導航:首頁 > 裝置知識 > 配電網無功補償裝置的設計

配電網無功補償裝置的設計

發布時間:2022-04-21 03:47:16

Ⅰ 目前國內無功補償設備的內型,及工作原理和實際意義 主要針對煤礦

目前國內煤礦行業無功補償設備現狀

針對煤炭行業的電力負荷特點,國內外對動態無功補償技術都進行研究,主要類型分為如下幾種:

1、分組投切電容器方式。真空接觸器(或斷路器)投切方式,投切時開關觸頭間會產生電弧,因電容迴路的通斷過程中會產生較高的操作過電壓和沖擊電流。所以往往在迴路中串聯電抗器來抑制投切涌流,並能治理相應諧波。原理簡單,成本低是其特點。

2、靜止型動態無功補償裝置(SVC)。該裝置為晶閘管控制電抗器+濾波裝置(TCR+FC)方式或者晶閘管投切電容器(TSC)。其功能具有平滑調節無功補償容量、系統響應速度快,並能綜合治理諧波,普遍應用在煤礦系統、冶金行業、電力系統和電氣化鐵路等。

3、磁閥式補償方式。裝置由補償電容器和並聯可調電抗器組成,通過高阻抗電抗器磁通的調節,使其與並聯電容器中多餘的容性無功容量平衡。這是自飽和電抗器補償方式的一種變型產品,因其損耗大,運行成本高,調節速度慢,補償范圍有一定的限制,屬於淘汰技術。

這些補償方式都存在一些不足之處,結合煤礦配電形式,研發適合於煤礦應用的無功補償設備是當務之急,也是響應國家政策。

目前煤礦配電網普遍採用的無功補償方式有三種:分別為集中補償、分散補償和就地補償。

1、集中補償

集中補償是將電容器裝設在用戶專用變電所或配電室的低壓母線上,對無功進行統一補償。這種補償方式比較適合在負荷集中、離變電所較近,無功補償容量較大的場合。

徐州新集煤礦就採用了集中補償方式,此礦分析了分組投切電容器組,調壓調無功容量補償,動態無功補償(SVC)。三種方案的經濟性,確定了採用分組投切電容器組代替原有固定投切電容器,保證了該礦的供電質量和功率因數。

集中補償的優點是:可以就地補償變壓器的無功功率損耗。由於減少了變壓器的無功電流,相應地減少了變壓器的容量,也就是說,可以增加變壓器所帶的有功負荷;可以補償變電所母線、變壓器和受電線路的功率損耗,節約能源;當負荷變化時,能對母線電壓起一定的調節作用,從而改善電壓質量;便於管理、維護、操作及集中控制。

缺點是:它只能減少裝設點以上線路和變壓器因輸送無功功率所造成的損耗,而不能減少用戶內部通過低壓線路向用電設備輸送無功功率所造成的損耗。

2、分散補償

分散補償是將電容器組按低壓配電網的無功負荷分布分組裝設在相應的母線上,或者直接與低壓干線相聯接,形成低壓電網內部的多組分散補償方式,適合負荷比較分散的補償場合。

雞西礦業集團就採用了分散補償方式,具體做法是應用礦用隔爆型無功功率自動補償裝置安裝在某礦綜采工作面移動變電站低壓側。

分散補償的優點:對負荷比較分散的電力用戶,有利於對無功進行分區控制,實現無功負荷就地平衡,減少配電網路和配電變壓器中無功電流的損耗和電壓損失,使線損顯著降低;在負載不變的條件下,可增加網路的輸出容量;補償方式靈活,易於控制。

分散補償的缺點是:如果裝設的電容器無法分組,則補償容量無法調整,運行中可能出現過補償或欠補償;補償設備的利用率較集中補償方式低;安裝分散,維護管理比較不方便。

3、就地補償

這種方法是就地補償用電設備(主要是電動機)所消耗的無功功率,將電容器組直接裝設在用電設備旁邊,與用電設備的供電迴路並聯,以提高用電系統的功率因數,從而獲得明顯的降損效益。

就地補償的優點是:無功電流僅僅與附近的用電設備相互交換,不流向網路其它點,在網路中無功電流的無功損耗和電壓損耗小,既對系統補償,也對用戶內部無功損耗補償,大大減少了電能損失,被補償網路運行最經濟;在配電設備不變的情況下,可增加網路的供電容量,導線截面可相應減小;適應性好,既可三相補償,對容量較大的電動機個別補償,也可進行兩相、單相補償,並且單台補償裝置的容量較小,電容器投切沖擊電流小,對於賓館、大樓等無功補償特別適合。

就地補償的缺點是:對於電網內公用負荷,與集中補償和分散補償相比,補償相同容量的無功負荷所需的補償電容器總容量和補償裝置總數量增加,由此引起投資較大,補償裝置利用率較低。同時由於井下現場環境惡劣,維護、保養跟不上,極易造成設備損壞。[26]

由於以上缺點的存在,國內很多煤礦按照經濟運行原則,對礦井的電容器無.功補償採用集中補償與分散補償相結合的方式。在礦井地面變電站主變母線上設置電容器,補償全礦的無功功率。電容器分組設置,需要時設自動跟蹤補償裝置,以調節全礦功率因數;在井下中央變電所或採掘工作面移變二次側裝設電容器,作為分散補償;對於容量大,長期穩定運行且不需反轉或反接制動的電動機,採用就地個別補償。

焦作煤業有限公司採用了集中與就地結合補償的補償方式,採取的具體方法是,將離礦井地面變電所近且用電量小的負荷,如地面生活用電,壓氣機房的負載採用集中補償。對於負荷相對集中的場地,如機修車、風井等採用分散補償。對於距離遠,且負荷較大的電動機(如採煤機、水泵等)採用個別補償。

通過對國內煤礦常用補償方式的分析,可以看到雖然都採取各種補償方式盡量降低網損,但很多煤礦配電網路的無功補償依舊存在很多問題,具體體現如下:

1、補償方式單一

通過對充州礦區各大煤礦補償方式的研究,方式單一,大都只採取一種補償方式。有些煤礦採用高壓集中補償,發現煤礦無功補償方在6kV側裝設高壓這種方式只能對6kV母線進行補償,對煤礦內部的補償幾乎沒有效果。

2、補償位置選擇不理想

由於煤礦大型電力電子裝置很多,如提升機功率680kw,很多煤礦直接對其就地補償,但這種對大容量量晶閘管電源供電的重型負荷的補償,會致使電網波形畸變,諧波分量增大,功率因素降低。更由於此類負載經常是快速變化,諧波次數增高,危急供電質量,同時對通訊設備影響也很大,所以此類負載採用就地補償是不安全,不恰當的。

3、補償容量不足

一般煤礦遠離供電變電所,供電電壓波動很大,正常設計的電容器在電壓升高超出自動裝置的設定范圍時,就會退出運行失去補償作用。

通過以上分析,可以發現現在的煤礦配電網無功補償容量計算和補償地點的選擇都存在著諸多問題,必須採用無功優化的方式,對全礦配電網進行潮流計算,才能有效地確定補償容量和補償方式。

二、煤礦行業無功補償設備發展趨勢——靜止無功發生器

靜止無功發生器的主體是一個電壓源型逆變器,由可關斷晶閘管適當的通斷,將電容上的直流電壓轉換成為與電力系統電壓同步的三相交流電壓,再通過電抗器和變壓器並聯接入電網。適當控制逆變器的輸出電壓,就可以靈活地改變其運行工況,使其處於容性、感性或零負荷狀態。與靜止無功補償器相比,靜止無功發生器響應速度更快,諧波電流更少,而且在系統電壓較低時仍能向系統注入較大的無功。

隨著電力電子技術的日新月異以及各門學科的交叉影響,靜止無功補償的發展趨勢主要有以下幾點:

1、在城網改造中,運行單位往往需要在配電變壓器的低壓側同時加裝無功補償控制器和配電綜合測試儀,因此提出了無功補償控制器和配電綜合測試儀的一體化的問題。

2、快速准確地檢測系統的無功參數,提高動態響應時間,快速投切電容器,以滿足工作條件較惡劣的情況(如大的沖擊負荷或負荷波動較頻繁的場合)。隨著計算機數字控制技術和智能控制理論的發展,可以在無功補償中引入一些先進的控制方法,如模糊控制等。

3、目前無功補償技術還主要用於低壓系統。高壓系統由於受到晶閘管耐壓水平的限制,是通過變壓器接入的,如用於電氣化鐵道牽引變電所等。研製高壓動態無功補償的裝置則具有重要意義,關鍵問題是要解決補償裝置晶閘管和二極體的耐壓,即多個晶閘管元件串聯及均壓、觸發控制的同步性等。

4、由單一的無功功率補償到具有濾波以及抑制諧波的功能。隨著電力電子技術的發展和電力電子產品的推廣應用,供電系統或負荷中含有大量諧波。研製開發兼有無功補償與電力濾波器雙重優點的晶閘管開關濾波器,將成為改善系統功率因數、抑制諧波、穩定系統電壓、改善電能質量的有效手段。

Ⅱ 10KV配電網線路上在哪些地方會有無功補償

1、10KV配電網線路上在哪些地方會有無功補償?
答:一般是在變電站內的10kV母線上設置安裝10kV電容補償裝置。用電大戶的配電線路的
末端,有時也會安裝小型10kV電容器。
2、有沒有一些大型設備直接使用10kV電壓?
答:有,比如大型軋鋼廠的軋鋼電機,大型油田的注水用電動機,水泥廠的球磨機,就是用
10kV電動機的。
3、10KV以下配電網還經過哪些等級然後到達我們的家庭用電220V?
答:10kV經過變壓器直接降壓為380/220V。
解釋:10kV配電系統是三相的,也就是三根導線是不同相位的火線。
10kV經過變壓器直接降壓為380/220V。
這是說:
1)、380/220V是指三相四線(五線)制電力系統。即:三根火線(A、B、C三相),一
根零線(N線),五線制是還有一根設備外殼接地保護線(Pe線)。
2)、380V,是在三根不同相位的火線之間的電壓是380V,一般用來接非同步電動機或者
三相用電設備,接設備時需要三根或者四根導線(三火或者三火一零)。
3)、220V,是指單相火線(一根火線)對零線的電壓是220V,一般用來照明,或者接
單相用電設備,比如家用電冰箱、電視機、個人電腦燈小型單相設備。接設備時
可以接兩條線(一火一零),但現在都用三條線,是在一火一零的基礎上,再加
一條接地保護線(Pe)。
所以說,我國10KV以下配電網經過一級變壓器就可以到達我們的家庭用電220V,只不過接法不同而已。

Ⅲ 10kv變電站無功功率補償應該裝設在哪一個電壓等級

一般而言,10kv變電站無功功率補償裝設於低壓側,即6kV或400V電壓等級。
變壓器無功補償分為高補和低補兩種。高補為在配電變壓器高壓側裝設補償設備,低補為在低壓側裝設補償設備集中補償為主。
根據《國家電網公司電力系統無功補償配置技術原則》第六章《10kV及以下電壓等級的無功補償》第二十五條:配電網的無功補償以配電變壓器低壓側集中補償為主,以高壓補償為輔。配電變壓器的無功補償裝置容量可按變壓器最大負載率為75%,負荷自然功率因數為0.85考慮,補償到變壓器最大負荷時其高壓側功率因數不低於0.95,或按照變壓器容量的20%~40%進行配置。故除特殊情況外,無功補償裝置安裝在變壓器低壓側。

