⑴ 氣壓制動裝置由什麼組成的
氣壓制動系統供能裝置由以下四個部分組成:
一是產生壓縮空,的空氣壓縮機和儲存壓縮空氣的儲氣筒;
二是將氣體壓力限制在一個安全范圍的調壓閥和安全閥;
三是改善壓縮空氣質量的各種空氣濾清器、油水分離器、空氣乾燥器和防凍器等;四是在一個迴路損壞時用以保護其他迴路,使其中氣壓能不受損失的多迴路保護閥等。
首先,氣壓制動裝置是利用壓縮空氣作為制動裝置的動力源。
特點:制動操縱省力,制動強度大,踏板行程小;但需要消耗發動機的動力;制動較粗暴且結構相對復雜。應用車型:一般載重汽車和部分中型汽車上採用此類氣壓制動裝置。其次,構造主要由空氣壓縮機、制動氣室、儲氣筒、調壓閥、制動控制閥等組成。
①空氣壓縮機:由發動機通過傳動帶、齒輪、或採用凸輪軸直接驅動。按缸數分單缸、雙缸(如東風EQ1090E型汽車用的是單缸、解放CA1092汽車用的是雙缸)。
②制動氣室:把儲氣筒的壓力,轉變為轉動凸輪的機械力。
③儲氣筒:
④調壓閥:調節儲氣筒中壓縮空氣壓力,使其保持在規定壓力范圍。
⑤制動控制閥:控制制動氣室中的工作壓力,並可以使其變化,也可隨動作用(即保證制動氣室氣壓與踏板行程有一定的比例關系)。工作:
駕駛員踩下制動踏板時,拉桿帶動制動控制閥拉臂擺動,使制動控制閥工作,儲氣筒前腔的壓縮空氣經過制動控制閥的上腔進入後制動氣室,使後輪制動。
同時,儲氣筒後腔的壓縮空氣通過制動控制閥下腔進入前制動室。
當放鬆制動踏板時,制動控制閥使各制動氣室通大氣(通常我們聽到的大卡車「哧~~」的聲音,就是氣壓泄壓的聲音)以解除制動。結語:
氣動制動裝置的特點,也確定其應用的車型範圍。在其車型工作原理中,也涉及到其他零部件,但根本作用依舊是保障氣路氣壓等作用,如放氣閥、氣壓表等。
⑵ 氣壓增壓式液力制動傳動裝置有那些主要部件組成
空氣液壓制動傳動裝置(油氣復合式) 一、目的 氣壓制動的長處是小的踏板力和小的踏板行程,能產生大的促動力。液壓制動之長是滯後時間短,摩擦件少,性能穩定,非懸架支承件少,行駛平順性好,適用多種高性能制動器,可用雙輪缸,更合理的布置雙管路系統。 為了兼取氣壓制動和液壓制動兩者的優點,不少重型汽車採用了空氣液壓制動傳動裝置。它和真空加力裝置的原理一樣,只是以壓縮空氣作為動力源。由於壓縮空氣的工作壓力較大,多為(0.45~0.6)mpa,而真空式所具有的最大壓力差,只能略等於大氣壓力。故加力氣室小巧緊湊,安裝位置不受限制,系統布局合理。 二、控制型式 這種制動傳動裝置,由於控制閥的安裝和控制方式的不同,可分為兩種控制型式: (1)直接控制式--利用氣壓控制閥同時直接控制兩個單腔的增壓器或一個雙腔的增壓器(又稱氣頂油式)。 (2)間接控制式--利用一個單腔液壓主缸,同時控制兩個帶有氣壓控制閥的增壓器(又稱油控氣、氣頂油式)。 三、間接控制式的空氣液壓制動傳動裝置 (一)組成和構造特點 圖20-67所示為雙管路油控氣、氣頂油制動系統的組成。它由空氣壓縮機1、調壓器2、貯氣筒3、4組成加力氣源。各管路分別裝有2各自的空氣增壓器,用一個單腔液壓主缸34控制。 圖20-67 間接控制式的空氣液壓制動傳動裝置 1-空氣壓縮機;2-調壓器;3、4-貯氣筒,5、7-輪缸;6、9-空氣增壓器;8-制動主缸;10-氣壓表(二)空氣增壓器 1、空氣增壓器的組成 從圖20-68看出:空氣增壓器是由加力氣室17、輔助缸12和控制閥三部分組成。是氣壓和液壓制動結構的變型體,故省略結構內容。 圖20-68 間接控制的空氣增壓器簡圖 1-加力氣室活塞;2-回位彈簧;3-控制閥活塞;4-放氣螺釘;5-膜片芯管;6-空氣濾清器;7-膜片;
