1. 氬氣的作用
氬氣的用途:氬是目前工業上應用很廣的稀有氣體。它的性質十分不活潑,既不能燃燒,也不助燃。在飛機製造、造船、原子能工業和機械工業部門,對特殊金屬,例如鋁、鎂、銅及其合金和不銹鋼在焊接時,往往用氬作為焊接保護氣,防止焊接件被空氣氧化或氮化。 在金屬冶煉方面,氧、氬吹煉是生產優質鋼的重要措施,每煉1t鋼的氬氣消耗量為1~3m3。此外,對鈦、鋯、鍺等特殊金屬的冶煉,以及電子工業中也需要用氬作保護氣。
2. 氬氣的作用
氬氣有兩個作用:1,載氣;將輔助樣品進入原子化器;2;屏蔽氣,保證原子化器在工作時不受外界(如空氣等)的影響。
3. 氬弧焊氣體滯留裝置的作用是什麼
氣體滯後,在焊接結束後再送一段時間的氬氣,保護最後的焊縫,所以結束焊接的時候不要立即抬槍,讓氬氣再保護一會兒。
4. 氬弧焊為什麼要用氬氣,氬氣起什麼作用
保護作用,保護焊接部位不被氧化。如果氬氣不純的話,會出現發黑的現象。
5. 氬氣有什麼作用怎麼還會形成液體
氬氣是目前工業上應用很廣的稀有氣體。它的性質十分不活潑,既不能燃燒,也不助燃。在飛機製造、造船、原子能工業和機械工業部門,對特殊金屬,例如鋁、鎂、銅及其合金和不銹鋼在焊接時,往往用氬作為焊接保護氣,防止焊接件被空氣氧化或氮化。在金屬冶煉方面,氧、氬吹煉是生產優質鋼的重要措施,每煉1t鋼的氬氣消耗量為1~3m3。此外,對鈦、鋯、鍺等特殊金屬的冶煉,以及電子工業中也需要用氬作保護氣。芬蘭科學家合成惰性氣體元素氬化合物
新華社倫敦8月25日電(記者王艷紅)芬蘭赫爾辛基大學的科學家在24日出版的英國《自然》雜志上報告說,他們首次合成了惰性氣體元素氬的穩定化合物——氟氬化氫,分子式為HArF。
HArF模型這樣,6種惰性氣體元素氦、氖、氬、氪、氙和氡中,就只有原子量最小的氦和氖尚未被合成穩定化合物了。惰性氣體可廣泛應用於工業、醫療、光學應用等領域,合成惰性氣體穩定化合物有助於科學家進一步研究惰性氣體的化學性質及其應用技術。
在惰性氣體元素的原子中,電子在各個電子層中的排列,剛好達到穩定數目。因此原子不容易失去或得到電子,也就很難與其它物質發生化學反應,因此這些元素被稱為「惰性氣體元素」。
在原子量較大、電子數較多的惰性氣體原子中,最外層的電子離原子核較遠,所受的束縛相對較弱。如果遇到吸引電子強的其他原子,這些最外層電子就會失去,從而發生化學反應。1962年,加拿大化學家首次合成了氙和氟的化合物。此後,氡和氪各自的化合物也出現了。
原子越小,電子所受約束越強,元素的「惰性」也越強,因此合成氦、氖和氬的化合物更加困難。赫爾辛基大學的科學家使用一種新技術,使氬與氟化氫在特定條件下發生反應,形成了氟氬化氫。它在低溫下是一種固態穩定物質,遇熱又會分解成氬和氟化氫。科學家認為,使用這種新技術,也可望分別製取出氦和氖的穩定化合物。