Ⅳ 配電網電壓不平衡治理措施有哪些

由不對稱負荷引起的電網三相電壓不平衡可以採取的解決辦法:
1、將不對稱負荷分散接在不同的供電點,以減少集中連接造成不平衡度嚴重超標的問題。
2、使用交叉換相等辦法使不對稱負荷合理分配到各相,盡量使其平衡化。
3、加大負荷接入點的短路容量,如改變網路或提高供電電壓級別提高系統承受不平衡負荷的能力。
4、裝設平衡裝置。 簡要列出以上幾種解決三相電壓或電流不平衡對電網及電能質量危害的技術措施。
具體應該採取哪一種措施更為合理有效,還要根據實際情況,經過技術和經濟比較後確定實施。
在低壓三相四線制的城市居民和農網供電系統中:由於用電戶多為單相負荷或單相和三相負荷混用,並且負荷大小不同和用電時間的不同。所以,電網中三相間的不平衡電流是客觀存在的,並且這種用電不平衡狀況無規律性,也無法事先預知。導致了低壓供電系統三相負載的長期性不平衡。對於三相不平衡電流,電力部門除了盡量合理地分配負荷之外幾乎沒有什麼行之有效的解決辦法。
電網中的不平衡電流會增加線路及變壓器的銅損,還會增加變壓器的鐵損,降低變壓器的出力甚至會影響變壓器的安全運行,最終會造成三相電壓的不平衡。
調整不平衡電流無功補償裝置-自動調補電容器組,有效地解決了這個難題,該裝置具有在補償系統無功的同時調整不平衡有功電流的作用。其理論結果可使三相功率因數均補償至1,三相電流調整至平衡。實際應用表明,可使三相功率因數補償到0.95以上,使不平衡電流調整到變壓器額定電流的10%以內。
根據wangs定理(王氏定理),在相間跨接的電容可以在相間轉移有功電流。調整不平衡電流無功補償裝置就是利用wangs定理來進行設計的,在各相與相之間以及各相與零線之間恰當地接入不同數量的電容器,不但可以使各相都得到良好的補償,而且可以調整不平衡有功電流。
換相開關通過智能化邏輯判斷自動選擇供電相,自動調整三相負荷的不平衡。降低電能在傳輸過程中的損耗,最大化的提高電能利用率的同時增強了電網供電的可靠性

Ⅳ 你知道哪些關於優點補償法的知識

前言 《國家電網公司農網「十一五電壓質量和無功電力規劃綱要》提出,綱要指導思想為:以公司「新農村、新電力、新服務農電發展戰略為指導,以安全、質量、效益為核心,堅持科技進步,全面提高農網電壓無功綜合管理水平,持續改善供電質量,降低電能損耗,為社會主義新農村建設提供優質、經濟、可靠的電力供應。切實達到《國家電網公司電力系統電壓質量和無功電力管理規定》的「無功補償配製應按照分散就地補償與變電站集中補償相結合,以分散為主;高壓補償與低壓補償相結合,以低壓為主;調壓與降損相結合,以降損為主」的要求。無功補償的原理 在交流電路中,由電源供給負載的電功率有兩種;一種是有功功率,一種是無功功率。有功功率是保持用電設備正常運行所需的電功率,是將電能轉換為其他形式能量(機械能、光能、熱能)的電功率。無功功率比較抽象,它是電路內電場與磁場的交換,在電氣設備中建立和維持磁場的電功率。它不對外作功,而是轉變為其他形式的能量。凡是有電磁線圈的電氣設備,要建立磁場,就要消耗無功功率。無功功率決不是無用功率,它的用處很大。電動機需要建立和維持旋轉磁場,使轉子轉動,從而帶動機械運動,電動機的轉子磁場就是靠從電源取得無功功率建立的。變壓器也同樣需要無功功率,才能使變壓器的一次線圈產生磁場,在二次線圈感應出電壓。因此,沒有無功功率,電動機就不會轉動,變壓器也不能變壓,交流接觸器不會吸合。(打個比方,農村修水利需要開挖土方運土,運土時用竹筐裝滿土,挑走的土好比是有功功率,挑空竹筐就好比是無功功率,竹筐並不是沒用,沒有竹筐泥土怎麼能運到堤上?)在正常情況下,用電設備不但要從電源取得有功功率,同時還需要從電源取得無功功率。如果電網中的無功功率供不應求,用電設備就沒有足夠的無功功率來建立正常的電磁場,這些用電設備就不能維持在額定情況下工作,用電設備的端電壓就要下降,從而影響用電設備的正常運行。但是從發電機和高壓輸電線供給的無功功率遠遠滿足不了負荷的需要,所以在電網中要設置一些無功補償裝置來補充無功功率,以保證用戶對無功功率的需要,這樣用電設備才能在額定電壓下工作。無功補償是把具有容性功率負荷的裝置與感性功率負荷並聯接在同一電路,能量在兩種負荷之間相互交換。這樣,感性負荷所需要的無功功率可由容性負荷輸出的無功功率補償。採用無功補償可以收到以下效果:1) 根據用電設備的功率因數,可測算輸電線路的電能損失。通過現場技術改造,可使低於標准要求的功率因數達標,實現節電目的。2) 採用無功補償技術,提高低壓電網和用電設備的功率因數,已成為節電工作的一項重要措施。3) 無功補償,它就是藉助於無功補償設備提供必要的無功功率,以提高系統的功率因數,降低能耗,改善電網電壓質量,穩定設備運行。4) 減少電力損失,一般工廠動力配線依據不同的線路及負載情況,其電力損耗約2%--3%左右,使用電容提高功率因數後,總電流降低,可降低供電端與用電端的電力損失。5) 改善供電品質,提高功率因數,減少負載總電流及電壓降。於變壓器二次側加裝電容可改善功率因數提高二次側電壓。6) 延長設備壽命。 改善功率因數後線路總電流減少,使接近或已經飽和的變壓器、開關等機器設備和線路容量負荷降低,因此可以降低溫升增加壽命(溫度每降低10°C,壽命可延長1倍)7) 最終滿足電力系統對無功補償的監測要求,消除因為功率因數過低而產生的罰款。8) 無功補償可以改善電能質量、降低電能損耗、挖掘發供電設備潛力、無功補償減少用戶電費支出,是一項投資少,收效快的節能措施。9) 無功補償技術對用電單位的低壓配電網的影響以及提高功率因數所帶來的經濟效益和社會效益,確定無功功率的補償容量,確保補償技術經濟、合理、安全可靠,達到節約電能的目的。無功補償的合理配置原則 從電力網無功功率消耗的基本狀況可以看出,各級網路和輸配電設備都要消耗一定數量的無功功率,尤以低壓配電網所佔比重最大。為了最大限度地減少無功功率的傳輸損耗,提高輸配電設備的效率,無功補償設備的配置,應按照「分級補償,就地平衡」的原則,合理布局。1) 總體平衡與局部平衡相結合,以局部為主。2) 電力部門補償與用戶補償相結合。在配電網路中,用戶消耗的無功功率佔50%~60%,其餘的無功功率消耗在配電網中。為了減少無功功率在網路中的輸送,要盡可能地實現就地補償,就地平衡,所以必須由電力部門和用戶共同進行補償。3) 分散補償與集中補償相結合,以分散為主。集中補償,是在變電所集中裝設較大容量的補償電容器。分散補償,指在配電網路中分散的負荷區,如配電線路,配電變壓器和用戶的用電設備等進行的無功補償。集中補償,主要是補償主變壓器本身的無功損耗,以及減少變電所以上輸電線路的無功電力,從而降低供電網路的無功損耗。但不能降低配電網路的無功損耗。因為用戶需要的無功通過變電所以下的配電線路向負荷端輸送。所以為了有效地降低線損,必須做到無功功率在哪裡發生,就應在哪裡補償。所以,中、低壓配電網應以分散補償為主。4) 功補償的原則。提高用電單位的自然功率因數,應該遵循:全面規劃,合理布局,分級補償,就地平衡;集中補償與分散補償相結合,以分散補償主;高壓補償與低壓補償相結合,以低壓補償為主;調壓與降損相結合,以降損為主的原則.影響功率因數的主要因素 功率因數的產生主要是因為交流用電設備在其工作過程中,除消耗有功功率外,還需要無功功率。當有功功率P一定時,如減少無功功率Q,則功率因數便能夠提高。在極端情況下,當Q=0時,則其力率=1。因此提高功率因數問題的實質就是減少用電設備的無功功率需要量。1.非同步電動機和電力變壓器是耗用無功功率的主要設備。非同步電動機的定子與轉子間的氣隙是決定非同步電動機需要較多無功的主要因素。而非同步電動機所耗用的無功功率是由其空載時的無功功率和一定負載下無功功率增加值兩部分所組成。所以要改善非同步電動機的功率因數就要防止電動機的空載運行並盡可能提高負載率。變壓器消耗無功的主要成份是它的空載無功功率,它和負載率的大小無關。因而,為了改善電力系統和企業的功率因數,變壓器不應空載運行或長其處於低負載運行狀態。2. 供電電壓超出規定范圍也會對功率因數造成很大的影響。當供電電壓高於額定值的10%時,由於磁路飽和的影響,無功功率將增長得很快,據有關資料統計,當供電電壓為額定值的110%時,一般工廠的無功將增加35%左右。當供電電壓低於額定值時,無功功率也相應減少而使它們的功率因數有所提高。但供電電壓降低會影響電氣設備的正常工作。所以,應當採取措施使電力系統的供電電壓盡可能保持穩定。3. 電網頻率的波動也會對非同步電機和變壓器的磁化無功功率造成一定的影響。4. 以上影響電力系統功率因數的一些主要因素,因此必須要尋求一些行之有效的、能夠使低壓電力網功率因數提高的一些實用方法,使低壓網能夠實現無功的就地平衡,達到降損節能的效果。低壓配電網無功補償的方法 提高功率因數的主要方法是採用低壓無功補償技術,我們通常採用的方法主要有三種:隨機補償、隨器補償、跟蹤補償。1. 隨機補償:隨機補償就是將低壓電容器組與電動機並接,通過控制、保護裝置與電機,同時投切。隨機補償適用於補償電動機的無功消耗,以補勵磁無功為主,此種方式可較好地限制用電單位無功負荷。隨機補償的優點:用電設備運行時,無功補償投入,用電設備停運時,補償設備也退出,而且不需頻繁調整補償容量。具有投資少、佔位小、安裝容易、配置方便靈活,維護簡單、事故率低等。2. 隨器補償:隨器補償是指將低壓電容器通過低壓保險接在配電變壓器二次側,以補償配電變壓器空載無功的補償方式。配變在輕載或空載時的無功負荷主要是變壓器的空載勵磁無功,配變空載無功是用電單位無功負荷的主要部分,對於輕負載的配變而言,這部分損耗占供電量的比例很大,從而導致電費單價的增加。隨器補償的優點:接線簡單、維護管理方便、能有效地補償配變空載無功,限制農網無功基荷,使該部分無功就地平衡,從而提高配變利用率,降低無功網損,具有較高的經濟性,是目前補償無功最有效的手段之一。3. 跟蹤補償:跟蹤補償是指以無功補償投切裝置作為控制保護裝置,將低壓電容器組補償在大用戶0.4kv母線上的補償方式。適用於100kVA以上的專用配變用戶,可以替代隨機、隨器兩種補償方式,補償效果好。跟蹤補償的優點是運行方式靈活,運行維護工作量小,比前兩種補償方式壽命相對延長、運行更可靠。應優先選用跟蹤補償方式。高壓配電網無功補償:1. 為提高10kV配電線路的供電可靠性和供電可靠率,使電力系統運行穩定、安全、經濟。通過城、農網的建設與改造工作,對10kV配電線路加裝無功補償裝置系統,能使配電網供電能力和客戶端電壓質量明顯改善、供電可靠性顯著提高。2.國家電力公司下發關於電力行業創一流的文件中,要求10kV功率因數不小於0.9,線損不大於5%,及電壓質量和無功補償的運行管理等內容,其主要解決的問題關鍵之一,是在10kV線路中投入一定的電容器,採用固定或自動相結合的投入方式實現無功補償。如果在一條供電線路中投入固定的電容器組,一般是按線路低負荷進行計算,而自動補償量是在線路滿負荷時計算出來的值,一條線路有固定和自動補償兩種方式相互配合,即可達到理想的效果。3. 無功補償的原則是就地平衡,根據農網配電線路的實際情況比較復雜,不可能是統一模式,所以要採用分散和集中、固定和自動相結合的方法,分三步進行:一是變電所內按主變壓器容量的15%左右安裝固定補償電容器組。二是在線路負荷中心或某處按低負荷時的無功需求量安裝固定補償電容器組。三是在線路負荷中心的上側安裝自動補償電容器組。4. 對於農網主要使用的10 kV配網系統,完整的無功補償應該包括變電站集中補償、10 kV線路補償和用戶端低壓補償,再加上隨機補償,即「3級補償+隨機補償」(「3+1」模式)。經驗估算:當COSφ約在0.6~0.7時,可按饋路實際負荷的15%左右補償;或按無功缺口的2/3 補償。5. 考慮到兼顧降低線損、提高力率與電壓的效果,線路補償原則是通過在線路電桿上安裝電容器實行單點或多點電容器補償,單點補償地點選在離線路首端2/3處,補償的容量應為無功負荷的2/3;兩點補償分別裝設在距首端2/5和4/5處;若線路較長,負荷較大,實施固定補償與自動補償相結合、在線路上三點進行分散補償:第一組裝設在該線路2/7處為固定補償;第二組為自動補償,裝設在該線路的4/7處,也是負荷較為集中地段;第三組為固定補償,裝設在該線路的6/7處;多點補償是採用分支線分段補償方式,對分支較大或線路較長負載自然功率因數低的線路進行補償。根據農村實際狀況,農網線路補償的補償點不宜過多;控制方式應從簡;保護方式可採用熔斷器和避雷器作為過電流和過電壓簡單保護。6. 確定某一條配電線路的補償容量,應根據該線路的平均無功負荷和最小無功負荷計算,當線路的最小無功負荷小於平均無功負荷的2/3時,考慮到無功不應倒送,可安裝固定的補償裝置,但應按最小無功負荷確定補償容量。當線路中有較大無功負荷點時,除應考慮與線路始端的距離外,也應考慮大的無功負荷點。實際裝設補償裝置每組以100~200 kvar為宜。無功功率補償容量的選擇方法 無功補償容量以提高功率因數為主要目的時,補償容量的選擇分兩大類討論,即單負荷就地補償容量的選擇(主要指電動機)和多負荷補償容量的選擇(指集中和局部分組補償)。

