㈠ 電力工程電氣設計手冊電氣二次部分的作品目錄
目錄前言第二十章 強電控制信號和測量系統第20-1節 控制方式一 發電廠與變電所的控制方式二 強電控制方式的主要類型第20-2節 控制室及其屏(屏台或台)的布置一 總的要求二 主控制室及網路控制室的布置三 單元控制室的布置四 控制屏(屏台或台)與繼電器屏的布置五 常用屏(屏台或台)的型式及安裝第20-3節 控制信號和測量一 總的要求二 三相操作斷路器控制、信號迴路三 分相操作斷路器控制迴路四 空氣斷路器的控制、信號迴路五 一個半斷路器的二次接線六 發電機變壓器線路組的二次接線七 隔離開關的控制 信號和閉鎖迴路第20-4節 中央信號及其他信號裝置一 中央信號裝置二 發電機指揮信號三 全廠事故信號四 鍋爐房聯系信號五 隔離開關的位置指示信號六 採用閃光報警器的中央信號第20-5節 交流電流電壓迴路及互感器的選擇一 交流電流迴路及電流互感器的選擇二 交流電壓迴路及電壓互感器的選擇第20-6節 電氣專業應用計算機的設計一 監控計算機在發電廠電氣部分的應用二 微處理機監控裝置在超高壓變電所及電廠開關站的應用第20-7節 二次迴路設備的選擇及配置一 二次迴路的保護設備二 熔斷器或自動開關的配置三 熔斷器自動開關的選擇四 控制、信號迴路的設備選擇五 跳合閘迴路中的中間繼電器及合閘接觸器的選擇六 控制迴路中「防跳」繼電器的選擇七 串接信號繼電器及附加電阻的選擇八 端子排九 控制電纜與信號電纜十 小母線配置及二次迴路標號第20-8節 變壓器的冷卻和調壓方式的二次接線一 主變壓器的冷卻方式及二次接線二 變壓器有載調壓分接開關二次接線三 變壓器無載調壓分接開關的位置指示四 變壓器測溫裝置附錄20-1 控制屏(屏台)的模擬母線和小母線色別及二次迴路編號附錄20-2 LWX2型強電小開關選擇參考資料附錄20-3 控制屏台的外形及尺寸第二十一章 弱電控制信號和測量系統第21-1節 總則一 弱電技術的要求及採用條件二 弱電參數的選擇第212節 弱電控制方式和接線一 弱電控制迴路的要求及分類二 弱電控制接線三 發電機調速 調壓的控制方式及要求第21-3節 弱電信號方式和接線一 弱電信號迴路的要求及分類二 弱電中央信號裝置的要求與接線三 新型弱電事故信號設備第2-14節 弱電測量方式和接線一 弱電測量方式和要求二 弱電常測迴路接線三 常用變送器的選型第21-5節 弱電電源系統一 弱電電源的分類及要求二 弱電電源系統的接線及供電方式三 弱電電源設備的選擇及二次迴路接線第21-6節 弱電裝置屏(屏台)的型式與布置一 弱電控制室的要求和布置方式二 弱電控制屏(屏台)的結構和布置三 新型弱電屏(屏台)的選用四 弱電控制屏(屏台)和返回屏的屏面布置和要求第21-7節 提高弱電迴路可靠性的要求與措施一 提高可靠性的主要措施二 提高弱電控制迴路的可靠性措施三 降低弱電二次迴路干擾電壓的措施四 弱電裝置的端子排設計五 晶體管裝置的抗干擾試驗標准第二十二章 發電廠和變電所的自動裝置第22-1節 發電廠和變電所備用電源自動投入裝置(BZT)一 備用電源的一次接線二 備用電源自動投入裝置的接線要求三 主變壓器或線路的自動投入裝置四 廠(所)用電源切換第22-2節 自動按頻率減負荷裝置(ZPJH)一 概述二 保持頻率恆定的措施三 自動按頻率減負荷(ZPJH)裝置接線四 防止電動機反饋時ZPJH誤動作的措施附錄22-1 JPJH-4型晶體管按頻率減負荷裝置第二十三章 廠用電動機二次接線第23-1節 廠用電動機的測量儀表第23-2節 廠用電動機保護一 3~10kV廠用電動機保護二 380V廠用電動機保護三 保護的整定計算第23-3節 廠用電動機控制信號接線一 廠用電動機控制迴路的基本接線二 汽機輔機的聯鎖及自動裝置三 給水系統電動機的聯鎖及自動裝置四 鍋爐輔機的聯鎖及自動裝置五 除灰系統電動機的聯鎖及自動裝置六 供水系統電動機的聯鎖及自動裝置七 公用設備電動機的聯鎖及自動裝置八 輸煤系統電動機的聯鎖及自動裝置第23-4節 多台電動機拖動和調速電機的控制接線一 