自19世紀末以來,稀有氣體元素不能生成熱力學穩定化合物的結論給科學家人為地劃定了一個禁區,致使絕大多數化學家不願再涉獵這一被認為是荒涼貧瘠的不毛之地,關於稀有氣體化學性質的研究被忽略了。盡管如此,仍有少數化學家試圖合成稀有氣體化合物。1932年,前蘇聯的阿因托波夫(A.R.Antropoff)曾報道,他在液體空氣冷卻器內,用放電法使氪與氯、溴反應,製得了較氯易揮發的暗紅色物質,並認為是氪的鹵化物。但當有人採用他的方法重復實驗時卻未獲成功。阿因托波夫就此否定了自己的報道,認為所謂氪的鹵化物實際上是氧化氮和鹵化氫,並非氪的鹵化物。1933年,美國著名化學家鮑林(L.Pauling)通過對離子半徑的計算,曾預言可以製得六氟化氙(XeF6)、六氟化氪(KrF6)、氙酸及其鹽。揚斯特(D.M.Younst)受阿因托波夫的第一個報道和鮑林預言的啟發,用紫外線照射和放電法試圖合成氟化氙和氯化氙,均未成功。他在放電法合成氟化氙的實驗中將氟和氙按一定比例混合後,在銅電極間施以30000伏的電壓,進行火花放電,但未能檢驗出氟化氙的生成。揚斯特由於對傳統觀念心有餘悸,沒有堅持繼續進行實驗,使一個極有希望的方法半途而廢。一系列的失敗,致使在以後的30多年中很少有人再涉足這一領域。令人遺憾的是,到了1961年,鮑林也否定了自己原來的預言,認為「氙在化學上是完全不反應的,它無論如何都不能生成通常含有共價鍵或離子鍵化合物的能力」。
歷史的發展頗具戲劇性,就在鮑林否定其預言的第二年,第一個稀有氣體化合物——六氟合鉑酸氙(XePtF6)竟奇跡般地出現了,並以它獨特的經歷和風姿震驚了整個化學界,標志著稀有氣體化學的建立,開創了稀有氣體化學研究的嶄新領域。
在加拿大工作的英國年輕化學家巴特列特(N.Bartlett)一直從事無機氟化學的研究。自1960年以來,文獻上報道了數種新的鉑族金屬氟化物,它們都是強氧化劑,其中高價鉑的氟化物六氟化鉑(PtF6)的氧化性甚至比氟還要強。巴特列特首先用PtF6與等摩爾氧氣在室溫條件下混合反應,得到了一種深紅色固體,經X射線衍射分析和其他實驗確認此化合物的化學式為O2PtF6,其反應方程式為:
O2+PtF6→O2PtF6
這是人類第一次製得O+2的鹽,證明PtF6是能夠氧化氧分子的強氧化劑。巴特列特頭腦機敏,善於聯想類比和推理。他考慮到O2的第一電離能是1175.7千焦/摩爾,氙的第一電離能是1175.5千焦/摩爾,比氧分子的第一電離能還略低,既然O2可以被PtF6氧化,那麼氙也應能被PtF6氧化。他同時還計算了晶格能,若生成XePtF6,其晶格能只比O2PtF6小41.84千焦/摩爾。這說明XePtF6一旦生成,也應能穩定存在。於是巴特列特根據以上推論,仿照合成O2PtF6的方法,將PtF6的蒸氣與等摩爾的氙混合,在室溫下竟然輕而易舉地得到了一種橙黃色固體XePtF6:
Xe+PtF6→XePtF6
該化合物在室溫下穩定,其蒸氣壓很低。它不溶於非極性溶劑四氯化碳,這說明它可能是離子型化合物。它在真空中加熱可以升華,遇水則迅速水解,並逸出氣體:
2XePtF6+6H2O→2Xe↑+O2↑+2PtO2+12HF
編輯本段新天地的產生
這樣,具有歷史意義的第一個含有化學鍵的「惰性」氣體化合物誕生了,從而很好地證明了巴特列特的正確設想。1962年6月,巴特列特在英國Proccedings
of
the
Chemical