Ⅵ 無功補償及補償裝置的選擇

第一講:基礎知識
一、為什麼要進行無功補償?
交流電力系統需要電源供給兩部分能量,一部分用於作功而被消耗掉,這部分能量將轉換成機械能、光能、熱能和化學能,我們稱之為「有功功率」。另一部分能量是用來建立磁場,用於交換能量使用的,對於外部電路它並沒有作功,有電能轉換為磁能,再有磁能轉換為電能,周而復始,並沒有消耗,這部分能量我們稱之為「無功功率」。無功是相對於有功而言的,不能說無功是無用之功,沒有這部分功率,就不能建立感應磁場,電動機、變壓器等設備就不能運轉。在電力系統中,除了負荷無功功率外,變壓器和線路上的電抗上也需要大量的無功功率。
在電網中安裝並聯電容器、同步調相機等容性設備以後,可以供給感性電抗消耗的部分無功功率小電網電源向感性負荷提供無功功率。也即減少無功功率在電網中的流動,因此可以降低輸電線路因輸送無功功率造成的電能損耗,改善電網的運行條件。這種做法稱為「無功補償」。
無功功率的定義
國際電工委員會給出的無功功率的定義為:電壓與無功電流的成積。
QC=U×IC
其物理意義為:電路中電感元件與電容元件活動所需的功率交換稱為無功功率。
(插入講解電感元件及電容元件)
電磁(電感)元件建立磁場佔用的電能,電容元件建立電場所佔的電能.電流在電感元件中作功時,電壓超前於電流90℃.而電流在電容元件中作功時,電流超前電壓90℃.在同一電路中,電感電流與電容電流方向相反,互差180℃.如果在電磁元件電路中有比例地安裝電容元件,使兩者的電流相互抵消,使電流的矢量與電壓矢量之間的夾角縮小,從而提高電能作功的能力,這就是無功補償的原理。
(電容元件、電感元件均為動態元件,電容元件的電流是電壓與時間的導數關系,
,電感元件的電壓是電流與時間的導數關系, )
矢量圖:

我們將每一瞬間電感上的電壓與電感電流IL相乘得到電感的功率曲線PL(圖a),同樣的,將電容上的電壓與電容電流IC相乘得到電容的功率曲線PC(圖b)。

如圖(a)所示,功率在第二個和第四個1/4周期內電感在吸收功率,並把所吸收的能量轉化為磁場能量;而在第一和第三個1/4周期內電感就放出功率,儲存在磁場中的能量將全部放出。這時電感好象一個電源,把能量送回電網。磁場能量和外部能量的轉化反復進行,電感的平均功率為零,所以電感是不消耗功率的。
如圖(b)所示,在電容中,在第一個1/4周期內,電容在吸收功率進行充電,把能量儲存在電場中。在第二個1/4周期內電容則放出功率,原來儲存在電場中的能量將全部送回給外部電路。第三和第四個1/4周期內各重復一次。
電容的充電和放電過程,實際上就是外部電路的能量和電容的電場能量之間的交換過程。在一個周期內,其平均功率為零,所以電容也是不消耗功率的。
我們注意到:在第一個1/4周期中,當電壓通過零點逐漸上升時,電容開始充電吸收功率,電感則將儲存的能量放回電路。而當第二個1/4周期,電感吸收功率時,電容放出功率。第三和第四個1/4周期又重復這樣的充放電循環過程。
因此,電容和電感並聯接在同一電路時,當電感吸收能量時,正好電容釋放能量;電感放出能量時,電容正好吸收能量。能量就在它們中間互相交換。即電感性負荷所需的無功功率,可以由電容器的無功輸出得到補償,因此我們把具有電容性的裝置稱為「無功補償裝置」。
二、功率因數
1、功率因數的定義:功率因數等於網路的電壓比電流超前的相位差的餘弦。
2、提高功率因數的意義:
(1)改善設備的利用率
因為功率因數還可以表示成如下形式:
COSφ= =
其中U―――線電壓,kV
I―――線電流,A
可見,在一定的電壓和電流下,提高COSφ,其輸出的有功功率越大。發電機、變壓器等電力設備在設計時均有一定的電壓有效值U和電流有效值I,即設備需在一定的額定電壓及額定電流下運行。根據P= UIcosφ,若功率因數較低,則發電機發出的有功功率或變壓器通過的有功功率P較低,即設備容量得不到充分應用。
(2) 提高功率因數可以減少電壓損失
電力網電壓損失的公式可以求出:
△U=△UR+j△UX
=
從以上公式可以看出,影響△U的因素有四個:線路的有功功率P、無功功率Q、電阻R和電抗X。如果採用容抗為XC的電容來補償,則電壓損失為:
△ U=
功率因數低,Q就大,△U就增大,受電端的電壓就要降低。在電壓低於允許值時,將嚴重影響電動機及其它用電設備的正常運行。特別是在用電高峰時,因為功率因數低,將出現大面積地區電壓降低,嚴重影響工農業生產的正常進行。