一台輔機用兩台電動機拖動的控制接線二 雙速電動機的控制接線三 可控硅串級調速裝置四 電磁調速電動機五 電磁振動給料機控制接線第二十四章 操作電源系統第24-1節 綜述一 蓄電池直流系統二 電容儲能直流系統三 復式整流直流系統第24-2節 直流系統的分類及設計要求一 發電廠的直流系統和直流屏二 變電所的直流系統和直流屏第24-3節 蓄電池直流系統的設備選擇一 直流系統的負荷統計二 蓄電池容量選擇三 蓄電池的分類四 充電設備的選擇五 直流系統的饋線熔斷器和自動空氣開關的選擇六 直流饋線刀開關和轉換開關的選擇七 蓄電池迴路設備的選擇八 充電迴路設備的選擇九 蓄電池組端電池調整器的選擇十 載流導體的選擇十- 直流系統短路電流計算第24―4節 直流饋線迴路一 環形供電迴路二 輻射形供電迴路第24-5節 直流設備的布置及安裝一 蓄電池室的布置二 端電池電動調整器的安裝三 充電設備的布置四 蓄電池室的土建要求第24-6節 直流系統的保護和信號迴路一 充電設備的控制和信號迴路二 端電池調整器的接線三 絕緣監察裝置和電壓監視裝置四 閃光裝置五 事故照明切換裝置接線第24-7節 電容儲能直流系統一 儲能電容器的容量和電壓選擇二 電容儲能直流系統第24-8節 變電所復式整流直流系統一 復式整流系統接線二 復式整流裝置的計算三 電流互感器輸出功率計算四 鐵磁諧振穩壓器第24-9節 交流操作系統一 保護迴路二 二次接線第24-10節 鎘鎳電池及其充電設備一 鎘鎳電池的基本特性二 鎘鎳電池直流屏接線三 鎘鎳電池直流系統設備選擇和布置第二十五章 勵磁系統第2-51節 概述一 勵磁系統的分類二 對勵磁系統的要求第25-2節 直流勵磁機勵磁系統一 系統接線及設備配套二 自動滅磁開關及控制接線三 自動調整勵磁裝置四 繼電強行勵磁裝置五 設備參數的選擇計算第25-3節 交流勵磁機-靜止整流器勵磁系統一 設備配套二 勵磁整流櫃 滅磁櫃和過電壓保護裝置三 自動和手動調整勵磁裝置的控制接線四 測量儀表五 中頻試驗電源六 設備布置第25-4節 其他勵磁系統一 交流勵磁機――靜止可控整流器勵磁系統二 交流勵磁機――旋轉整流器勵磁系統(無刷勵磁系統)三 靜止勵磁系統第25-5節 備用勵磁系統一 備用勵磁系統的要求二 備用勵磁系統的設計條件三 備用勵磁系統接線四 備用勵磁系統設備的選擇和安裝附錄25-1 勵磁系統的名詞術語附錄25-2 SWTA型自動和手動調整勵磁裝置附錄25-3 自動調整勵磁全控整流橋電力電纜的選擇計算第二十六章 同步系統第26-1節 概述第26-2節 同步點和同步電壓取得方式一 對同步電壓的要求二 同步點及同步方式三 同步閉鎖措施第26-3節 手動准同步一 集中同步二 分散同步三 組合式同步表第26-4節 自動准同步裝置一 ZZQ-3B型自動准同步裝置二 ZZQ-5型自動准同步裝置三 自動准同步裝置二次迴路設計配合的問題第26-5節 自同步方式第26-6節 變電所的同步裝置和線路的同步接線一 半自動導前相角准同步裝置二 捕捉同步裝置第二十七章 補償裝置二次接線第27-1節 串聯電容補償裝置一 概述二 串聯補償裝置的保護方式三 信號傳遞和台上操作電源四 控制 信號和測量迴路第27-2節 同步調相機二次迴路一 同步調相機保護二 控制 信號和測量迴路三 調相機勵磁系統第27-3節 並聯電抗器一 超高壓並聯電抗器二 低壓並聯電抗器第27-4節 並聯電容器組- 概述二 並聯電容器組保護三 串聯電抗器保護四 並聯電容器組的控制和信號五 測量儀表第27-5節 靜態無功補償裝置(SVS)第二十八章 電網繼電保護及安全自動裝置第28-1節 設計原則和一般規定一 概述二 設計范圍與深度要求三 確定電網繼電保護配置方案的主要問題四 電網繼電保護對電源的基本要求五 保護要求的最小靈敏系數第28-2節 35kV及以上中性點非直接接地電網中的線路保護配置原則一 概述二 相間保護三 單相接地保護第28-3節 110~220kV中性點直接接地電網的線路保護一 概述二 110~220kV線路繼電保護配置的具體要求三 