8-排氣閥;9-進氣閥;10-放氣螺釘;11-復合式單向閥;12-輔助缸;13-球閥;14-輔助缸活塞;
⑶ 液壓制動裝置是怎樣工作的
液壓制動裝置工作原理如下
黨液壓制動裝置得電之後,液壓缸升起推動傳動機構打開抱閘當在斷電的情況下,液壓缸自動關閉,抱閘也自動抱住,起到一個及時剎車的作用
⑷ 生活中常見的液壓與氣動傳動實例,簡要說明優缺點
生活中常見的液壓與氣動傳動實例簡要說明,以優缺點液壓比較費事,啟動比較省勁。
⑸ 對於液壓制動系統的排氣,你知道哪些細節
剎車泵處有個φ10的排氣嘴,旋松排氣嘴,放剎車液,直到剎車行程到底,旋緊排氣嘴反復握松剎車,最後必須保持握住。剎車泵有一個φ10的排氣嘴,松開排氣嘴,放剎車液,直到剎車行程結束,擰緊排氣嘴;。取下放氣閥上的防塵罩,在放氣閥,上裝上適 當長度的透明油管,一頭插人容器中,油管的下口不得露出液面。
對於安裝了真空 增壓器的液壓制動系統,應當首先排放真空增壓器上離總泵最近的放氣閥,然 後逐一排放較遠的放氣閥和各分泵上的放氣閥.液壓制動系統必須排凈空氣後,方可正常使用。應先檢查系統內管路連接是否良好,並在制動主缸貯液室內加足制動液,擰緊加油口蓋後再按以下方法排出空氣。
⑹ 氣壓制動裝置
目前,轎車上廣泛裝用真空助力器作為制動助力器,利用發動機喉管處的真空度來幫助駕駛員操縱制動踏板。根據真空助力膜片的多少,真空助力器分為單膜片式和串聯膜片式兩種。
單膜片式 國產轎車都採用此種型式的真空助力器。
工作過程:
1. 真空助力器不工作時(圖a),彈簧15將推桿連同柱塞18推到後極限位置(即真空閥開啟),橡膠閥門9則被彈簧壓緊在空氣閥座上10(即空氣閥關閉)。伺服氣室前、後腔經通道A、控制閥腔和通道B互相連通,並與空氣隔絕。在發動機開始工作、且真空單向閥被吸開後,伺服氣室左右兩腔內都產生一定的真空度。
2. 當制動踏板踩下時,起初氣室膜片座8固定不動,來自踏板機構的操縱力推動控制閥推桿12和控制閥柱塞18相對於膜片座8前移。當柱塞與橡膠反作用盤7之間的間隙消除後,操縱力便經反作用盤7傳給制動主缸推桿2(如下圖)。同時,橡膠閥門9隨同控制閥柱塞前移,直到與膜片座8上的真空閥座接觸為止。此時,伺服氣室前後腔隔絕。
3. 控制閥推桿12繼續推動控制閥柱塞前移,到其上的空氣閥座10離開橡膠閥門9一定距離。外界空氣充入伺服氣室後腔(如下圖),使其真空度降低。在此過程中,膜片20與閥座也不斷前移,直到閥門重新與空氣閥座接觸為止。因此在任何一個平衡狀態下,伺服氣室後腔中的穩定真空度與踏板行程成遞增函數關系。
⑺ 氣壓增壓式液力制動傳動裝置的組成