故採用補償電容提高功率因數後,電壓損失△U減少,改善了電壓質量。
(3) 提高功率因數可以減少線路損失
據有關資料,目前全國有近20GA的高耗能變壓器在運行,一些城網高耗能配變變壓器占配變變壓器總數的50%。許多城網無功功率不足,調節手段落後,造成電壓偏低,損耗增大。1995年全國線損率高達7.8%。通過多方面的努力,1997年全國線損率才達到8.2%。與一些發達國家相比,我國線損率約高出2~3個百分點。據統計,電力網中65%以上的電能損耗在10kV以下的配電網中損耗的,因此配電網中的減少線路損失非常重要。
當線路通過電流I時,其有功損耗為:
△P=3I2R×10-3(kW)
或 △P=3( R×10-3=3 ( )×10-3(kW)
有以上公式可見,線路有功損失△P與cos2φ成反比,cosφ越高,△P越小。
(4) 提高電力網的傳輸能力
視在功率與有功功率成下述關系:
P=Scosφ
可見,在傳送一定功率P的條件下,cosφ越高,所需視在功率越小。
綜上所述,提高功率因數是必須的。但是功率因數的提高是整個網路的事,必須提高電網各個組成部分的功率因數,才能充分利用發電、變電設備的容量,減少網損,降低線路的電壓損耗,以達到節約電能和提高功率因數的目的。
(插入講解功率因數的目標及力率收費)
1、對功率因數的要求
除電網有特殊要求的用戶外,用戶在當地供電企業規定的電網高峰時負荷的功率因數應達到下列規定:
100KVA及以上高壓供電用戶的功率因數為0.9以上。
其它電力用戶和大、中型電力排灌站、泵購轉售電企業,功率因數為0.85以上。
農業用電,功率因數為0.80以上。
2、功率因數調整電費
我國執行得電價結構為兩價結構,但實際上是包括基本電費、電量電費和按功率因數調整電費三部分。發、供電部門,除了供給用戶得有功負荷之外,還要供給用戶以無功負荷。鑒於電力生產得特點,用戶功率因數得高低,對電力系統發、供、用電設備得充分利用,有著顯者得影響。為了合理地使國家地能量資源,充分發揮發、供電設備地生產能力,我國專門制定了《力率調整電費辦法》,按照功率因數調整電費。《力率調整電費辦法》適用於實行兩部電價制大工業用戶地生產用電。按功率因數調整電費地收取辦法是:
(1) 按照規定地電價計算出當月地基本電費和電量電費。
(2) 再按照功率因數調整電費表所訂地百分數增減計算。如下表1和2所示。
(3) 計算用戶功率因數採用加數平均值,即以用戶在一個月內所消耗的有功電量W和無功電量Q進行計算,即:
cosφ=
如果用戶的平均功率因數在功率因數調整電費表所列數字之間,以四捨五入計算,如0.855為0.86,0.754為0.75。
表1 減免功率因數電費表
月平均功率
因數 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
全部電費地減少( %) 0 0.5 1.0 1.5 2.0 2.2 2.5 2.7 3.0
表2 增收功率因數電費表
平均功率因數 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72
增收( %) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
平均功率因數 0.71 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60
增收( %) 7.0 7.5 8.0 8.5 9.0 9.5 10 11 12 13 14 15
備注 自0.59以下,每降低0.01,增收全部電費地2%
3、舉例說明改善cosφ能給用戶帶來經濟效益。
【例1】 某10kV煤礦企業電力用戶原來功率因數為cosφ1=0.75,視在功率為3150kVA,年用電時間T=3000h,收費按兩部電價,試確定:
(1) 該用戶得年支付電費。
(2) 欲使功率因數提高到0.95,需裝設得補償容量。
(3) 按許繼目前的電容器補償裝置,分情況做出方案,並計算出投資費用(投資按每年10%回收)。求安裝補償裝置後,企業所獲得的年效益。
解:
(1) 補償前用戶年支付電費:
1) 基本電費。按最大負荷收取,每kVA負荷收取值為180元/年,故:
FJ1=180×3150=567000(元)
2) 電量電費。每kW.h為0.209元,故
FD1=0.209×2362.5×3000=1481287.5 (元)
3) 用戶的總支付電費為:
FZ2=567000+1481287.5=2048287(元)
4)當功率因數為0.75時,增收功率因數電費為全部電費的5%,則增收的電費為:
FZZ=2048287×0.05=102414 (元)
5)用戶實際繳納電費為:
FZ1總= FZ2+FZZ=2150701(元)
(2) 補償容量計算:
已知cosφ1=0.75,cosφ2=0.95,S=3150kVA,則
P1=Scosφ1=3150×0.75=2362.5(kW)
Q=P( - )
=2362.5( - )
=1307(kvar)
需補償1307kvar,考慮各方面因素,總補償容量按1500kvar考慮。
(3)按許繼目前的產品做出配置方案並計算補償後年支出費用:
方案:一次性投投切方案。此方案用於整體系統負荷變化不大的情況。
主要配置元件為:(此方案僅考慮系統存在5次7次諧波情況,用6%串聯電抗器抑制系統諧波)
TBB10-1500kvar配置如下:
序號 名稱 型號 數量 單位 備注
1 隔離接地開關 GN24-12D1/630 1 只
2 鐵心串聯電抗器 CKSC-90/10-6 1 台
3 高壓並聯電容器 BFM11/ -250-1W
6 台
4 熔斷器 BRW-12/60P 6
5 氧化鋅避雷器 HY5WR-17/45 3 只
6 放電線圈 FDGE8-11/ -1. 7-1W
3 只
7 帶電顯示器 DXN-12T 1 只
8 放電指示燈 AD11-22/21 3 只
9 電磁鎖 DSN3 3 只
10 鋁母線、絕緣子等附件 1 套
11 電容器櫃體骨架 1 套
按此種方案預計投入資金約為:10萬元。
1) 補償後的視在功率和基本電費為:
SB = =2487(kVA)
FJ2=180×2487=447660 (元)
2) 電量電費。每kW.h為0.209元,故
FD2=0.209×2362.5×3000=1481287.5(元)
3)支付資產折舊費用:
Ff=100000×0.1=10000(元)
4) 用戶的總支付電費為:
FZ2=447660+1481287.5+10000=1938947(元)
5)當功率因數為0.95時,減免功率因數電費為全部電費的2.5%,則減免的電費為:
FZZ=1938947×0.025=48473 (元)
6)用戶實際繳納電費為:
FZ2總= FZ2-FZZ=1890474(元)
7)補償後的經濟效益分析:
△F=FZ1總-FZ2總=2150701-1890474=260227(元)
結論:有以上分析得在裝設無功補償裝置後,一年少交電費約為26萬元,節省的費用完全可以上購買以上方案中的補償設備,並且大有結余。
【例2】 配電網無功補償算例。
(1) 無功補償的原理。在電網中,線路或變壓器的可變功率損耗為:
P=3I2R×10-3= R×10-3
當負荷功率因數由1降至cosφ時,有功損耗將增加的百分數為:
δP%=( -1) ×100%
因此,提高負荷的功率因數與降低線損的關系為:
δP%=(1- )×100%
下圖表示一個主變容量為15000kVA的35kV變電所,單迴路供電的電力網,單回35kV供電線路至35 kV變電所,期間T接一個電力排灌站,根據有關負荷數據如下:

Ⅰ段視在功率Sjf1=9.2MVA.
Ⅱ段視在功率Sjf2=11.7MVA.
在未裝補償前,該變電所主變功率因數為0.75,此種情況:
Ⅰ段線路的全年損失電量為:
△A1= ×R1×24×365=570×103(kW.h)
Ⅱ段線路的全年損失電量為:
△A1= ×R2×24×365=1440×103(kW.h)
整條線路的全年損失電量為:
△A=△A1+△A2=570×103+1440×103=2010×103(kW.h)
若在該變電所10kV側加裝3000kvar的補償後電容器,主變的功率因數將由0.75提高0.91,可使線損降低值為:
δP%=(1- )×100%=(1- )×100%=32%
即加裝3000kvar的補償後,可使線損下降32%,即減少損失電量為
△ A,=δP%△A=32%×2010×103=64.32(萬kW.h)
(2) 經濟效益分析。從前面的計算中可知,每年可減少損失電量64.32萬kW.h,其效益究竟有多大,可參考現行電價估算如下:
1) 全年直接減少損失,增加純利潤
M=64.32×0.50=32.16(萬元)
2) 力率調整由罰到獎,增加純收入.補償前該線路全年總電量
A1=1.17×106×8760×0.75×10-3=7686.9(萬kW.h)
由於功率因數為0.75,低於0.85,故應罰力率調整款
0.5%×8760×0.35=13.5(萬元)
補償後
A2=1.17×106×8760×0.91×10-3=9326.7(萬kW.h)
由於功率因數為0.91,大於規定的0.85,故獎勵21.3萬元.
實際增加純收入A= A1+A2=34.8(萬元)
合計增收:M+A=66.96(萬元)
綜上所述:投資20多萬元,一年就能獲得66.96萬元的收入.不僅4個月就能收回投資,而且取得長久的明顯的經濟效果.所以說,無功補償,功在電網,利在自己.
三、無功補償方式
無功補償原則
全面規劃、合理布局、
分級補償、就地平衡
無功補償方法
集中補償與分散補償相結合
高壓補償與低壓補償相結合
調壓與降損相結合
配電網中常用的無功補償方式為:
1、分組補償
在系統的部分變、配電所中,在各個用戶中安裝無功補償裝置;
2、分散補償
在高低壓配電線路中分散安裝並聯電容機組;
3、就地補償
在配電變壓器低壓側和車間配電屏間安裝並聯電容器以及在單台電動機附近安裝並聯電容器,進行集中或分散的就地補償。
四、補償容量的選擇
(1)按公司計算:Qc=P )
其中:Qc-所需安裝的並聯電容器容量kvar;
P-最大負荷月的平均有功功率kW;
cosψ1-補償前功率因數;
cosψ2-補償前功率因數;
(2)在不具備計算條件時,電容器的安裝容量按變壓器容量的10%~30%確定。
(3)單台感應電動機的就地補償;
在進行無功補償時,有時採取對單台感應電動機進行個別補償,這時不能用上面介紹的方法選擇電容器,也不能簡單以負荷作為計算的依據,因為如果按照電動機在負荷情況下選擇電容器,則在空載時就會出現過補償,即功率因數超前,而且當電動機停機切斷電源時,電容器就會對電動機放電,使仍在旋轉著的電動機變為感應發電機,感應電勢可能超出電動機額定電壓的好多倍,對電動機和電容器的絕緣都不利。因此單台電機個別補償時電容器的容量應按照不超過空載電流的0.9倍進行選擇,即:
QC1≤0.9 UeI0
其中:Qc-所需安裝的並聯電容器容量kvar;
Ue-電動機額定電壓kV;
Io-電動機空載電流A ;
(4)安裝容量與輸出容量的關系
為保證補償電容器安全、穩定、可靠運行,我們必須在補償電容器前加串調諧電抗器,而補償電容器在串接電抗器後,輸出容量和安裝容量的關系應依下式計算:

五、功率因數cosφ與效率η得區別:
電動機和變壓器得效率η是指其輸出有功功率與輸入的有功功率的比值。用效率的概念來說明電動機或變壓器的有功損耗。
功率因數cosφ是用來說明在電網和設備之間往復振盪的電場或磁場能量有多少,功率因數越高說明在電網和設備之間往復振盪的能量越少。
第二講:設計基礎
目錄
第一節:元件的設計選型
第二節:電氣接線
第三節:成套設備的保護
第四節:電容器組投切方式的選擇