110~220kV線路接地保護四 110~220kV線路相間距離保護五 110~220kV線路縱差保護六 110~220kV線路「四統一」定型保護屏的組成與使用第28-4節 330~500kV中性點直接接地電網的線路保護一 超高壓電網特點及對繼電保護的特殊要求二 主保護與後備保護配置原則三 330~500kV線路保護配置方案四 雙斷路器主接線方式的線路繼電保護的若干問題五 工頻過電壓保護第28-5節 母線保護和斷路器失靈保護一 母線保護的配置原則二 母線保護構成原理及其適應性三 各種母線接線及其保護方式四 斷路器失靈保護第28-6節 自動重合閘一 自動重合閘裝置的應用與配置原則二 三相一次自動重合閘三 綜合自動重合閘裝置四 自動重合閘與保護的配合五 綜合自動重合閘的整定計算第28-7節 電網安全自動裝置及故障錄波裝置一 概述二 電網安全穩定裝置的功能與分類三 電網穩定控制裝置四 電網解列裝置五 低頻減載六 故障錄波裝置第28-8節 電網繼電保護的整定計算一 整定計算的主要問題二 相間距離保護整定計算三 中性點直接接地電網的零序電流保護整定計算四 中性點直接接地電網的接地距離保護整定計算五 高頻相差保護整定計算六 母線保護整定計算第二十九章 主設備繼電保護第29-1節 主設備繼電保護設計原則一 設計原則及范圍二 設備選型三 保護出口四 保護電源第29-2節 發電機保護一 100MW以下發電機保護配置二 定子繞組相間短路保護構成三 與母線直接連接的發電機定子繞組接地保護四 反應定子繞組匝間短路的保護五 發電機外部相間短路保護六 定子繞組過負荷保護七 勵磁迴路接地保護第29-3節 發電機保護整定計算一 縱聯差動保護整定計算二 橫聯差動保護整定計算三 定子單相接地保護的整定計算四 反應外部相間短路的後備保護的整定計算五 定子繞組過負荷保護的整定計算第29-4節 變壓器保護一 變壓器保護的配置原則二 變壓器瓦斯保護裝置及整定三 變壓器電流速斷保護四 變壓器縱聯差動保護五 變壓器相間後備保護配置原則及接線六 中性點直接接地電網的零序後備保護配置及接線七 變壓器的過激磁八 變壓器過負荷保護九 自耦變壓器保護十 三相三柱式全星形接線變壓器保護特點第29-5節 變壓器保護整定計算一 電流速斷保護的整定計算二 縱聯差動保護的整定計算三 相間後備保護的整定計算四 中性點直接接地電網的零序後備保護整定計算五 變壓器過負荷保護整定計算六 自耦變壓器零序差動保護整定計算七 500/220kv聯絡自耦變壓器零序保護改進方案(圖29-25)的整定計算第29-6節 發電機變壓器組保護一 大型發電機組的特點及其對繼電保護的要求二 大型發電機變壓器組單元接線繼電保護配置三 保護及其接線四 其它幾種保護簡介第29-7節 發電機-變壓器組保護整定計算一 復合電流速斷保護整定計算二 失磁保護整定計算三 過電壓保護整定計算四 阻抗保護整定計算五 逆功率保護動作值的整定六 定子接地保護靈敏系數計算七 發電機匝間短路保護整定計算八 發電機過負荷保護整定計算第29-8節 廠用電源保護一 廠用工作及備用電抗器保護二 高壓廠用工作 備用(起動)變壓器的保護三 低壓廠用工作及備用變壓器保護四 保護的整定計算第29-9節 6~10kV母線保護及其整定計算一 發電機電壓母線保護二 變電所6~10kV母線保護三 保護的整定計算第29-10節 6~10kV線路保護及其整定計算一 6~10kV線路保護裝設原則二 保護整定計算第29-11節 中性點不接地系統的接地信號檢測裝置一 接地信號裝置的分類及要求二 反應工頻電容電流值的接地保護三 反應電容電流方向的接地保護四 反應零序電流有功分量的接地保護五 反應5次諧波分量的接地保護六 反應暫態分量首半波的接地保護七 其他接地檢測信號裝置附錄29-1 三繞組變壓器制動線圈的接法一 單側電源的三繞組變壓器二 雙側電源的三繞組變壓器三 三側電源的三繞組變壓器附錄29-2 短線路縱聯差動繼電器附錄29-3 非直接接地信號裝置一 反應接地電容電流方向的非直接接地信號裝置二 