空氣液壓制動傳動裝置(油氣復合式) 一、目的 氣壓制動的長處是小的踏板力和小的踏板行程,能產生大的促動力。液壓制動之長是滯後時間短,摩擦件少,性能穩定,非懸架支承件少,行駛平順性好,適用多種高性能制動器,可用雙輪缸,更合理的布置雙管路系統。 為了兼取氣壓制動和液壓制動兩者的優點,不少重型汽車採用了空氣液壓制動傳動裝置。它和真空加力裝置的原理一樣,只是以壓縮空氣作為動力源。由於壓縮空氣的工作壓力較大,多為(0.45~0.6)mpa,而真空式所具有的最大壓力差,只能略等於大氣壓力。故加力氣室小巧緊湊,安裝位置不受限制,系統布局合理。 二、控制型式 這種制動傳動裝置,由於控制閥的安裝和控制方式的不同,可分為兩種控制型式: (1)直接控制式--利用氣壓控制閥同時直接控制兩個單腔的增壓器或一個雙腔的增壓器(又稱氣頂油式)。 (2)間接控制式--利用一個單腔液壓主缸,同時控制兩個帶有氣壓控制閥的增壓器(又稱油控氣、氣頂油式)。 三、間接控制式的空氣液壓制動傳動裝置 (一)組成和構造特點 圖20-67所示為雙管路油控氣、氣頂油制動系統的組成。它由空氣壓縮機1、調壓器2、貯氣筒3、4組成加力氣源。各管路分別裝有2各自的空氣增壓器,用一個單腔液壓主缸34控制。 圖20-67 間接控制式的空氣液壓制動傳動裝置 1-空氣壓縮機;2-調壓器;3、4-貯氣筒,5、7-輪缸;6、9-空氣增壓器;8-制動主缸;10-氣壓表(二)空氣增壓器 1、空氣增壓器的組成 從圖20-68看出:空氣增壓器是由加力氣室17、輔助缸12和控制閥三部分組成。是氣壓和液壓制動結構的變型體,故省略結構內容。 圖20-68 間接控制的空氣增壓器簡圖 1-加力氣室活塞;2-回位彈簧;3-控制閥活塞;4-放氣螺釘;5-膜片芯管;6-空氣濾清器;7-膜片;
8-排氣閥;9-進氣閥;10-放氣螺釘;11-復合式單向閥;12-輔助缸;13-球閥;14-輔助缸活塞;
15-片狀推叉;16-加力氣室推桿;17-加力氣室;18-保養孔 2.空氣增壓器的工作情況 (1)不制動時–––控制閥活塞3左側c室無控制油壓,控制閥的膜片7和活塞3在其回位彈簧的作用下被推到左側極端位6置,進氣閥9關閉,壓縮空氣不能進入d室。排氣閥8開啟,使d和e室與大氣相通。加力氣室的a室、b室也與大氣相通, 活塞1被推到左側極端位置。輔助缸活塞14與推桿16用銷連接,也處在左側極端位置。此時,片狀推叉15球端將球閥13推開,使輔助缸左右兩腔連通,增壓器處於不工作狀態,制動主缸和輔助缸油壓與大氣壓力相等。 (2)制動時–––制動主缸的控制油液進入輔助缸活塞14的左側,通過活塞14的中心孔,球閥13、出油閥11進入各自輪缸而制動。另一部分油液經節流小孔進入c室,推動活塞3和膜片7及芯管5右移。先消除排氣閥間隙使排氣閥8關閉,切斷d室和e室的通道,再將進氣閥9推開。貯氣筒的壓縮空氣進入d室,並經空氣管進入a室,推動活塞1、推桿16和活塞14右移。b室中的空氣經e室排出,並產生較小的噓聲。此時,由於輔助缸活塞14離開了左側的極端位置,片狀推叉15對球閥13的推力消失,球閥立即關閉,活塞14右腔的油壓升高。此時,作用在活塞14上的壓力,等於增壓推力和控制油壓推力之和。但前者比後者更大,因而減輕了操縱力。 (3)維持制動時–––若踏板停止不動時,隨著輔助缸活塞的右移,控制閥活塞左側的油壓趨於下降,膜片總成左移,進氣閥9關閉,控制閥即處於「雙閥關閉」的平衡狀態。此時,控制活塞左側的控制油壓推力與右側膜片上的氣壓推力平衡。輔助缸活塞左側的推力也與右側的總阻抗力平衡。 可見,制動主缸輸出的控制油壓,決定了控制閥隨動輸入的氣壓。當加力氣室的氣壓達到一定值時(0.6mpa),輔助缸輸出的油壓達13mpa。制動踏板再繼續踩下時,增壓器即進入定值加力段。 (4)放鬆制動時–––制動主缸的輸出油壓撤消,作用在控制閥活塞3和輔助缸活塞14左側的油壓即撤消回位。排氣閥8開啟,a室的壓縮空氣經空氣管返回d室,並經排氣間隙、芯管和e室帶著較大的噓聲排入大氣。活塞1、活塞3、活塞14都返回左側的極端位置。片狀推叉15又頂開球閥13,各輪缸油管的油液推開復合式單向閥11返回輔助缸和主缸,制動即解除。當閥門11外側油壓達到殘余壓力值時即關閉,使輔助缸輸出管路和各輪缸間保持一定的殘壓,制動主缸內無復合式單向閥,它和輔助缸間無殘壓存在。 (5)增壓器失效時和無壓縮空氣時 由於輔助缸活塞有中心孔和球閥13,在增壓器失效時和無壓縮空氣時,能進行應急制動。但制動力顯著降低,且踏板沉重。因此項應急功能必須存在,輔助缸只能是單活塞式,雙管路系統只能是並裝兩個空氣增壓器。 另外,從工作過程得知:在踩下制動踏板和放鬆制動踏板時,空氣濾清器6處會有一小、一大的排氣噓聲,這是人工檢驗空氣增壓器好壞的表徵。
⑻ 氣壓和液壓制動裝置分別由哪些部件組成是怎樣工作的
氣動制動裝置由制動踏板、空氣壓縮機、氣壓計、制動閥、制動氣室、車輪制動器、制動管路等組成。當踩下制動踏板時,制動閥打開從儲氣筒到制動氣室的通道,使儲氣筒中的壓縮空氣通過制動閥進入制動氣室,制動蹄被推開,制動鼓被傳動部件壓住,從而使車輪制動。液壓和氣動傳動系統一般由能量裝置、執行機構、控制和調節裝置、輔助裝置和工作介質組成。
從工作模式來看,液壓剎車更加靈敏、快捷。此外,液壓制動也用於滿足安裝防抱死制動系統(ABS)的要求。制動閥是氣動行車制動系統中的主要控制裝置,用於跟隨動作,保證強烈的踏板感覺,即當輸入壓力不變時,其輸出壓力與輸入控制信號——踏板行程和踏板力呈一定的增函數關系。其輸出壓力的變化應在一定范圍內逐漸變化。制動閥的輸出壓力可以作為傳動裝置直接輸入制動氣室作為作動管路壓力,但必要時也可以作為控制信號輸入另一個控制裝置(如繼動閥)。
⑼ 液壓制動裝置由哪些部件組成是怎樣工作的
液壓制動系統的結構
剎車分泵是制動系統不可缺少的零件,它主要的作用是頂動剎車片,剎車片摩擦剎車鼓,使車速降低和靜止。
踩下剎車後總泵產生推力將液壓油壓到分泵,分泵內部的活塞受到液壓力開始移動將剎車片推動。
鼓式制動器
鼓式制動器主要包括制動輪缸、制動蹄、制動鼓、摩擦片、回位彈簧等部分。主要是通過液壓裝置使摩擦片與隨車輪轉動的制動鼓內側面發生摩擦,從而起到制動的效果。
盤式制動器
盤式制動器也叫碟式制動器,主要由制動盤、制動鉗、摩擦片、分泵、油管等部分構成。盤式制動器通過液壓系統把壓力施加到制動鉗上,使制動摩擦片與隨車輪轉動的制動盤發生摩擦,從而達到制動的目的。