第一節:元件的設計選型
1 電容器
電容器做為無功補償的重要元器件,應用於1kV以上的工頻電力系統中,用來提高系統的功率因數,改善電壓質量,降低線路損耗,充分發揮發電、供電設備的效率。產品以鋁箔為極板,烷基苯浸膜紙(WF)、二芳基乙烷浸膜紙(FF)復合,二芳基乙烷浸全膜(FM)、苄基甲苯全膜為介質,採用卷繞式元件經串、並聯後壓制製成,電容器箱體內充滿浸漬濟。一般有單相、三相、集合式等多種分類。
單相電容器:
BAM11/ —200—1WR
內置放電電阻
戶外
單相
額定容量
額定電壓
苄基甲苯浸漬的聚丙烯薄膜全膜介質
並聯
集合式電容器:
BAMH11/ —1200—1×3W
三相
集合式,採用內熔絲保護
(BFM表示二芳基乙烷浸漬的聚丙烯薄膜全膜介質)
了解集合式電容器及全膜電容器:
集合式電容器是將單台殼式電容器經串並聯後裝入大油箱內並充以絕緣油製成。1996年已佔到高壓並聯電容器年產量的20%。其優點是結構緊湊佔地面積小,接頭少,安裝和運行維護工作量很小。為克服容量不能調整的缺點,後來又開發了可調容量的集合式電容器,按照容量調整范圍劃分有50%/100%和33.3%/66.7%/100%兩類產品。由於單元殼式電容器完全浸入絕緣油中,防止了單元殼式電容器的外絕緣發生故障。單元殼式電容器內部配有內熔絲,少量元件損壞後由熔絲切除,整台電容器仍可繼續運行。缺點是含油量大,外殼大油箱易存在滲漏油,故障損壞後需返廠修理所用時間較長,單位容量造價較高。關於集合式電容器有兩個問題需要注意:
(1)為避免大容量集合式電容器發生相間短路故障時造成嚴重後果,容量超過5000kvar的集合式電容器必須做成三相分體結構,即一相一台。
(2)集合式電容器的引出套管外絕緣爬電比距必須≥3.5cm/kV(相對於系統最高運行電壓),以保證其絕緣強度。
箱式電容器是在集合式電容器基礎上發展起來的一種電容器,與集合式電容器的不同之處是內部單元電容器沒有外殼,直接浸入絕緣油中,外殼大油箱採用波紋油箱或帶金屬膨脹器,與外部大氣完全隔離。同集合式電容器相比,外殼體積和內部含油量進一步減少,以西安電力電容器廠3000kvar產品為例,箱式電容器比集合式電容器外殼體積減少59.1%,重量減少60.6%。由於材料用量減少,價格比集合式電容器要低。缺點是內部元件發生故障由內熔絲切除後,會對大油箱內的絕緣油造成污染。
全膜電容器具有損耗低、發熱量小、溫升低、體積小、重量輕的優點。國產全膜電容器自1986年開始生產以來,經過不斷改進完善,質量已趨於穩定,在可靠性方面已經好於部分進口產品。自1995年以來產量逐年大幅度增長,已有多家產品通過了兩部鑒定。同國外先進產品相比,差距主要表現在比特性上,材料消耗是國外先進產品的兩倍。既便如此,同膜紙復合介質產品相比體積、重量均大幅度下降。以桂林電容器廠100kvar產品為例:全膜產品比膜紙復合介質產品體積下降31.2%,重量下降44.4%。集合式產品以錦州電容器廠3000kvar產品為例:全膜產品比膜紙復合介質產品體積下降55%,重量下降47.9%。箱式電容器採用全膜產品後可取消散熱器。最近,電容器製造業制訂了關於加速發展國產高壓全膜電容器的若干措施,必將進一步提高國產高壓全膜電容器的質量。因此,新增電容器應全部採用全膜產品,浸漬劑優先選用苄基甲苯(M/DBT)和SAS—40。

Ⅶ 無功補償的裝置的容量等級有哪些

低壓補償,10的倍數即可。
高壓補償,50的倍數即可。

目前用於無功補償和諧波治理的裝置如:無源電力濾波器,該設備兼有無功補償和調壓功能,一般要根據諧波源的參數和安裝點的電氣特性以及用戶要求專門設計;靜止無功補償裝置(SVC)裝置是一種綜合治理電壓波動和閃變、諧波以及電壓不平衡的重要設備。有源電力濾波器(APF),APF是一種新型的動態抑制諧波和補償無功的電力電子裝置,它能對頻率和幅值都發生變化的諧波和無功電流進行補償,主要應用於低壓配電系統。
其中無功補償技術的發展經歷了從同步調相機→開關投切固定電容→靜止無功補償器(SVC)→直到今天引人注目的靜止無功發生器SVG(STATCOM)的幾個不同階段。
根據結構原理的不同,SVC技術又分為:自飽和電抗器型(SSR)、晶閘管相控電抗器型(TCR)、晶閘管投切電容器型(TSC)、高阻抗變壓器型(TCT)和勵磁控制的電抗器型(AR)。
隨著電力電子技術,特別是大功率可關斷器件技術的發展和日益完善,國內外還在研製、開發一種更為先進的靜止無功補償裝置靜止無功功率發生裝置(SVG),雖然它們尚處在開發及試運行階段,目前尚未形成商品化,但SVG憑借著其優越的性能特點,在電力系統中的應用將越來越廣泛。
各種無功設備各自特點如下:
1)同步調相機:響應速度慢,噪音大,損耗大,技術陳舊,屬淘汰技術;
2)開關投切固定電容:慢響應補償方式,連續可控能力差;
3)靜止無功補償器(SVC):目前相對先進實用技術,在輸配電電力系統中得到了廣泛應用;
4)靜止無功發生器SVG(STATCOM):目前雖然有技術上局限性,屬少數示範工程階段,但SVG是一種更為先進的新型靜止型無功補償裝置,是靈活柔性交流輸電系統(FACTS)技術和定製電力(CP)技術的重要組成部分,現代無功功率補償裝置的發展方向。

Ⅷ 電力系統中,220kV變壓器的低壓無功補償怎麼配置

無功補償配置的基本原則:
第三條電力系統配置的無功補償裝置應能保證在系統有功負荷高峰和負荷低谷運行方式下,分(電壓)層和分(供電)區的無功平衡。
分(電壓)層無功平衡的重點是 220kV及以上電壓等級層面的無功平衡,分(供電)區就地平衡的重點是110kV及以下配電系統的無功平衡。無功補償配置應根據電網情況,實施分散就地補償與變電站集中補償相結合,電網補償與用戶補償相結合,高壓補償與低壓補償相結合,滿足降損和調壓的需要。

第四條 各級電網應避免通過輸電線路遠距離輸送無功電力。500(330)kV電壓等級系統與下一級系統之間不應有大量的無功電力交換。500(330)kV電壓等級超高壓輸電線路的充電功率應按照就地補償的原則採用高、低壓並聯電抗器基本予以補償。

第五條 受端系統應有足夠的無功備用容量。當受端系統存在電壓穩定問題時,應通過技術經濟比較,考慮在受端系統的樞紐變電站配置動態無功補償裝置。

第六條各電壓等級的變電站應結合電網規劃和電源建設,合理配置適當規模、類型的無功補償裝置。所裝設的無功補償裝置應不引起系統諧波明顯放大,並應避免大量的無功電力穿越變壓器。35kV~220kV變電站,在主變最大負荷時,其高壓側功率因數應不低於0.95,在低谷負荷時功率因數應不高於0.95。

第七條 對於大量採用10kV~220kV電纜線路的城市電網,在新建110kV及以上電壓等級的變電站時,應根據電纜進、出線情況在相關變電站分散配置適當容量的感性無功補償裝置。

第八條 35kV及以上電壓等級的變電站,主變壓器高壓側應具備雙向有功功率和無功功率(或功率因數)等運行參數的採集、測量功能。

第九條為了保證系統具有足夠的事故備用無功容量和調壓能力,並入電網的發電機組應具備滿負荷時功率因數在0.85(滯相)~0.97(進相)運行的能力,新建機組應滿足進相0.95運行的能力。為了平衡500(330)kV電壓等級輸電線路的充電功率,在電廠側可以考慮安裝一定容量的並聯電抗器。

第十條 電力用戶應根據其負荷性質採用適當的無功補償方式和容量,在任何情況下,不應向電網反送無功電力,並保證在電網負荷高峰時不從電網吸收無功電力。

第十一條 並聯電容器組和並聯電抗器組宜採用自動投切方式。
第十二條 500(330)kV電壓等級變電站容性無功補償配置

500(330)kV電壓等級變電站容性無功補償的主要作用是補償主變壓器無功損耗以及輸電線路輸送容量較大時電網的無功缺額。容性無功補償容量應按照主變壓器容量的10%~20%配置,或經過計算後確定。

第十三條 500(330)kV電壓等級變電站感性無功補償配置

500(330)kV電壓等級高壓並聯電抗器(包括中性點小電抗)的主要作用是限制工頻過電壓和降低潛供電流、恢復電壓以及平衡超高壓輸電線路的充電功率,高壓並聯電抗器的容量應根據上述要求確定。主變壓器低壓側並聯電抗器組的作用主要是補償超高壓輸電線路的剩餘充電功率,其容量應根據電網結構和運行的需要而確定。

第十四條 當局部地區500(330)kV電壓等級短線路較多時,應根據電網結構,在適當地點裝設高壓並聯電抗器,進行無功補償。以無功補償為主的高壓並聯電抗器應裝設斷路器。

第十五條 500(330)kV電壓等級變電站安裝有兩台及以上變壓器時,每台變壓器配置的無功補償容量宜基本一致。
第十六條 220kV變電站的容性無功補償以補償主變壓器無功損耗為主,並適當補償部分線路的無功損耗。補償容量按照主變壓器容量的10%~25%配置,並滿足220kV主變壓器最大負荷時,其高壓側功率因數不低於0.95。

第十七條 當220kV變電站無功補償裝置所接入母線有直配負荷時,容性無功補償容量可按上限配置;當無功補償裝置所接入母線無直配負荷或變壓器各側出線以電纜為主時,容性無功補償容量可按下限配置。

第十八條 對進、出線以電纜為主的220kV變電站,可根據電纜長度配置相應的感性無功補償裝置。每一台變壓器的感性無功補償裝置容量不宜大於主變壓器容量的20%,或經過技術經濟比較後確定。
第十九條 220kV變電站無功補償裝置的分組容量選擇,應根據計算確定,最大單組無功補償裝置投切引起所在母線電壓變化不宜超過電壓額定值的2.5%。一般情況下無功補償裝置的單組容量,接於66kV電壓等級時不宜大於20Mvar,接於35kV電壓等級時不宜大於12Mvar,接於10kV電壓等級時不宜大於 8Mvar。

第二十條 220kV變電站安裝有兩台及以上變壓器時,每台變壓器配置的無功補償容量宜基本一致。
第二十一條 35kV~110kV變電站的容性無功補償裝置以補償變壓器無功損耗為主,並適當兼顧負荷側的無功補償。容性無功補償裝置的容量按主變壓器容量的10%~30%配置,並滿足35kV~110kV主變壓器最大負荷時,其高壓側功率因數不低於0.95。

第二十二條 110kV變電站的單台主變壓器容量為40MVA及以上時,每台主變壓器應配置不少於兩組的容性無功補償裝置。

第二十三條 110kV變電站無功補償裝置的單組容量不宜大於6Mvar,35kV變電站無功補償裝置的單組容量不宜大於3Mvar,單組容量的選擇還應考慮變電站負荷較小時無功補償的需要。

第二十四條 新建110kV變電站時,應根據電纜進、出線情況配置適當容量的感性無功補償裝置。
第二十五條配電網的無功補償以配電變壓器低壓側集中補償為主,以高壓補償為輔。配電變壓器的無功補償裝置容量可按變壓器最大負載率為75%,負荷自然功率因數為 0.85考慮,補償到變壓器最大負荷時其高壓側功率因數不低於0.95,或按照變壓器容量的20%~40%進行配置。

第二十六條 配電變壓器的電容器組應裝設以電壓為約束條件,根據無功功率(或無功電流)進行分組自動投切的控制裝置。
第二十七條 電力用戶應根據其負荷特點,合理配置無功補償裝置,並達到以下要求:

100kVA及以上高壓供電的電力用戶,在用戶高峰負荷時變壓器高壓側功率因數不宜低於0.95;其他電力用戶,功率因數不宜低於0.90。

Ⅸ 求有關電網的無功補償的論文

電網的無功補償與電壓調整
將電抗器、電容器、同步調相機和調壓變壓器等裝置接入電網中,以改善功率因數、調整電壓及起到補償參數等作用。電網無功補償的基本原則是:按電壓分層,按電網分區,就地平衡,避免無功功率的遠距離輸送,以免佔用線路輸送容量和增加有功損耗。