Society雜志上發表了一篇重要短文,正式向化學界公布了自己的實驗報告,一下震動了整個化學界。持續70年之久的關於稀有氣體在化學上完全惰性的傳統說法,首先從實踐上被推翻了。化學家們開始改變了原來的觀念,摘掉了冠以稀有氣體頭上名不副實的「惰性」的帽子,拆除了人為的樊籬,很快形成了一個合成和研究新的稀有氣體化合物的熱潮,開辟了一個稀有氣體化學的新天地。
認識上的障礙一旦拆除,更多的稀有氣體化合物很快被陸續合成出來。就在同年8月,柯拉森(H.H.Classen)在加熱加壓的情況下,以1∶5體積比混合氙與氟時,直接得到了XeF4,年底又製得了XeF2和XeF6。氙的氟化物的直接合成成功,更加激發了化學家合成稀有氣體化合物的熱情。在此後不長的時間內,人們相繼又合成了一系列不同價態的氙氟化合物、氙氟氧化物、氙氧酸鹽等,並對其物理化學性質、分子結構和化學鍵本質進行了廣泛的研究和探討,從而大大豐富和拓寬了稀有氣體化學的研究領域。到1963年初,關於氪和氡的一些化合物也陸續被合成出來了。至今,人們已經合成出了數以百計的稀有氣體化合物,但卻僅限於原子序數較大的氪、氙、氡,至於原子序數較小的氦、氖、氬,目前仍未製得它們的化合物,但有人已從理論上預測了合成這些化合物的可能性。1963年,皮門陶(Pimentaw)等人根據HeF2的電子排布與穩定的HF-2離子相似這一點,提出了利用核反應制備HeF2的3種設想:(1)製取TF-2,再利用氚〔3H(T)〕的β衰變合成HeF2:TF-2→HeF2+β;(2)用熱中子輻射LiF,生成HeF2;(3)直接用α粒子轟擊固態氟而產生HeF2。但毛姆等人則認為,HeF2和HF-2的電子排布雖然相似,但HF-2可以看成是一個H-跟兩個F原子作用成鍵,H-的電離能僅為22.44千焦/摩爾,而He的電離能卻高達
801.5千焦/摩爾,因此是否存在HeF2,在理論上是值得懷疑的,氦能否形成化合物,至今仍是個不解之謎。
6. 氬氣的應用
在空氣中含有的0.932%的氬,沸點在氧、氮之間,在空分裝置上塔的中部含量最高,叫氬餾分。在分離氧、氮的同時,將氬餾分抽出,進一步分離提純,也可得到氬副產品。對全低壓空分裝置,一般可將加工空氣中30%~35%的氬作為產品獲得(最新流程已可將氬的提取率提高到80%以上);對中壓空分裝置,由於膨脹空氣進下塔,不影響上塔的精餾過程,氬的提取率可達60%左右。但是,小型空分裝置總的加工空氣量少,所能生產的氬氣量有限,是否需要配置提氬裝置,要視具體情況確定。
氬是目前工業上應用很廣的稀有氣體。它的性質十分不活潑,既不能燃燒,也不助燃。在飛機製造、造船、原子能工業和機械工業部門,對特殊金屬,例如鋁、鎂、銅及其合金和不銹鋼在焊接時,往往用氬作為焊接保護氣,防止焊接件被空氣氧化或氮化。
在金屬冶煉方面,氧、氬吹煉是生產優質鋼的重要措施,每煉1t鋼的氬氣消耗量為1~3m3。此外,對鈦、鋯、鍺等特殊金屬的冶煉,以及電子工業中也需要用氬作保護氣
氮主要用於合成氨,反應式為N2+3H2=2NH3( 條件為高壓,高溫、和催化劑。反應為可逆反應)還是合成纖維(錦綸、腈綸),合成樹脂,合成橡膠等的重要原料。由於氮的化學惰性,常用作保護氣體。以防止某些物體暴露於空氣時被氧所氧化,用氮氣填充糧倉,可使糧食不霉爛、不發芽,長期保存。液氨還可用作深度冷凍劑。作為冷凍劑在醫院做除斑,包,豆等的手術時常常也使用, 即將斑,包,豆等凍掉,但是容易出現疤痕,並不建議使用。