反應接地電容電流5次諧波分量的ZD-5型接地信號裝置三 反應接地電容電流暫態分量首半波的ZD-3C型接地信號裝置第三十章 電網調度自動化系統第30-1節 概述一 調度自動化的作用二 調度自動化的發展趨勢第30-2節 調度自動化的功能范圍一 電網調度的職責范圍二 地區電網的廠、所三 調度自動化的基本內容四 調度自動化的功能與范圍第30-3節 調度自動化系統一 系統的概念及配置原則二 系統配置的基本方式第30-4節 調度自動化的主要設備一 在線實時監控計算機二 人機聯系設備三 遠動終端(RTU)及通道四 電量變送器五 發電機組頻率與有功功率自動調節裝置第30-5節 規劃與設計一 規劃與設計的內容二 設計的技術要求第30-6節 電網調度中心設計一 電網調度中心設計階段和主要內容二 建築物型式及布置三 機房設計第三十一章 電力系統通信第31-1節 系統通信的要求和方式一 系統通信的重要性和特點二 電力系統通信的主要內容三 電力系統通信網的結構四 電力系統的通信方式第31-2節 電力線載波通信一 傳輸信息內容二 基本原理和構成三 電力線載波通信的特點四 電力線載波終端機五 結合設備六 加工設備第31-3節 電力線載波通道的設計與計算一 通道設計的任務二 設計依據和條件三 通道的組織四 通道設計與計算五 電力線載波通道的頻率分配第31-4節 微波通信一 微波通信簡介二 微波接力通信線路的選擇三 微波通信電路設計的質量標准四 微波傳播及其計算五 微波站的平面布置和建築設計要求六 微波鐵塔七 微波站的接地和防雷八 微波通信站的儀表配置第31-5節 光纖通信- -光纖通信的基本原理二 數字光纖通信系統的設計第三十二章 廠(所)內通信第32-1節 概述一 廠(所)內通信的分類和要求二 廠(所)內通信組織措施和要求第32-2節 生產管理通信一 設計要求二 設備選擇三 設計注意事項第32-3節 生產調度通信一 設計要求二 設備選擇第32-4節 其它輔助通信方式一 生產擴音通信二 無線電移動通信三 電鍾系統的設計第32-5節 通信電源一 常用通信設備供電電壓及耗電量二 直流系統及設備選擇第32-6節 音頻通道的中繼組合方式一 設計要求二 中繼方式三 中繼線通信方式的選擇四 去水源地的通信線路五 去火車站的通信線路第32-7節 通信線路一 設計要求二 電纜線路的選擇三 敷設方式四 主幹電纜與配線電纜的設計五 架空桿路設計六 沿牆敷設電纜七 直埋電纜八 音頻線路網路的傳輸設計第32-8節 通信房屋建築的要求與布置一 通信建築物的形式及內容二 通信建築物的設計要求三 通信室的平面布置四 通信設備集中布置方案第三十三章 電氣試驗與檢修設備的配置第33-1節 試驗設備的配置一 試驗設備的配置原則二 電氣試驗設備三 電測量儀表 繼電保護及自動裝置的調試四 電氣和熱機部分精密機件的修理設備第33-2節 檢修設備的配置一 發電廠的電氣檢修設施二 變電所的電氣檢修設施三 超高壓配電裝置的檢修設施四 油務設施第33-3節 電氣試驗室與檢修間的布置一 電氣試驗室布置的一般原則與參考方案二 電氣檢修間布置的一般原則與參考方案附錄33-1 設備參考表第三十四章 小型機組電氣部分第34―1節 概述第34-2節 電氣主接線一 電氣主接線的重要性二 確定電氣主接線所需的資料三 對電氣主接線的要求四 發電機電壓的選擇五 發電廠與系統的連接六 發電機電壓側的接線七 升高電壓側的接線八 發電機電壓系統及升高電壓系統的中性點接地方式九 電氣主接線舉例第34-3節 廠用電系統一 廠用電電壓二 廠用電接線三 廠用電源的引接四 孤立電廠的起動電源第34-4節 二次接線一 操作方式二 中央信號三 同步裝置- 勵磁裝置發電機的二次迴路第34-5節 繼電保護和自動裝置一 發電機的繼電保護二 變壓器的繼電保護三 自動裝置第34-6節 直流系統一 概述二 直流系統的設計原則三 直流系統接線舉例第34-7節 電氣設施布置一 概述二 發電機電壓配電裝置的布置三 主控制室的布置四 升壓配電裝置的布置五 發電機出線小室的布置六 廠用電氣設備的布置
