存在。為此,他與發現輕子的美國物理學家馬丁·珀爾分享了1995年諾貝爾物理學獎。
理論上講,中微子的假設非常成功,但要觀察它的存在卻非常困難。由於它的質量小又不帶電荷,與其它粒子間的相互作用非常弱,因而很難探測它的存在。1953年,美國洛斯阿拉莫斯科學實驗室的物理學家萊因斯和柯萬領導的物理學小組著手進行這種艱難的尋覓。1956年,他們在美國原子能委員會所屬的喬治亞州薩凡納河的一個大型裂變反應堆進行探測,終於探測到反中微子。
1962年又發現另一種反中微子。在泡利提出中微子假說以後,經過26年,人們才第一次捕捉到了中微子,也打破了泡利本人認為中微子永遠觀測不到的悲觀觀點。
中微子是哪一味?
每一種中微子都對應一種帶電的輕子——電子中微子對應電子,μ中微子對應μ子,同理,τ(希臘字母,普通話念「濤」)中微子對應τ子。
電子中微子
電子與原子相互作用,將能量一下子釋放出來,會照亮一個接近球形的區域。
μ中微子
μ子不像電子那樣擅長相互作用,它會在冰中穿行至少1千米,產生一個光錐。
τ中微子
τ子會迅速衰變,它的出現和消失會產生兩個光球,被稱為「雙爆」。 為了研究中微子的性質,各國建造了大量探測設施,比較著名的有日本神岡町的地下中微子探測裝置、義大利的「宏觀」、俄羅斯在貝加爾湖建造的水下中微子探測設施以及美國在南極地區建造的中微子觀測裝置。
1994年,美國威斯康星大學和加利福尼亞大學的科學家在南極冰原以下800米深處安裝輻射探測器,以觀測來自宇宙射線中的中微子。使用南極冰原作為探測器的安置場所,是因為冰不產生自然輻射,不會對探測效果產生影響。此外,把探測器埋到深處,是為了過濾掉宇宙中除了中微子之外的其他輻射。
宇宙中微子的產生有幾種方式。一種是原生的,在宇宙大爆炸產生,現在為溫度很低的宇宙背景中微子。第二種是超新星爆發巨型天體活動中,在引力坍縮過程中,由質子和電子合並成中子過程中產生出來的,SN1987A中微子就是這一類。第三種是在太陽這一類恆星上,通過輕核反應產生的十幾MeV以下的中微子。第四種是高能宇宙線粒子射到大氣層,與其中的原子核發生核反應,產生π、K介子,這些介子再衰變產生中微子,這種中微子叫「大氣中微子」。五是宇宙線中高能質子與宇宙微波背景輻射的光子碰撞產生π介子,這個過程叫「光致π介子」, π介子衰變產生高能中微子,這種中微子能量極高。第六種是宇宙線高能質子打在星體雲或星際介質的原子核上產生核反應生成的介子衰變為中微子,特別在一些中子星、脈沖星等星體上可以產生這種中微子。第七種是地球上的物質自發或誘發裂變產物β衰變產生的中微子,這類中微子是很少的。
泡利提出中微子假說時,還不知道中微子有沒有質量,只知道即使有質量也是很小的,因為電子的最大能量與衰變時放出的總能量很接近,此時中微子帶走的能量就是它的靜止能量,只能是很小的。1998年6月,日本科學家宣布他們的超級神岡中微子探測裝置掌握了足夠的實驗證據說明中微子具有靜止質量,這一發現引起廣泛關注。來自24個國家的350多名高能物理學家雲集日本中部岐阜縣的小鎮神岡町,希望親眼目睹實驗過程。美國哈佛大學理論物理學家謝爾登·格拉休指出:「這是最近幾十年來粒子物理領域最重要的發現之一。」
超級神岡探測器主要用來研究太陽中微子。太陽是地球上所有生命的源泉,也是地球表面最主要的能量來源。事實 上,到達地球太陽光熱輻射總功率大約是170萬億千瓦,只佔太陽總輻射量的22億分之一。愛因斯坦相對論的質能關系式使人們了解了核能,而太陽正是靠著核反應才可以長期輻射出巨大能量,這就是太陽能源的來源。在太陽上質子聚變和其他一些輕核反應的過程中不僅釋放出能量,而且發射出中微子。人們利用電子學方法或者放射化學的方法探測中微子。1968年,戴維斯發現探測到的太陽中微子比標准太陽模型的計算值少得多。科學還無法解釋太陽中微子的失蹤之謎,也許是因為中微子還有許多我們不了解的性質。