在汽車上氮氣有著非常重要的作用:
1. 提高輪胎行駛的穩定性和舒適性。氮氣幾乎為惰性的雙原子氣體,化學性質極不活潑,氣體分子比氧分子大,不易熱脹冷縮,變形幅度小,其滲透輪胎胎壁的速度比空氣慢約30~40%, 能保持穩定胎壓,提高輪胎行駛的穩定性,保證駕駛的舒適性;氮氣的音頻傳導性低,相當於普通空氣的1/5,使用氮氣能有效減少輪胎的噪音,提高行駛的寧靜度。
2.防止爆胎和缺氣碾行。爆胎是公路交通事故中的頭號殺手。據統計,在高速公路上有46%的交通事故是由於輪胎發生故障引起的,其中爆胎一項就占輪胎事故總量的70%。汽車行駛時,輪胎溫度會因與地面磨擦而升高,尤其在高速行駛及緊急剎車時,胎內氣體溫度會急速上升,胎壓驟增,所以會有爆胎的可能。而高溫導致輪胎橡膠老化,疲勞強度下降,胎面磨損劇烈,又是可能爆胎的重要因素。而與一般高壓空氣相比,高純度氮氣因為無氧且幾乎不含水份不含油,其熱膨脹系數低,熱傳導性低,升溫慢,降低了輪胎聚熱的速度,不可然也不助然等特性,所以可大大地減少爆胎的幾率。
3.延長輪胎使用壽命 使用氮氣後,胎壓穩定體積變化小,大大降低了輪胎不規則磨擦的可能性,如冠磨、胎肩磨、偏磨,提高了輪胎的使用壽命;橡膠的老化是受空氣中的氧分子氧化所致,老化後其強度及彈性下降,且會有龜裂現象,這時造成輪胎使用壽命縮短的原因之一。氮氣分離裝置能極大限度地排除空氣中的氧氣、硫、油、水和其它雜質,有效降低了輪胎內襯層的氧化程度和橡膠被腐蝕的現象,不會腐蝕金屬輪輞,延長了輪胎的使用壽命,也極大程度減少輪輞生銹的狀況。
4.減少油耗,保護環境。輪胎胎壓的不足與受熱後滾動阻力的增加,會造成汽車行駛時的油耗增加;而氮氣除了可以維持穩定的胎壓,延緩胎壓降低之外,其乾燥且不含油不含水,熱傳導性低,升溫慢的特性,減低了輪胎行走時溫度的升高,以及輪胎變形小抓地力提高等,降低了滾動阻力,從而達到減少油耗的目的。
氮氣有廣泛的用途。首先,利用它「性格孤獨」的特點,我們將它充灌在電燈泡里,可防止鎢絲的氧化和減慢鎢絲的揮發速度,延長燈泡的使用壽命。還可用它來代替惰性氣體作焊接金屬時的保護氣。
在博物館里,常將一些貴重而稀有的畫頁、書卷保存在充滿氮氣的圓筒里,這樣就能使蛀蟲在氮氣中被悶死。利用氮氣使糧食處於休眠和缺氧狀態、代謝緩慢,可取得良好的防蟲、防霉和防變質效果,糧食不受污染,管理比較簡單,所需費用也不高,故近年來進展較快。目前,日本和義大利等國已進入小型生產試驗階段。近年來。我國不少地區也應用氮氣來保存糧食,叫做「真空充氮貯糧」,亦可用來保存水果等農副產品。
利用液氮給手術刀降溫,就成為「冷刀」。醫生用「冷刀」做手術,可以減少出血或不出血,手術後病人能更快康復。使用液氮為病人治療皮膚病,效果也很好。這是因為液氮的氣化溫度是-195.8℃,因此,用來治療表淺的皮膚病常常很容易使病變處的皮膚壞死、脫落。過去皮膚科常以「乾冰」治療血管瘤,用意雖然相同,但冷度遠不及液氮。醫治肺結核的「人工氣胸術」,也是把氮氣(或空氣)打進肺結核病人的胸腔里,壓縮有病灶的肺葉,使它得到休息。