㈡ 數控機床測量裝置的控制方式
在某種程度上可以說機床工作精度主要取決與閉環控制系統中的檢測元件的精度。
西門子8M系統卧式加工中心正常運行時,機床突然停止工作,CRT出現NC報警104,操作者關斷電源重新啟動,報警消除,恢復正常工作,幾十分鍾後,故障又反復出現。
查詢NC104報警,表示為:X軸測量閉環電纜折斷短路,信號丟失,不正確的門檻信號不正確的頻率信號。本機床的X、Y、Z三軸採用光柵尺對機床位移進行位置檢測,進行反饋控制形成一個閉環系統。
檢測元件如果受到灰塵油污的污染,就會發出錯誤的信號。檢查讀數頭和光柵尺並沒有受到油污和灰塵污染。隨後檢查差動放大器和測量線路板.也未發現不良現象,經過這些工作後。我們把重點放在反饋電纜上,測量反饋端子,發現13號線電壓不穩,停電後測量發現隨著電纜擺動電阻有較大變化,檢查發現此線在X軸向隨導軌運動的一段似接非接,造成反饋值不穩,導致電機失步,重新接線後,故障消除。
根據經驗,導致脈沖編碼器同步出錯的主要原因是編碼器零位脈沖不良或回參考點速度太低。由於檢查參考點零位脈沖需要有示波器,維修時一般可以先檢查回參考點速度和位置增益的設置,並確認系統的位置跟隨誤差值在1281xm以上。
若參數設置正確,可能的原因是「零脈沖」信號不良。由於零位脈沖的信號脈寬較窄,它對干擾十分敏感,因此必須針對以下幾方面進行檢查:
首先是編碼器的供電電壓必須在+5V+O.2V的范圍內。當小於4.75V時,將會引起「零脈沖」的輸出干擾。其次,編碼器反饋的屏蔽線必須可靠連接,並盡可能使位置反饋電纜遠離干擾源與動力線路。此外,編碼器本身的「零脈沖」輸出必須正確,滿足系統對零位脈沖的要求。
經檢查該機床在手動方式下工作正常,參考點減速速度、位置環增益設置正確,測量編碼器+5V電壓正常,回參考點的動作過程正確。初步判定故障是由於編碼器零位脈沖受到干擾而引起的。檢查發現,該軸編碼器連接電纜的屏蔽線脫落,重新連接後,定位精度達到原機床要求。
經常有初學者問,數控機床為什麼要回參考點呢?不回參考點不行嗎?簡單地講,回參考點目的是為了每次上電開機後,在機床上建立一個唯一的坐標系。因為在機床加工完關斷電源後。數控系統就失去了對各坐標位置記憶。在重新接通電源後,就得讓各坐標回到機床一固定位置上,即坐標系的零點或原點,也稱作基準點或者機床參考點。回參考點操作將直接影響
數控機床能否正常運行。
BTM-4000數控仿形銑床靜態幾何精度變化引起X軸運行不穩定。具體表現為×軸按指令停在某一位置時.始終停不下來。
BTM-4000系義大利進口的數控仿形銑床,系統採用義大利FEDIACNCl0系統.伺服採用了西門子公司產品。
機床在使用了一段時間後,X軸的位置鎖定發生了漂移,表現為Z軸停在某一位置時,運動不停止,出現大約±0.0007m振幅偏差。而這種振動的頻率又較低,直觀地可以看到絲杠在來回轉動。鑒於這種情況,初步斷定這不是控制迴路的自激振盪,有可能是定尺(磁尺)和動尺(讀數頭)之間有誤差所致。經調整定尺和動尺配合間隙後,情況大有好轉,後又配合調整了機床的靜態幾何精度,此故障消除。
卧式加工中心,採用SINU-MERIK840D系統.帶EXE光柵測量裝置。運行中出現114號報警,同時伴有113號報警。
從報警產生的原因看,由於114號的報警。引起113號報警,故障部位定位在位置測量裝置。114號報警有兩種可能:一是電纜斷線或接地;二是信號丟失。前者可通過外觀檢查和測量來診斷。對後者主要是信號漏讀,如果由於某種原因,使光柵尺輸出的正弦信號幅度降低,在信號處理過程中,影響到被處理信號過零的位置,嚴重時會使輸出脈沖擠在一起,造成丟失。因為光電池產生的信號與光照強度成正比,信號幅度下降無非是因為光源亮度下降或光學系統臟污所致。從尺身中抽出掃描單元,分解後看到,燈泡下的透鏡表面呈毛玻璃狀,指示光柵表面也有一層霧狀物,燈泡和光電池上也有這種污物,這些污物導致了光源發光率下降和輸出信號降低,通過對光柵的清洗故障消除。