這個探測裝置由來自日本和美國的約120名研究人員共同維護。他們在神岡町地下一公里深處廢棄的鋅礦坑中設置了一個巨大水池,裝有5萬噸水,周圍放置了1.3萬個光電倍增管探測器。當中微子通過這個水槽時,由於水中氫原子核的數目極其巨大,兩者發生撞擊的幾率相當高。碰撞發生時產生的光子被周圍的光電倍增管捕獲、放大,並通過轉換器變成數字信號送入計算機,供科學家們分析。
已經確認的有三種中微子:電子中微子、μ(繆子)中微子和τ(陶子)中微子。日本科學家設計的這個裝置主要是用來探測宇宙射線與地面上空20公里處的大氣層中各種粒子發生碰撞產生的繆子中微子。研究人員在6月12日出版的美國《科學》雜志上報告說,他們在535天的觀測中捕獲了256個從大氣層進入水槽的μ中微子,只有理論值的百分之六十;在實驗地背面的大氣層中產生、穿過地球來到觀測裝置的中微子有139個,只剩下理論值的一半。他們據此推斷,中微子在通過大氣和穿過地球時,一部分發生了振盪現象,即從一種形態轉為另一種,變為檢測不到的τ中微子。根據量子物理的法則,粒子之間的相互轉化只有在其具有靜止質量的情況下才有可能發生。其結論不言而喻:中微子具有靜止質量。研究人員指出,這個實驗結果在統計上的置信度達到百分之九十九點九九以上。
這個實驗不能給出中微子的准確質量,只能給出這兩種中微子的質量平均值之差--大約是電子質量的一千萬分之一,這也是中微子質量的下限。中微子具有質量的意義卻不可忽視。一是如前所述,由於宇宙中中微子的數量極其巨大,其總質量也就非常驚人。二是在現有的量子物理框架中,科學家用假設沒有質量的中微子來解釋粒子的電弱作用;因此如果它有質量,目前在理論物理中最前沿的大統一理論模型(一種試圖把粒子間四種基本作用中的三種統一起來的理論)就需要重建。 從19世紀末的三大發現至今,已經過去了100年。在這一個世紀,科學技術飛速發展,人類對自然有了進一步的認識。但是仍有許多自然之謎等著人們去解決。其中牽動全局的問題是粒子物理的標准模型能否突破?如何突破?中微子正是有希望的突破口之一。
中微子是一門與粒子物理、核物理以及天體物理的基本問題息息相關的新興分支科學,人類已經認識了中微子的許多性質及運動、變化規律,但是仍有許多謎團尚未解開。中微子的質量問題到底是怎麼回事?中微子有沒有磁矩?有沒有右旋的中微子與左旋的反中微子?有沒有重中微子?太陽中微子的強度有沒有周期性變化?宇宙背景中微子怎樣探測?它在暗物質中占什麼地位?恆星內部、銀河系核心、超新星爆發過程、類星體、極遠處和極早期宇宙有什麼奧秘? 這些謎正點是將微觀世界與宇觀世界聯系起來的重要環節。對中微子的研究不僅在高能物理和天體物理中具有重要意義,在我的日常生活中也有現實意義。人類認識客觀世界的目的是為了更自覺地改造世界。我們應充分利用在研究中微子物理的過程中發展起來的實驗技術和中間成果,使其轉化成生產力造福人類,而中微子本身也有可能在21世紀得到應用。 其中可能的應用之一就是中微子通訊。由於地球是球面,加上表面建築物、地形的遮擋,電磁波長距離傳送要通過通訊衛星和地面站。而中微子可以直透地球,它在穿過地球時損耗很小,用高能加速器產生10億電子伏特的中微子穿過地球時只衰減千分之一,因此從南美洲可以使用中微子束穿過地球直接傳至北京。將中微子束加以調制,就可以使其包含有用信息,在地球上任意兩點進行通訊聯系,無需昂貴而復雜的衛星或微波站。
應用之二是中微子地球斷層掃描,即地層CT。中微子與物質相互作用截面隨中微子能量的提高而增加,用高能加速器產生能量為一萬億電子伏以上的中微子束定向照射地層,與地層物質作用可以產生局部小「地震」,類似於地震法勘探,可對深層地層也進行勘探,將地層一層一層地掃描。