7. 氬氣都有那些用圖
氬氣具有惰性、低傳熱率等性質,因此它被廣泛地運用在許多方面。
氬氣最主要的用處就是它的惰性,可以保護一些容易與周遭物質發生反應的東西。雖然其他的惰性氣體也有這些特性,但是氬氣在空氣中的含量最多,也是最容易取得,因此相對就比較便宜,具有經濟效益。另外氬氣便宜的原因還有它是製造液氧和液氮的副產品,而由於它們兩個都是工業上重要的原料,生產很多,所以每年都有很多的液氬副產品。
以氬惰性的用途主要有:
1.電燈泡里的填充氣體,由於氬氣不會與燈芯產生化學反應,而又能保持氣壓減緩鎢絲升華,可延長燈絲使用壽命。
2.氬可當作焊接時所用的保護氣體,其中包括MIG焊接、GTA焊接與GMA焊接等,在這時氬通常會和二氧化碳混合在一起使用。
3.可用於滅火,用氬氣滅火的好處是幾乎不會破壞任何火場的物品,通常使在火場有特殊儀器時才使用。
4.是用於感應耦合等離子的氣體之一。
5.用於保護加工中的鈦和其他容易發生反應的金屬。
6.保護成長中的硅晶體和鍺晶體,這晶體主要用於半導體學。
7.在博物館里,會在一些重要文物的玻璃專櫃里填充氬氣,避免氧化。
8.在啤酒罐中的填充物,雖然也可以用氮氣代替。
9.在釀酒的過程中,啤酒桶里的填充物,它可以把氧氣置換,以避免啤酒桶里的原料被氧化成乙酸。
10.在葯學里,氬可以用於保護一些靜脈內的治療的葯物,舉個例子,像是對乙醯氨基酚。一樣的,這也是防止葯物受到氧氣的破壞。
11.用於冷卻AIM-9響尾蛇導彈的追蹤器,氬當時都是以高壓儲存,然後當釋放氣體後就可以帶走一些熱量。
12.為石墨電熔爐中的保護氣體,以免它被氧化。
另外氬氣的低傳熱率也是它的特性之一,像它可以作為隔熱窗戶中兩層玻璃之間的填充物。因為它的低傳熱率和惰性,氬氣在水肺潛水可以用來作為膨脹潛水衣的氣體。氬氣還可以在水肺中代替氮氣(吸收純氧對身體不好,因此水肺中要添加其他氣體),因為氮氣在高壓下會溶進血液里而造成氮麻醉,氬氣則可以減輕這種症狀(雖然一般來說,惰性氣體也會造成這種症狀)。
使用特定的方法可以使氬氣離子化並且發光,這種功能可用於等離子燈和粒子物理學中的能量器。以氬作成的氬雷射會發出藍光,它在醫學外科中可用於連接動脈、去除腫瘤和治療眼睛的缺陷等。氬氣還可以用於濺鍍。另外氬-39有269年的半衰期,可以用於測定地下水和冰層的年齡,而鉀-氬年代測定法適用鉀-40衰變成氬-40的過程來用於測定火成岩的年齡。
8. 中氬氣主要起什麼作用
氬氣的主要用途:
用作電弧焊接(切割)不銹鋼、鎂、鋁、和其它合金的保護氣體。熱處理工藝也用於代替氮氣和氨氣,效果更是超過氮氣和氨氣,不銹鋼熱處理時採用氬氣保護折彎效果更好不易斷裂。
還用於鋼鐵、鋁、鈦和鋯的冶煉中。放電時氬發出紫色輝光,又用於照明技術和填充日光燈、光電管、照明管等。
在釀酒的過程中,啤酒桶里的填充物,它可以把氧氣置換,以避免啤酒桶里的原料被氧化成乙酸。
氬氣普通大氣壓下無毒。高濃度時,使氧分壓降低而發生窒息。氬濃度達50%以上,引起嚴重症狀;75%以上時,可在數分鍾內死亡。當空氣中氬濃度增高時,先出現呼吸加速,注意力不集中,共濟失調。