只要電子元件不損壞,測量裝置故障的幾率很小,因此一般測量裝置報警,主要原因是信號丟失,也就是「漏讀」。測量信號在產生變換過程中容易造成丟失的環節。檢測元件有問題,千萬不要盲目拆卸,要研究明白後再動手。例如標尺光柵或指示光柵上有污物時要小心清除,清除前要檢查尺面及周圍有無切屑等硬質雜物,如有應清理干凈,用脫脂棉和高純度酒精進行擦洗,不能用手或一般擦布清擦,避免造成人為故障。
㈢ 電器控制裝置設計的基本步驟和方法有哪些
設計方法及步驟
在接到設計任務書後,按原理設計和工藝設計兩方面進行。
1.原理圖設計的步驟
(1)根據要求擬定設計任務。
(2)根據拖動要求設計主電路。在繪制主電路時,可考慮以下幾個方面:
①每台電動機的控制方式,應根據其容量及拖動負載性質考慮其啟動要求,選擇適當的啟動線路。對於容量小(7.5kw以下)、啟動負載不大的電動機,可採用直接啟動}對於大容量電動機應採用降壓啟動。
②根據運動要求決定轉向控制。
③根據每台電動機的工作制,決定是否需要設置過載保護或過電流控制措施。
④根據拖動負載及工藝要求決定停車時是否需要制動控制,並決定採用何種控制方式。
⑤設置短路保護及其他必要的電氣保護。
⑥考慮其他特殊要求:調速要求、主電路參數測量、信號檢測等。
(3)根據主電路的控制要求設計控制迴路,其設計方法是:
①正確選擇控制電路電壓種類及大小。
②根據每台電動機的啟動、運行、調速、制動及保護要求,依次繪制各控制環節(基本單元控制線路)。
③設置必要的聯鎖(包括同一台電動機各動作之間以及各台電動機之間的動作聯鎖)。
④設置短路保護以及設計任務書中要求的位置保護(如極限位、越位、相對位置保護)、電壓保護、電流保護和各種物理量保護(溫度、壓力、流量等)。
⑤根據拖動要求,設計特殊要求控制環節,如自動抬刀、變速與自動循環、工藝參數測量等控制。
⑥按需要設置應急操作。
(4)根據照明、指示、報警等要求設計輔助電路。
(5)總體檢查、修改、補充及完善。主要內容包括:
①校核各種動作控制是否滿足要求,是否有矛盾或遺漏。
②檢查接觸器、繼電器、主令電器的觸點使用是否合理,是否超過電器元件允許的數量。
③檢查聯鎖要求能否實現。
④檢查各種保護能否實現。
⑤檢查發生誤操作所引起的後果與防範措施。
(6)進行必要的參數計算。
(7)正確、合理地選擇各電器元件,按規定格式編制元件目錄表。
(8)根據完善後的設計草圖,按GB/T 6988電氣制圖標准繪制電氣原理線路圖,並按GB/T 5094-1985《電氣技術中的項目代號》要求標注器件的項目代號,按GB 4884-1985《絕緣導線的標記》的要求對線路進行統一編號。
2.工藝設計步驟
(1)根據電氣設備的總體配置及電器元件的分布狀況和操作要求劃分電器組件,繪制電氣控制系統的總裝配圖和接線圖。
(2)根據電器元件的型號、外形尺寸、安裝尺寸繪制每一組件的元件布置圖(如電器安裝板、控制面板、電源、放大器等)。
(3)根據元件布置圖及電氣原理編號繪制組件接線圖,統計組件進出線的數量、編號以及各組件之間的連接方式。
(4)繪制並修改工藝設計草圖後,便可按機械、電氣制圖要求繪制工程圖。最後按設計過程和設計結果編寫設計說明書及使用說明書。
㈣ 冷彎成型機的扭曲怎麼解決
冷彎成型機的扭曲解決方法:
1、變形區中性層計算準確,變形區內用料計算準確,滾輪加工對稱度好。
2、不變形區域盡量不受壓(如滑軌底部),裝配時上下滾輪各區域間隙保持一致。
3、材料咬入前,應根據前道滾壓狀態,設置引導斜口,在穩定受壓前,材料在滾內滑移平穩。
4、滾輪加工准確度是關鍵,為此,專門製作專用工具在投影儀下,放大20倍進行檢測。
5、主傳動邊,採用滾子錐軸承,確保主軸徑向跳動在0.04MM以內外,保證主軸不會左右竄動,普通球軸承自身存在間隙,在精確傳動中不能避免軸向竄動。
6、生產中彎曲扭曲的問題,主要是受力不平衡產生的,左右受力不平衡,左右彎曲,上下受力不平衡,產生扭曲。解決方法:設計受力均衡,加工准確,安裝調整方便。
㈤ 什麼是多迴路控制系統