1輸電網的無功補償與電壓調整

輸電網多數無直供負載,一般不為調壓目的而設置無功補償裝置。參數補償多用於較長距離的輸電線路,有串聯補償(又稱縱補償)與並聯補償(又稱橫補償)之分。電壓支撐則多用於與地區受電網路連接的輸電網的中樞點。

1.1電抗器補償

電抗器是超高壓長距離輸電線路的常用補償設備,用以補償輸電線路對地電容所產生的充電功率,以抑制工頻過電壓。電抗器的容量根據線路長度和過電壓限制水平選擇,其補償度(電抗器容量與線路充電功率之比)國外統計大多為70~85,個別為65,一般不低於60。電抗器一般常設置在線路兩端,且不設斷路器。

1.2串連電容補償

串聯電容用來補償輸電線路的感抗,起到縮短電氣距離提高穩定性水平和線路的輸電容量的作用。串聯電容器組多為串、並聯組合而成,並聯支數由線路輸送容量而定,串聯個數則由所需的串聯電容補償度(串聯電容的容抗與所補償的線路感抗之比)而定。串聯電容補償一般在50以下,不宜過高,以免引起系統的次同步諧振。輸電網中因阻抗不均而造成環流時,也可用串聯電容來補償。日本在110kV環網中就使用了串聯電容補償。

1.3中間同步或靜止補償

在遠距離輸電線路中間裝設同步調相機或靜止補償裝置,利用這些裝置的無功調節能力,在線路輕載時吸收線路充電功率,限制電壓升高;在線路重載時發出無功功率,以補償線路的無功損耗,支持電壓水平,從而提高線路的輸送容量。中間同步或靜止補償通常設在線路中點,若設在線路首末端,則調節作用消失。

輸電網的電壓支撐點與調壓輸電網與受電地區的低一級電壓的電網相聯的樞紐點,常設置有載調壓變壓器或有相當調節與控制能力的無功補償裝置,或者二者都有,以實現中樞點調壓,使電網的運行不受或少受因潮流變化或其他原因形成的電壓波動的影響,在電網發生事故時起支撐電壓的作用,防止因電網電壓劇烈波動而擴大事故。

電壓支撐能力的強弱,除與補償方法和補償容量大小有關外,更與補償裝置的調節控制能力和響應速度有關。並聯電容器雖是常用而價廉的補償設備,但其無功出力在電壓下降時將按電壓的平方值下降,不利於支撐電壓。大量裝設並聯補償電容器反而有事故發生助長電網電壓崩潰的可能性。採用同步調相機和靜止無功補償裝置輔以適當的調節控制,是比較理想的支撐電壓的無功補償設備。近年來,國內外均注重靜止補償裝置的應用。

2配電網的無功補償與電壓調整

以相位補償和保證用戶用電電壓質量為主。

2.1相位補償亦稱功率因數補償

用電電器多為電磁結構,需要大量的勵磁功率,致使用戶的功率因數均為滯相且較低,一般約為0.7左右。勵磁功率——滯相的無功功率在配電網中流動,不僅佔用配電網容量,造成不必要的損耗,而且導致用戶電壓降低。相位補償是以進相的無功補償設備(如並聯電容器)就近供給用戶或配電網所需要的滯相無功功率,減少在配電網中流動的無功功率,降低網損,改善電壓質量。中國對大電力用戶要求安裝無功補償裝置,補償後的功率因數不得低於0.9。

2.2電壓調整

為保證用電電器有良好的工作電壓,避免受配電網電壓波動的影響,配電網需要進行電壓調整。配電網電壓調整的措施包括:中心調壓、調壓變壓器調壓和無功補償調壓。

2.2.1利用地區發電廠或樞紐變電所進行中心調壓

這種措施簡單而經濟方便,但它只能改變整個供電地區的電壓水平,不能改善電壓分布。當供電地區的地域比較廣闊、供電距離長短懸殊時,中心調壓措施往往不能兼顧全區,有顧此失彼的缺點。

2.2.2調壓變壓器調壓

可彌補中心調壓方式的不足,進行局部調壓。調壓變壓器有有載調壓變壓器、串聯升壓器和感應調壓器三種。有載調壓變壓器與感應調壓器一般用於特定負荷點,串聯升壓器則用於供電線路。

調壓變壓器的調壓作用是靠改變電力網的無功潮流來實現的。它本身不僅不產生無功功率,而且還因本身勵磁的需要而消耗無功功率。當電網的無功電源不足時,調壓變壓器的調壓效果不顯著。相反地,若調壓變壓器裝設過多,將加重配電網的無功功率消耗,拉低全網電壓水平,增大網損,降低並聯電容器的無功出力,嚴重時有可能造成惡性循環的趨向。

2.2.3無功補償調壓

由於增加了電力網的無功電源,能起到改善電網電壓的作用。裝設於變電所內的無功補償裝置,還可採用分組投切的辦法,對供電地區實行中心調壓。

串聯電容補償,可用於配電網中進行局部調壓。距離較長的重載線路,使用串聯電容補償,效果較好。因其調壓作用是由線路滯相電流流過串聯電容而產生的電壓升高來實現的。故線路負載愈重,功率因數愈低,串聯電容補償調壓的作用愈顯著。這種調壓作用隨線路負載的變化而變化,具有自行調節的功能。串聯電容器所產生的無功功率,也增加了電力網的無功電源,可改善電力網的電壓水平。串聯電容能使線路受端的電動機產生自勵磁現象,在設計、使用時,需採取預防措施。