儲存於通風庫房,遠離火種、熱源;氣瓶應有防倒措施。大於10立方米低溫液體儲槽不能放在室內。瓶裝氣體產品為高壓充裝氣體,使用時應經減壓降壓後方可使用。包裝的氣瓶上均有使用的年限,凡到期的氣瓶必須送往有部門進行安全檢驗,方能繼續使用。
9. 氬氣是干什麼用的
氬氣的主要用途:
一、保護氣體
用作電弧焊接(切割)不銹鋼、鎂、鋁、和其它合金的保護氣體。熱處理工藝也用於代替氮氣和氨氣,效果更是超過氮氣和氨氣,不銹鋼熱處理時採用氬氣保護折彎效果更好不易斷裂。
二、照明
還用於鋼鐵、鋁、鈦和鋯的冶煉中。放電時氬發出紫色輝光,又用於照明技術和填充日光燈、光電管、照明管等。
三、釀酒保護
在釀酒的過程中,啤酒桶里的填充物,它可以把氧氣置換,以避免啤酒桶里的原料被氧化成乙酸。
氬是目前工業上應用很廣的稀有氣體。它的性質十分不活潑,既不能燃燒,也不助燃。在飛機製造、造船、原子能工業和機械工業部門,對特殊金屬,例如鋁、鎂、銅及其合金和不銹鋼在焊接時,往往用氬作為焊接保護氣,防止焊接件被空氣氧化或氮化。
在金屬冶煉方面,氧、氬吹煉是生產優質鋼的重要措施,每煉1t鋼的氬氣消耗量為1~3m3。此外,對鈦、鋯、鍺等特殊金屬的冶煉,以及電子工業中也需要用氬作保護氣。
在空氣中含有的0.932%的氬,沸點在氧、氮之間,在空分裝置上塔的中部含量最高,叫氬餾分。在分離氧、氮的同時,將氬餾分抽出,進一步分離提純,也可得到氬副產品。對全低壓空分裝置,一般可將加工空氣中30%~35%的氬作為產品獲得(最新流程已可將氬的提取率提高到80%以上)。
對中壓空分裝置,由於膨脹空氣進下塔,不影響上塔的精餾過程,氬的提取率可達60%左右。但是,小型空分裝置總的加工空氣量少,所能生產的氬氣量有限,是否需要配置提氬裝置,要視具體情況確定。
氬氣為惰性氣體,對人體無直接危害。但是,如果工業使用後,產生的廢氣則對人體危害很大,會造成矽肺、眼部損壞等情況。
雖然是惰性氣體,同時也是窒息性氣體,大量吸入會產生窒息。生產場所要通風,並且,從事與氬氣有關的技術人員,每年定期進行職業病體檢,確保身體健康。
氬本身無毒,但在高濃度時有窒息作用。當空氣中氬氣濃度高於33%時就有窒息的危險。當氬氣濃度超過50%時,出現嚴重症狀,濃度達到75%以上時,能在數分鍾內死亡。液氬可以傷皮膚,眼部接觸可引起炎症
(9)氬氣抽排裝置及各部分作用擴展閱讀:
急救處理
一:切斷氣源,迅速撤離泄漏污染區,處理泄漏事故人員戴自給正壓式呼吸器,處理液氬應配帶防凍護具。若氣瓶泄漏而無法堵漏時,將氣瓶移至空曠安全處放。
二、防護措施呼吸系統防護:一般不需特殊防護。但當作業場所空氣中氧氣濃度低於18%時,必須佩戴空氣呼吸器、氧氣呼吸器或長管面具
儲存注意
儲存於通風庫房,遠離火種、熱源;氣瓶應有防倒措施。大於10立方米低溫液體儲槽不能放在室內。瓶裝氣體產品為高壓充裝氣體,使用時應經減壓降壓後方可使用。包裝的氣瓶上均有使用的年限,凡到期的氣瓶必須送往有部門進行安全檢驗,方能繼續使用。