與封閉式的鼓式制動器不同的是,盤式制動器是敞開式的。制動過程中產生的熱量可以很快散去,擁有很好的制動效能,現在已廣泛應用於轎車上。
ABS油泵
現在的轎車上,ABS已經是標配。ABS油泵是它的核心部件,主要由電磁閥、控制活塞、液壓泵和儲能器等組成,是在原液壓制動系統中增設一套液壓控制裝置,控制制動管路中容積的增減,以控制制動壓力的變化。
制動力如何產生的
關於制動力的理論非常深奧,大家只要知道以下幾點就好了:
1制動力來自路面對車輪的一個反作用力,當然這個反作用力的誘導即是制動片與旋轉的制動盤或制動鼓接觸磨擦產生的磨擦力矩;
2制動力不僅取決於摩擦力矩,還取決於輪胎與路面間的附著力(它等於輪胎上的垂直負荷與輪胎和路面間的附著系數的乘積),即制動力最大隻能等於附著力。而磨擦力 的大小決定於輪缸的張力,摩擦系數和制動鼓及制動蹄的尺寸。
3當制動力等於附著力時,車輪將被抱死在路面上拖滑。拖滑使胎面局部嚴重磨損,在路面 上留下一條黑色的拖印。同時,使胎面產生局部高溫,胎面局部稀化,好象輪胎與路面間被一層潤滑劑隔開,使附著系數下降。因此最大制動力和最短的制動距離, 是在車輪將要抱死而未完全抱死時出現的。
⑽ 液壓制動系統的主要組成部件有哪四種
一套簡單的液壓制動系統如—1圖所示,它由制動踏板1、主缸推桿2、主缸活塞3、制動主缸4、制動油管5、回位彈簧6、制動輪缸7、輪缸活塞8、制動鼓9、制動蹄10、制動蹄片11、制動底板12、支承銷13組成。
金屬的制動鼓安裝在輪轂上(圖中輪轂沒有顯示),它與車輪相連接,以它的內圓面為工作表面,隨車輪一起旋轉。 制動底板一般安裝在車橋上,並不旋轉,在制動底板上安裝著兩個用於支撐制動蹄的支承銷13。
制動蹄的外圓面上有制動蹄(摩擦)片11。制動底板上固定安裝著制動輪缸7,通過油管5與制動主缸相通,主缸中的輪缸活塞8可以在司機的操控下在缸內移動。不制動時,制動鼓的內圓工作面與制動蹄之間有一定的間隙,車輪和制動鼓可以自由旋轉。
需要制動(剎車)時,司機踏下制動踏板1,推桿推動主缸活塞3右移,主缸內的制動液流向輪缸。輪缸內的兩個輪缸活塞8推動兩個制動蹄繞著支承銷13轉動,制動蹄摩擦片緊壓在制動鼓的內圓工作面上。
不旋轉的制動蹄對旋轉著的制動鼓產生一個摩擦力矩,摩擦力矩的方向與車輪旋轉方向相反。 制動鼓將這個力矩傳給車輪,由於車輪與路面之間有附著作用,車輪對路面作用一個向前的周緣力匕,同時路面也對車輪作用一個向後的反作用力,也就是制動力Fb,制動力由車輪傳到車(橋)架和車身,使得整個汽車產生一定的減速度,並且制動力越大,減速度越大。
汽車的動能轉化為制動蹄摩擦片與制動鼓(及輪胎面與地面)之間由摩擦產生的熱能,並散發到大氣中。 當放開制動踏板後,制動輪缸內的制動液在制動蹄回位彈簧6拉壓作用下迴流,輪缸活塞和制動蹄隨之回位,摩擦力矩和制動力FB消失,制動作用停止。
通過以上的討論可以想到,阻礙汽車運動的制動力Fb的大小不僅取決於摩擦力矩,還與輪胎和路面之間的附著條件有關。如果如前所述汽車行駛在冰雪路面上,附著力很小,這時的汽車就不可能產生大的制動效果。 當然今後在討論汽車制動系統的結構時,都假設輪胎與地面之間具有良好的附著條件。