Ⅹ 有誰能告訴我無功補償的詳細情況

無功補償
無功功率補償,簡稱無功補償,在電子供電系統中起提高電網的功率因數的作用,降低供電變壓器及輸送線路的損耗,提高供電效率,改善供電環境。所以無功功率補償裝置在電力供電系統中處在一個不可缺少的非常重要的位置。合理的選擇補償裝置,可以做到最大限度的減少網路的損耗,使電網質量提高。反之,如選擇或使用不當,可能造成供電系統,電壓波動,諧波增大等諸多因素。
無功補償的基本原理:電網輸出的功率包括兩部分;一是有功功率;二是無功功率.直接消耗電能,把電能轉變為機械能,熱能,化學能或聲能,利用這些能作功,這部分功率稱為有功功率;不消耗電能;只是把電能轉換為另一種形式的能,這種能作為電氣設備能夠作功的必備條件,並且,這種能是在電網中與電能進行周期性轉換,這部分功率稱為無功功率,如電磁元件建立磁場佔用的電能,電容器建立電場所佔的電能.電流在電感元件中作功時,電流滯後於電壓90℃.而電流在電容元件中作功時,電流超前電壓90℃.在同一電路中,電感電流與電容電流方向相反,互差180℃.如果在電磁元件電路中有比例地安裝電容元件,使兩者的電流相互抵消,使電流的矢量與電壓矢量之間的夾角縮小, 無功補償的具體實現方式:把具有容性功率負荷的裝置與感性功率負荷並聯接在同一電路,能量在兩種負荷之間相互交換。這樣,感性負荷所需要的無功功率可由容性負荷輸出的無功功率補償。無功補償的意義: ⑴補償無功功率,可以增加電網中有功功率的比例常數。 ⑵減少發、供電設備的設計容量,減少投資,例如當功率因數cosΦ=0.8增加到cosΦ=0.95時,裝1Kvar電容器可節省設備容量0.52KW;反之,增加0.52KW對原有設備而言,相當於增大了發、供電設備容量。因此,對新建、改建工程,應充分考慮無功補償,便可以減少設計容量,從而減少投資。 ⑶降低線損,由公式ΔΡ%=(1-cosΦ/cosΦ)×100%得出其中cosΦ為補償後的功率因數,cosΦ為補償前的功率因數則: cosΦ>cosΦ,所以提高功率因數後,線損率也下降了,減少設計容量、減少投資,增加電網中有功功率的輸送比例,以及降低線損都直接決定和影響著供電企業的經濟效益。所以,功率因數是考核經濟效益的重要指標,規劃、實施無功補償勢在必行。 電網中常用的無功補償方式包括: ① 集中補償:在高低壓配電線路中安裝並聯電容器組; ② 分組補償:在配電變壓器低壓側和用戶車間配電屏安裝並聯補償電容器; ③ 單台電動機就地補償:在單台電動機處安裝並聯電容器等。 加裝無功補償設備,不僅可使功率消耗小,功率因數提高,還可以充分挖掘設備輸送功率的潛力。 確定無功補償容量時,應注意以下兩點: ① 在輕負荷時要避免過補償,倒送無功造成功率損耗增加,也是不經濟的。 ② 功率因數越高,每千伏補償容量減少損耗的作用將變小,通常情況下,將功率因數提高到0.95就是合理補償 就三種補償方式而言,無功就地補償克服了集中補償和分組補償的缺點,是一種較為完善的補償方式: ⑴因電容器與電動機直接並聯,同時投入或停用,可使無功不倒流,保證用戶功率因數始終處於滯後狀態,既有利於用戶,也有利於電網。 ⑵有利於降低電動機起動電流,減少接觸器的火花,提高控制電器工作的可靠性,延長電動機與控制設備的使用壽命。 無功就地補償容量可以根據以下經驗公式確定:Q≤UΙ0式中:Q---無功補償容量(kvar);U---電動機的額定電壓(V);Ι0---電動機空載電流(A);但是無功就地補償也有其缺點:⑴不能全面取代高壓集中補償和低壓分組補償;眾所周之,無功補償按其安裝位置和接線方法可分為:高壓集中補償、低壓分組補償和低壓就地補償。其中就地補償區域最大,效果也好。但它總的電容器安裝容量比其它兩種方式要大,電容器利用率也低。高壓集中補償和低壓分組補償的電容器容量相對較小,利用率也高,且能補償變壓器自身的無功損耗。為此,這三種補償方式各有應用范圍,應結合實際確定使用場合,各司其職。
一、按投切方式分類:
1. 延時投切方式
延時投切方式即俗稱的"靜態"補償方式。延時投切的目的在於防止過於頻繁的動作使電容器造成損壞,更重要的是防備電容不停的投切導致供電系統振盪,這是很危險的。 延時投切方式用於控制電容器投切的器件可以是投切電容器專用接觸器、復合開關或者同步開關。 投切電容器專用接觸器有一組輔助接點串聯電阻後與主接點並聯。在投入過程中輔助接點先閉合,與輔助接點串聯的電阻使電容器預充電,然後主接點再閉合,於是就限制了電容器投入時的涌流。 復合開關就是將晶閘管與繼電器接點並聯使用,由晶閘管實現電壓過零投入與電流過零切除,由繼電器接點來通過連續電流,這樣就避免了晶閘管的導通損耗問題,也避免了電容器投入時的涌流。但是復合開關既使用晶閘管又使用繼電器,於是結構就變得比較復雜,成本也比較高,並且由於晶閘管對過流、過壓及對dv/dt的敏感性也比較容易損壞。在實際應用中,復合開關故障多半是由晶閘管損壞所引起的 同步開關是近年來最新發展的技術,顧名思義,就是使機械開關的接點准確地在需要的時刻閉合或斷開。對於控制電容器的同步開關,就是要在接點兩端電壓為零的時刻閉合,從而實現電容器的無涌流投入,在電流為零的時刻斷開,從而實現開關接點的無電弧分斷。由於同步開關省略了晶閘管,因此不僅成本降低,而且可靠性提高。同步開關是傳統機械開關與現代電子技術完美結合的產物,使機械開關在具有獨特技術性能的同時,其高可靠性以及低損耗的特點得以充分顯示出來。 當電網的負荷呈感性時,如電動機、電焊機等負載,這時電網的電流滯帶後電壓一個角度,當負荷呈容性時,如過補償狀態,這時電網的電流超前於電壓的一個角度,功率因數超前或滯後是指電流與電壓的相位關系。通過補償裝置的控制器檢測供電系統的物理量,來決定電容器的投切,這個物理量可以是功率因數或無功電流或無功功率。 下面就功率因數型舉例說明。當這個物理量滿足要求時,如cosΦ超前且>0.98,滯後且>0.95,在這個范圍內,此時控制器沒有控制信號發出,這時已投入的電容器組不退出,沒投入的電容器組也不投入。當檢測到cosΦ不滿足要求時,如cosΦ滯後且<0.95,那麼將一組電容器投入,並繼續監測cosΦ如還不滿足要求,控制器則延時一段時間(延時時間可整定),再投入一組電容器,直到全部投入為止。當檢測到超前信號如cosΦ<0.98,即呈容性載荷時,那麼控制器就逐一切除電容器組。要遵循的原則就是:先投入的那組電容器組在切除時就要先切除。如果把延時時間整定為300s,而這套補償裝置有十路電容器組,那麼全部投入的時間就為50分鍾,切除也這樣。在這段時間內無功損失補只能是逐步到位。如果將延時時間整定的很短,或沒有設定延時時間,就可能會出現這樣的情況。當控制器監測到cosΦ〈0.95,迅速將電容器組逐一投入,而在投入期間,此時電網可能已是容性負載即過補償了,控制器則控制電容器組逐一切除,周而復始,形成震盪,導致系統崩潰。是否能形成振盪與負載的性質有密切關系,所以說這個參數需要根據現場情況整定,要在保證系統安全的情況下,再考慮補償效果。 無功補償的投切器件 1.1,交流接觸器控制投入型補償裝置。由於電容器是電壓不能瞬變的器件,因此電容器投入時會形成很大的涌流,涌流最大時可能超過100倍電容器額定電流。涌流會對電網產生不利的干擾,也會降低電容器的使用壽命。為了降低涌流,現在大部分補償裝置使用電容器投切專用接觸器,這種接觸器有1組串聯限流電阻與主觸頭並聯的輔助觸頭,在接觸器吸合的過程中,輔助觸頭首先接通,使電容器通過限流電阻接入電路進行預充電,然後主觸頭接通將電容器正常接入電路,通過這種方式可以將涌流限制在電容器額定電流的20倍以下。 此類補償裝置價格低廉,可靠性較高,應用最為普遍。由於交流接觸器的觸頭壽命有限,不適合頻繁投切,因此這類補償裝置不適用頻繁變化的負荷情況。 1.2,晶閘管控制投入型補償裝置。這類補償裝置就是SVC分類中的TSC子類。由於晶閘管很容易受涌流的沖擊而損壞,因此晶閘管必須過零觸發,就是當晶閘管兩端電壓為零的瞬間發出觸發信號。過零觸發技術可以實現無涌流投入電容器,另外由於晶閘管的觸發次數沒有限制,可以實現准動態補償(響應時間在毫秒級),因此適用於電容器的頻繁投切,非常適用於頻繁變化的負荷情況。晶閘管導通電壓降約為1V左右,損耗很大(以額定容量100Kvar的補償裝置為例,每相額定電流約為145A,則晶閘管額定導通損耗為145×1×3=435W),必須使用大面積的散熱片並使用通風扇。晶閘管對電壓變化率(dv/dt)非常敏感,遇到操作過電壓及雷擊等電壓突變的情況很容易誤導通而被涌流損壞,即使安裝避雷器也無濟於事,因為避雷器只能限制電壓的峰值,並不能降低電壓變化率。 此類補償裝置結構復雜,價格高,可靠性差,損耗大,除了負荷頻繁變化的場合,在其餘場合幾乎沒有使用價值。 1.3,復合開關控制投入型補償裝置。復合開關技術就是將晶閘管與繼電器接點並聯使用,由晶閘管實現電壓過零投入與電流過零切除,由繼電器接點來通過連續電流,這樣就避免了晶閘管的導通損耗問題,也避免了電容器投入時的涌流。但是復合開關技術既使用晶閘管又使用繼電器,於是結構就變得相當復雜,並且由於晶閘管對dv/dt的敏感性也比較容易損壞。 1.4,同步開關投入型補償裝置。同步開關技術是近年來最新發展的技術,顧名思義,就是使機械開關的接點准確地在需要的時刻閉合或斷開。對於控制電容器的同步開關,就是要在開關接點兩端電壓為零的時刻閉合,從而實現電容器的無涌流投入,在電流為零的時刻斷開,從而實現開關接點的無電弧分斷。 同步開關技術中拒絕使用可控硅,因此仍然不適用於頻繁投切。可以預見:使用磁保持繼電器的同步開關必將替代復合開關和交流接觸器。
2. 瞬時投切方式
瞬時投切方式即人們熟稱的"動態"補償方式,應該說它是半導體電力器件與數字技術綜合的技術結晶,實際就是一套快速隨動系統,控制器一般能在半個周波至1個周波內完成采樣、計算,在2個周期到來時,控制器已經發出控制信號了。通過脈沖信號使晶閘管導通,投切電容器組大約20-30毫秒內就完成一個全部動作,這種控制方式是機械動作的接觸器類無法實現的。動態補償方式作為新一代的補償裝置有著廣泛的應用前景。現在很多開關行業廠都試圖生產、製造這類裝置且有的生產廠已經生產出很不錯的裝置。當然與國外同類產品相比從性能上、元器件的質量、產品結構上還有一定的差距。 動態補償的線路方式 2.1 LC串接法原理如圖1所示 這種方式採用電感與電容的串聯接法,調節電抗以達到補償無功損耗的目的。從原理上分析,這種方式響應速度快,閉環使用時,可做到無差調節,使無功損耗降為零。從元件的選擇上來說,根據補償量選擇1組電容器即可,不需要再分成多路。既然有這么多的優點,應該是非常理想的補償裝置了。但由於要求選用的電感量值大,要在很大的動態范圍內調節,所以體積也相對較大,價格也要高一些,再加一些技術的原因,這項技術到目前來說還沒有被廣泛採用或使用者很少。 2.2 採用電力半導體器件 作為電容器組的投切開關,較常採用的接線方式如圖2。圖中BK為半導體器件,C1為電容器組。這種接線方式採用2組開關,另一相直接接電網省去一組開關,有很多優越性。 作為補償裝置所採用的半導體器件一般都採用晶閘管,其優點是選材方便,電路成熟又很經濟。其不足之處是元件本身不能快速關斷,在意外情況下容易燒毀,所以保護措施要完善。當解決了保護問題,作為電容器組投切開關應該是較理想的器件。動態補償的補償效果還要看控制器是否有較高的性能及參數。很重要的一項就是要求控制器要有良好的動態響應時間,准確的投切功率,還要有較高的自識別能力,這樣才能達到最佳的補償效果。 當控制器採集到需要補償的信號發出一個指令(投入一組或多組電容器的指令),此時由觸發脈沖去觸發晶閘管導通,相應的電容器組也就並入線路運行。需要強調的是晶閘管導通的條件必須滿足其所在相的電容器的端電壓為零,以避免涌流造成元件的損壞,半導體器件應該是無涌流投切。當控制指令撤消時,觸發脈沖隨即消失,晶閘管零電流自然關斷。關斷後的電容器電壓為線路電壓交流峰值,必須由放電電阻盡快放電,以備電容器再次投入。 元器件可以選單相晶閘管反並聯或是雙向晶閘管,也可選適合容性負載的固態接觸器,這樣可以省去過零觸發的脈沖電路,從而簡化線路,元件的耐壓及電流要合理選擇,散熱器及冷卻方式也要考慮周全。 2.3. 混合投切方式 實際上就是靜態與動態補償的混合,一部分電容器組使用接觸器投切,而另一部分電容器組使用電力半導體器件。這種方式在一定程度上可做到優勢互補,但就其控制技術,目前還見到完善的控制軟體,該方式用於通常的網路如工礦、小區、域網改造,比起單一的投切方式拓寬了應用范圍,節能效果更好。補償裝置選擇非等容電容器組,這種方式補償效果更加細致,更為理想。還可採用分相補償方式,可以解決由於線路三相不平行造成的損失。
3. 無功功率補償裝置的選擇
選擇哪一種補償方式,還要依電網的狀況而定,首先對所補償的線路要有所了解,對於負荷較大且變化較快的工況,電焊機、電動機的線路採用動態補償,節能效果明顯。對於負荷相對平穩的線路應採用靜態補償方式,也可使用動態補償裝置。一般電焊工作時間均在幾秒鍾以上,電動機啟動也在幾秒鍾以上,而動態補償的響應時間在幾十毫秒,按40毫秒考慮則從40毫秒到5秒鍾之內是一個相對的穩態過程,動態補償裝置能完成這個過程。
二、無功功率補償控制器
無功功率補償控制器有三種采樣方式,功率因數型、無功功率型、無功電流型。選擇那一種物理控制方式實際上就是對無功功率補償控制器的選擇。控制器是無功補償裝置的指揮系統,采樣、運算、發出投切信號,參數設定、測量、元件保護等功能均由補償控制器完成。十幾年來經歷了由分立元件--集成線路--單片機--DSP晶元一個快速發展的過程,其功能也愈加完善。就國內的總體狀況,由於市場的需求量很大,生產廠家也愈來愈多,其性能及內在質量差異很大,很多產品名不符實,在選用時需認真對待。在選用時需要注意的另一個問題就是國內生產的控制器其名稱均為"XXX無功功率補償控制器",名稱里出現的"無功功率"的含義不是這台控制器的采樣物理量。采樣物理量取決於產品的型號,而不是產品的名稱。
1.功率因數型控制器
功率因數用cosΦ表示,它表示有功功率在線路中所佔的比例。當cosΦ=1時,線路中沒有無功損耗。提高功率因數以減少無功損耗是這類控制器的最終目標。這種控制方式也是很傳統的方式,采樣、控制也都較容易實現。 * "延時"整定,投切的延時時間,應在10s-120s范圍內調節 "靈敏度"整定,電流靈敏度,不大於0-2A 。 * 投入及切除門限整定,其功率因數應能在0.85(滯後)-0.95(超前)范圍內整定。 * 過壓保護設量 * 顯示設置、循環投切等功能 這種采樣方式在運行中既要保證線路系統穩定、無振盪現象出現,又要兼顧補償效果,這是一對矛盾,只能在現場視具體情況將參數整定在較好的狀態下工作。即使調整的較好,也無法禰補這種方式本身的缺陷,尤其是在線路重負荷時。舉例說明:設定投入門限;cosΦ=0.95(滯後)此時線路重載荷,即使此時的無功損耗已很大,再投電容器組也不會出現過補償,但cosΦ只要不小於0.95,控制器就不會再有補償指令,也就不會有電容器組投入,所以這種控制方式建議不做為推薦的方式。
2. 無功功率(無功電流)型控制器
無功功率(無功電流)型的控制器較完善的解決了功率因數型的缺陷。一個設計良好的無功型控制器是智能化的,有很強的適應能力,能兼顧線路的穩定性及檢測及補償效果,並能對補償裝置進行完善的保護及檢測,這類控制器一般都具有以下功能: * 四象限操作、自動、手動切換、自識別各路電容器組的功率、根據負載自動調節切換時間、諧波過壓報警及保護、線路諧振報警、過電壓保護、線路低電流報警、電壓、電流畸變率測量、顯示電容器功率、顯示cosΦ、U、I、S、P、Q及頻率。 由以上功能就可以看出其控制功能的完備,由於是無功型的控制器,也就將補償裝置的效果發揮得淋漓盡致。如線路在重負荷時,那怕cosΦ已達到0.99(滯後),只要再投一組電容器不發生過補,也還會再投入一組電容器,使補償效果達到最佳的狀態。採用DSP晶元的控制器,運算速度大幅度提高,使得富里葉變換得到實現。當然,不是所有的無功型控制器都有這么完備的功能。國內的產品相對於國外的產品還存在一定的差距。
3. 用於動態補償的控制器
對於這種控制器要求就更高了,一般是與觸發脈沖形成電路一並考慮的,要求控制器抗干擾能力強,運算速度快,更重要的是有很好的完成動態補償功能。由於這類控制器也都基於無功型,所以它具備靜態無功型的特點。 目前,國內用於動態補償的控制器,與國外同類產品相比有較大的差距,一是在動態響應時間上較慢,動態響應時間重復性不好;二是補償功率不能一步到位,沖擊電流過大,系統特性容易漂移,維護成本高、造成設備整體投資費用高。另外,相應的國家標准也尚未見到,這方面落後於發展。
無功動態補償裝置工作原理與結構特點
無功動態補償裝置由控制器、晶閘管、並聯電容器、電抗器、過零觸發模塊、放電保護器件等組成。裝置實時跟蹤測量負荷的電壓、電流、無功功率和功率因數,通過微機進行分析,計算出無功功率並與預先設定的數值進行比較,自動選擇能達到最佳補償效果的補償容量並發出指令,由過零觸發模塊判斷雙向可控硅的導通時刻,實現快速、無沖擊地投入並聯電容器組。
無功補償方式分類
配電網無功補償的主要方式有五種:變電站補償、配電線路補償、隨機補償、隨器補償、跟蹤補償。 變電站補償:針對電網的無功平衡,在變電站進行集中補償,補償裝置包括並聯電容器、同步調相機、靜止補償器等,主要目的是平衡電網的無功功率,改善電網的功率因數,提高系統終端變電所的母線電壓,補償變電站主變壓器和高壓輸電線路的無功損耗。這些補償裝置一般集中接在變電站10kV母線上,因此具有管理容易、維護方便等優點,缺點是這種補償方式對10kV配電網的降損不起作用。 配電線路補償:線路無功補償即通過在線路桿塔上安裝電容器實現無功補償。線路補償點不宜過多;控制方式應從簡,一般不採用分組投切控制;補償容量也不宜過大,避免出現過補償現象;保護也要從簡,可採用熔斷器和避雷器作為過流和過壓保護。線路補償方式主要提供線路和公用變壓器需要的無功,該種方式具有投資小、回收快、便於管理和維護等優點,適用於功率因數低、負荷重的長線路。缺點是存在適應能力差,重載情況下補償不足等問題。 在低壓三相四線制的城市居民和農網供電系統中:由於用電戶多為單相負荷或單相和三相負荷混用,並且負荷大小不同和用電時間的不同。所以,電網中三相間的不平衡電流是客觀存在的,並且這種用電不平衡狀況無規律性,也無法事先預知。導致了低壓供電系統三相負載的長期性不平衡。對於三相不平衡電流,電力部門除了盡量合理地分配負荷之外幾乎沒有什麼行之有效的解決辦法。 電網中的不平衡電流會增加線路及變壓器的銅損,還會增加變壓器的鐵損,降低變壓器的出力甚至會影響變壓器的安全運行,最終會造成三相電壓的不平衡。 調整不平衡電流無功補償裝置,有效地解決了這個難題,該裝置具有在補償線路無功的同時調整不平衡有功電流的作用。其理論結果可使三相功率因數均補償至1,三相電流調整至平衡。實際應用表明,可使三相功率因數補償到0.95以上,使不平衡電流調整到變壓器額定電流的10%以內。 隨機補償:隨機補償就是將低壓電容器組與電動機並接,通過控制、保護裝置與電動機同時投切的一種無功補償方式。縣級配電網中有很大一部分的無功功率消耗在電動機上,因此,搞好電動機的無功補償,使其無功就地平衡,既能減少配電線路的損耗,同時還可以提高電動機的出力。隨機補償的優點是用電設備運行時,無功補償裝置投入;用電設備停運時,補償裝置退出。更具有投資少、佔位小、安裝容易、配置方便靈活、維護簡單、事故率低的特點。適用於補償電動機的無功消耗,以補勵磁無功為主,可較好的限制配電網無功峰荷。年運行小時數在1000h以上的電動機採用隨機補償較其他補償方式更經濟。 隨器補償:隨器補償是指將低壓電容器通過低壓熔斷器接在配電變壓器二次側,以補償配電變壓器空載無功的補償方式。配電變壓器在輕載或空載時的無功負荷主要是變壓器的空載勵磁無功,配電變壓器空載無功是農網無功負荷的主要部分.隨器補償的優點是接線簡單,維護管理方便,能有效地補償配電變壓器空載無功,限制農網無功基荷,使該部分無功就地平衡,從而提高配電變壓器利用率,降低無功網損,提高用戶的功率因數,改善用戶的電壓質量,具有較高的經濟性,是目前無功補償最有效的手段之一。缺點是由於配電變壓器的數量多、安裝地點分散,因此補償工作的投資比較大,運行維護工作量大。 跟蹤補償:是指以無功補償投切裝置作為控制保護裝置,將低壓電容器組補償在用戶配電變壓器低壓側的補償方式。這種補償方式,部分相當於隨器補償的作用,主要適用與100kVA及以上的專用配電變壓器用戶。跟蹤補償的優點是可較好地跟蹤無功負荷的變化,運行方式靈活,補償效果好,但是費用高,且自動投切裝置較隨機或隨器補償的控制保護裝置復雜,如有任一元件損壞,則可導致電容器不能投切。其主要適於大容量大負荷的配變。
無功補償應用