每瓶氣體在使用到尾氣時,應保留瓶內余壓在0.5MPa,最小不得低於0.25MPa余壓,應將瓶閥關閉,以保證氣體質量和使用安全。
瓶裝氣體產品在運輸儲存、使用時都應分類堆放,嚴禁可燃氣體與助燃氣體堆放在一起,不準靠近明火和熱源,應做到勿近火、勿沾油臘、勿爆曬、勿重拋、勿撞擊,嚴禁在氣瓶身上進行引弧或電弧,嚴禁野蠻裝卸。
消防注意
滅火方法:本品不燃。切斷氣源。噴水冷卻容器,可能的話將容器從火場移至空曠處
貯運注意事項
在貯運過程中輕裝輕卸,嚴防碰損,防止高溫。氬氣沒有腐蝕性,在常溫下可使用碳鋼、不銹鋼、銅、銅合金、等通用金屬材料及一般的塑性材料和彈性材料。在低溫下常用聚四氟乙烯和聚三氟氯化乙烯聚合體來作墊圈、隔膜等。
氬本身無毒,但在高濃度時有窒息作用。當空氣中氬氣濃度高於33%時,即氧氣濃度比平時減少 2/3以下時,就有窒息的危險。當氬氣濃度超過50% 時,出現嚴重症狀,濃度達75%以上時,能在數分鍾內死亡。
窒息症狀表現為,最初出現呼吸加快,注意力減退,肌肉運動失調,繼而出現判斷力下降,失去所有感覺,情緒不穩,全身疲乏,進而出現惡心、嘔吐、衰弱、意識喪失、痊孿、昏睡,以致死亡。液態氬濺入眼內可引起炎症,觸及皮膚可引起凍傷。氬氣可用玻璃瓶或鋼瓶貯裝。
10. 氧氣,氮氣,氬氣,乙炔,丙烷,二氧化碳的功能及用途
1.氧氣的某些用途和負作用
一.氧是心臟的「動力源」
氧是人體進行新陳代謝的關鍵物質,是人體生命活動的第一需要。呼吸的氧轉化為人體內可利用的氧,稱為血氧。血液攜帶血氧向全身輸入能源,血氧的輸送量與心臟、大腦的工作狀態密切相關。心臟泵血能力越強,血氧的含量就越高;心臟冠狀動脈的輸血能力越強,血氧輸送到心腦及全身的濃度就越高,人體重要器官的運行狀態就越好。
二.氧氣噴泉
隨著人們對新鮮氧氣的需求願望與日俱增,在美國洛杉磯等大城市,一種氧氣噴泉吧隨之設立。在氧氣噴泉吧里,人們手持透明氧氣罐,其上插上了精巧的外接吸收裝置,輕輕一吸,罐內的純氧即噴涌而出。帶著檸檬或其他香味的氧氣可連續輸送20分鍾。除此之外,美國其他與氧有關的產品不斷涌現,如各種含氧水、含氧汽水、含氧膠丸等。新興的氧氣消費,已形成一股新潮流。
三.增加吸氧量可減少術後感染及止吐
今年1月,美國的《新英格蘭醫學雜志》發表一項新的研究成果。奧地利、美國及澳大利亞的麻醉醫師報告,只要在手術中和手術後給病人增加吸氧量,病人術後感染危險將降低一半。因為增氧可以提高免疫系統的免疫能力,可為患者的「免疫大軍」提供更多「彈葯」,殺死傷口部位的細菌。
這項研究是在奧地利維也納和德國漢堡醫院的500名患者身上進行的。其過程是:在整個手術期間和術後兩個小時,為第一組250名患者實施含30%氧的麻醉,另一組250名患者在同一時間內接受含80%氧的麻醉。結果第一組手術後有28人感染,而第二組手術後只有13人感染。
麻醉病人在術後發生惡心或嘔吐頗為常見,病人感到非常難受。進行此項研究的麻醉師說,增加吸氧比目前所使用的所有止吐葯效果更為明顯,且無危險和價格低廉。氧氣防止嘔吐的機制可能是防止腸道局部缺血,從而阻止催吐因子的釋放。但完全用氧而不用一氧化氮是不可取的,因為這有可能使病人在手術中覺醒。
四.高壓氧制服突發性耳聾