沒有多迴路控制系統,一般是多迴路調節器,是用微處理機實現多迴路調節功能的數字調節器。
多迴路調節器主要用在單元生產過程中,能完成單元過程的全部或大部調節要求。單元過程的類型很多,因而多迴路調節器的設計有很大的針對性。
各種多迴路調節器在規模、功能和結構上有很大差異。多迴路調節器在高爐、工業爐窯、化工聚合裝置、乙烯裂解等單元性過程裝置上已得到廣泛的應用。一般用它可實現 8~16個調節迴路和200~1500條指令的順序控制和批量控制。
(5)設計板材成形裝置控制迴路擴展閱讀:
多迴路調節器的主要功能由標准軟體模塊提供。這些軟體模塊存放在只讀存儲器(ROM)中不同的用戶在構成自己的控制方案時先從標准軟體模塊中選出需要的模塊作為功能塊;然後指明功能塊間的連接關系和功能塊與過程輸入輸出間的連接關系。
用戶指定的信息被存儲在隨機存取存儲器(RAM)中這一過程稱為控制方案組態,一旦構成組態便形成某一特定用戶的應用系統。其優點是改變控制方案時無需變更調節器的硬體。
㈥ 斷路器自動重合閘裝置的控制迴路設計
斷路器控制迴路原理83
第5章斷路器控制迴路;教學目的:掌握斷路器控制方式、斷路器控制迴路的基;迴路、燈光監視的斷路器控制迴路、燈光監察液壓操作;重點:掌握斷路器控制方式、斷路器控制迴路的基本要;難點:掌握斷路器控制方式、斷路器控制迴路的基本要;第一節概述;一、斷路器控制方式;斷路器是電力系統中最重要的開關設備,在正常運行時;斷路器一般由動觸頭、靜觸頭、滅弧裝置、操動機構及;1.按
第5章 斷路器控制迴路
教學目的:掌握斷路器控制方式、斷路器控制迴路的基本要求、斷路器的基本跳、合閘控制
迴路、燈光監視的斷路器控制迴路、燈光監察液壓操作機構操作斷路器控制迴路 復習舊課:操作電源概述、蓄電池組直流操作直流、硅整流電容儲能裝置直流系統、復式整流裝置直流系統、直流系統的絕緣監察與電壓監察裝置;
重 點:掌握斷路器控制方式、斷路器控制迴路的基本要求、斷路器的基本跳、合閘控制迴路、燈光監視的斷路器控制迴路、燈光監察液壓操作機構操作斷路器控制迴路;
難 點:掌握斷路器控制方式、斷路器控制迴路的基本要求、斷路器的基本跳、合閘控制迴路、燈光監視的斷路器控制迴路、燈光監察液壓操作機構操作斷路器控制迴路; 引入新課:
第一節 概述一、斷路器控制方式
斷路器是電力系統中最重要的開關設備,在正常運行時斷路器可以接通和切斷電氣設備的負荷電流,在系統發生故障時則能可靠地切斷短路電流。
斷路器一般由動觸頭、靜觸頭、滅弧裝置、操動機構及絕緣支架等構成。為實現斷路器的自動控制,在操動機構中還有與斷路器的傳動軸聯動的輔助觸頭。斷路器的控制方式有多種,分述如下。
1.按控制地點分
斷路器的控制方式接控制地點分為集中控制和就地(分散)控制兩種。
(1)集中控制。在主控制室的控制台上,用控制開關或按鈕通過控制電纜去接通或斷開斷路器的跳、合閘線圈,對斷路器進行控制。一般對發電機、主變壓器、母線、斷路器、廠用變壓器35kV以上線路等主要設備都採用集中控制。
(2)就地(分散)控制。在斷路器安裝地點(配電現場)就地對斷路器進行跳、合閘操作(可電動或手動)。一般對10kV線路以及廠用電動機等採用就地控制,可大大減少主控制室的佔地面積和控制電纜數。
2.按控制電源電壓分
斷路器的控制方式接控制電源電壓分為強電控制和弱電控制兩種。
(1)強電控制。從斷路器的控制開關到其操作機構的工作電壓均為直流 110V或 220V。
(2)弱電控制。控制開關的工作電壓是弱電(直流48V),而斷路器的操動機構的電壓是220V。目前在500kV變電所二次設備分散布置時,在主控室常採用弱電一對一控制。
3.按控制電源的性質分
斷路器的控制方式按控制電源的性質可分為直流操作和交流操作(包括整流操作)兩種。
直流操作一般採用蓄電池組供電;交流操作一般是由電流互感器、電壓互感器或所用變壓器提供電源。
二、對斷路器控制迴路的基本要求
斷路器的控制迴路必須完整、可靠,因此應滿足下面一些要求:
(1)斷路器的合、跳閘迴路是按短時通電設計的,操作完成後,應迅速切斷合、跳閘迴路,解除命令脈沖,以免燒壞合、跳閘線圈。為此,在合、跳閘迴路中,接入斷路器的輔助觸點,既可將迴路切斷,又可為下一步操作做好准備。
(2)斷路器既能在遠方由控制開關進行手動合閘和跳閘,又能在自動裝置和繼電保護作用下自動合閘和跳閘。
(3)控制迴路應具有反映斷路器狀態的位置信號和自動合、跳閘的不同顯示信號。
(4)無論斷路器是否帶有機械閉鎖,都應具有防止多次合、跳閘的電氣防跳措施。
(5)對控制迴路及其電源是否完好,應能進行監視。
(6)對於採用氣壓、液壓和彈簧操作的斷路器,應有壓力是否正常,彈簧是否拉緊到位的監視迴路和閉鎖迴路。
(7)接線應簡單可靠、使用電纜芯數應盡量少。
三、控制開關
控制開關又稱萬能轉換開關,是由運行人員手動操作,發出控制命令使斷路器進行跳、合閘的裝置。發電廠和變電所常用的控制開關為LW系列自動復位的控制開關,有三種類型:
(1)LW2系列控制開關:是跳、合閘操作都分兩步進行,手柄和觸點盒有兩個固定位置和兩個操作位置的封閉式控制開關。此種開關常用於火電廠和有人值班的變電所中。
(2)LW1系列控制開關:是跳、合閘操作只用一步,其手柄和觸點只有一個固定位置和兩個操作位置的控制開關。此種開關常用於無人值班的變電所和水電站中。
(3)LWX系列強電小型控制開關:其跳、合閘為一步進行,近年來在各種集控台的控制和300MW以上機組的分控室中已被廣泛應用。下面以LW2型控制開關為例說明控制開關的結構及作用。
1.控制開關的構成
圖5-l是發電廠和變電所普遍應用的LW2-Z型控制開關的結構圖。左端是操作手柄,裝於屏前;與手柄固定連接的方軸上裝有5~8節觸點盒,用螺桿相連裝於屏後,如圖5-1(a)所示。圖5-1(b)是控制開關的左視圖,由圖可見,控制開關的手柄有兩個固定位置和兩個操作位置。固定位置:垂直位置是預備合閘和合閘後;水平位置是預備跳閘和跳閘後。操作位置:右上方為合閘位置,左下方為跳閘位置。 圖5-1 LW2-Z型控制開關結構圖
(a)控制開關外形圖;(b)控制開關左視圖
控制開關的操作過程:
合閘操作:如圖5-1(b)示出手柄為預備合閘狀態,將手柄右旋30°為合閘位置,手放開後在自復彈簧的作用下,手柄復位於垂直位置,成為合閘後位置;
跳閘操作:先將手柄左旋至水平位置,即預備合閘位置,再左旋30°即為跳閘位置,手放開後在自復彈簧的作用下,手柄復位於水平位置,成跳閘後位置。
2.控制開關的觸點盒位置表
控制開關右端的數節觸點盒,其四角均勻固定著四個靜觸點,其觸點外端伸出盒外接外電路,而內端與固定於方軸上的動觸點簧片相配合。由於動觸點(簧片)的形狀及安裝位置的不同,組成14種型號的觸點盒,代號為1、la、2、4、5、6、6a、7、8、10、20、30、40、50,如表5-1所示。其中1、1a、2、4、5、6、6a、7、8型的動觸點是固定於方軸上隨軸
表5-1 LW2-Z和LW2-YZ型觸點盒位置表
轉動的,而後5種觸點
㈦ 玻璃鋼板材如何成型
玻璃鋼板材,採用新型的玻璃纖維紗、玻璃纖維氈、網格布等纖維製品和各種不同的樹脂經過壓擠、模塑、手糊等生產工藝製作而成。
歐升玻璃鋼板材的特點:
1.輕質高強:玻璃鋼材料的相對 密度在1.5~2.0之間,強度可以與高級合金鋼相比,適用於各種極端環境。
2.抗腐蝕:纖維增強塑料,也就是玻璃鋼是良好的耐腐材料,它對大氣、水和一般濃度的酸、鹼、鹽以及多種油類和溶劑都有較好的抵抗能力。
3.電熱性能良好:玻璃鋼是優良的絕緣材料,用來製造絕緣體。高頻下仍能保護良好介電性。
4.可設計性:玻璃鋼可以根據需要,靈活地設計出各種結構產品,來滿足使用要求,可以使產品有很好的整體性。
㈧ 需要一個能控制木板上下,左右傾斜的電路思想,求大神幫下手
分為y軸
直線運動
控制和x軸的傾斜運動控制
y軸直線運動電路中可以採用帶剎車的
電機控制
,外加限位保護
x軸的傾斜運動控制電路可以採用氣缸外加磁
限位開關
。如果你要精確控制的話,可以採用
伺服電機
等,但是成本比較高,具體的根據你的木板的大小安裝位置等決定