高壓集中補償的應用
低壓無功補償智能電容器實現在櫃體內組裝,構成無功自動補償裝置,接線簡單、維護方便、節約成本。 優點:補償效果好,容量可調整性好,接線簡單、故障少、運行維護方便。 配置參考:根據成套櫃補償容量的要求進行配置。 低壓成套櫃配置容量參考: GGD櫃型 櫃體尺寸:1000mm(寬) ×600mm(深) ×2230(高)mm 可安裝智能電容器數量:20台 40kvar(20kvar+20kvar) 無功補償總容量:800kvar(40kvar×20) MNS櫃型 櫃體尺寸:600mm(寬) ×800mm(深) ×2200(高)mm 可安裝智能電容器數量:12台 40kvar(20kvar+20kvar) 無功補償總容量:480kvar(40kvar×12) ⑵大容量電力電子裝置,普通電容器就地補償不恰當:隨著大型電力電子裝置的廣泛應用,尤其是採用大容量晶閘管電源供電後,致使電網波形畸變,諧波分量增大,功率因數降低。更由於此類負載經常是快速變化,諧波次數增高,危及供電質量,對通訊設備影響也很大,所以此類負載採用就地補償是不安全,不恰當的。因為①電力電子裝置會產生高次諧波,在負載電感上有部分被抑制。但當負載並聯電容器後,高次諧波可順利通過電容器,這就等效地增加了供電網路中的諧波成分。②由於諧波電流的存在,會增加電容器的負擔,容易造成電容器的過流、過熱,甚至損壞。③電力電子裝置供電的負載如電弧爐、軋鋼機等具有沖擊性無功負載,這要求無功補償的響應速度要快,但並聯電容器的補償方法是難以奏效。 美國斯威爾智能電容器成套設備能滿足惡劣環境下的電容補償要求.美國斯威爾專業開發的功率因數控制器結合智能電容器組,能快速響應電網功率因數突變的問題,毫秒級的捕捉諧波突變.防止過度補償引起的設備損壞.同時美國斯威爾智能電容器成套設備具有諧波抑制能力,破壞電容與系統的並聯諧振,部分吸收系統中的3、5、7次及以上諧波. ⑶電動機起動頻繁或經常正反轉的場合,不宜採用普通電容器就地補償:非同步電動機直接起動時,起動電流約為額定電流的4-7倍,即使採用降壓起動措施,其起動電流也是額定電流的2-3倍。因此在電動機起動瞬間,與電動機並聯的電容器勢必流過浪涌沖擊電流,這對頻繁起動的場合,不僅增加線損,而且引起電容器過熱,降低使用壽命。 此外,對具有正反轉起動的場合,應把補償電容器接到接觸器頭電源進線側,這雖能使電容隨電動機的運行而投入。但當接觸器剛斷開時,電容器會向電動機繞組放電,,引起電動機自激產生高電壓,這也有不妥之處。若將補償電容器接於電源側,當電動機停運時,電網仍向電容器供給電流,造成電容器負擔加重,產生不必要的損耗。為此,對無功補償功率較大的電容器,如需接在電源進線側,則應對電容器另外加控制開關,在電動機停運時予以切除。 ⑷就地補償的電容器不宜採用普通電力電容器:推廣就地補償技術時,不宜直接使用普通油浸紙質電力電容器,因為其自愈功能很差,使用中可能產生永久性擊穿,甚至引起爆炸,危及人身安全。

閱讀全文

與配電網無功補償裝置的設計相關的資料

熱點內容
燃氣管道閥門試驗記錄 瀏覽:75
管道閥門爆裂的原因 瀏覽:415
一萬伏線路怎樣檢測避雷裝置 瀏覽:70
消防水管道閥門能打壓嗎 瀏覽:684
緩刑制動裝置作用 瀏覽:168
數控機床的鑽頭都叫什麼 瀏覽:661
如何拆氣動砂輪機軸承 瀏覽:108
電動車能走儀表有電燈沒電怎麼查 瀏覽:677
天籟如何調節儀表盤顯示時間 瀏覽:817
鑄造需要什麼樣的專業文憑 瀏覽:289
電動工具的外殼是什麼塑料 瀏覽:17
如何計算單台用電設備的計算負荷 瀏覽:824
設備巡視應該遵守哪些規定 瀏覽:368
檢測及報警控制裝置 瀏覽:826
碘酒專用儀器有哪些 瀏覽:49
dn32管道配多大閥門 瀏覽:730
室外獨立生產設施設備有什麼 瀏覽:514
冷庫空調製冷不熱怎麼辦 瀏覽:199
快裝式閥門怎麼套定額 瀏覽:481
汽車裝置都有什麼作用是什麼 瀏覽:625