據友誼醫院高壓氧科主任介紹,高壓氧不僅能改善內耳聽覺器官的缺氧狀態,而且還能改善內耳血液循環即組織代謝,促進聽覺功能的恢復。一旦患了突發性耳聾,應立即去醫院高壓氧科,因為高壓氧對突發性耳聾的療效常取決於最初的治療時間,一般在發病後三天之內(最遲不應超過一周)治療效果最佳。
五.高壓氧治療牙周病效果好
牙周病指的是牙齦、牙周膜和牙槽骨的炎症、變形、萎縮,最後導致牙齒松動、脫落的一種慢性進行性疾病。患了牙周病會有牙齦充血、紅腫、出血,牙齦溝加深,形成了牙周炎,牙周袋溢膿,有口臭,牙齒松動,並常伴有牙齦退縮。
牙周病的常規治療效果並不理想。近年來,醫務工作者用高壓氧治療牙周病,取得了良好的療效。高壓氧治療牙周病可提高牙周病局部組織的氧含量和氧的彌散距離,促進側枝循環的重建,改善局部循環。血管收縮效應可緩解局部腫脹。另外,高壓氧還能有效地抑制細菌,尤其是厭氧菌的生長繁殖,改善牙周組織的供血、供氧,促進新陳代謝,以利於局部組織的修復,達到抗炎、消腫、止血和除臭的目的。
六.過度吸氧的負作用
早在19世紀中葉,英國科學家保爾·伯特首先發現,如果讓動物呼吸純氧會引起中毒,人類也同樣。人如果在大於0.05 MPa(半個大氣壓)的純氧環境中,對所有的細胞都有毒害作用,吸入時間過長,就可能發生「氧中毒」。肺部毛細管屏障被破壞,導致肺水腫、肺淤血和出血,嚴重影響呼吸功能,進而使各脹器缺氧而發生損害。在0.1 MPa(1個大氣壓)的純氧環境中,人只能存活24小時,就會發生肺炎,最終導致呼吸衰竭、窒息而死。人在0.2 MPa(2個大氣壓)高壓純氧環境中,最多可停留1.5小時 ~ 2小時,超過了會引起腦中毒,生命節奏紊亂,精神錯亂,記憶喪失。如加入0.3 MPa(3個大氣壓)甚至更高的氧,人會在數分鍾內發生腦細胞變性壞死,抽搐昏迷,導致死亡。
此外,過量吸氧還會促進生命衰老。進入人體的氧與細胞中的氧化酶發生反應,可生成過氧化氫,進而變成脂褐素。這種脂褐素是加速細胞衰老的有害物質,它堆積在心肌,使心肌細胞老化,心功能減退;堆積在血管壁上,造成血管老化和硬化;堆積在肝臟,削弱肝功能;堆積在大腦,引起智力下降,記憶力衰退,人變得痴呆;堆積在皮膚上,形成老年斑。
生產和應用 大規模生產氧氣的方法是分餾液態空氣 ,首先將空氣壓縮,待其膨氧脹後又冷凍為液態空氣,由於稀有氣體和氮氣的沸點都比氧氣低,經過分餾,剩下的便是液氧,可貯存在高壓鋼瓶中。所有的氧化反應和燃燒過程都需要氧,例如煉鋼時除硫、磷等雜質,氧和乙炔混合氣燃燒時溫度高達3500℃,用於鋼鐵的焊接和切割。玻璃製造、水泥生產、礦物焙燒、烴類加工都需要氧。液氧還用作火箭燃料,它比其他燃料更便宜。在低氧或缺氧的環境中工作的人,如潛水員、宇航員,氧更是維持生命所不可缺少的。但氧的活性狀態如 、OH以及H2O2等對生物的組織有嚴重的損壞作用,紫外線對皮膚和眼的損害多與此種作用有關。是空氣的組分之一,無色、無嗅、無味。氧氣密度比空氣大,在標准狀況(0℃和大氣壓強101325帕)下密度為1.429克/升,能溶於水,但溶解度很小,1L水中約溶30mL氧氣。在壓強為101kPa時,氧氣在約-180攝氏度時變為淡藍色液體,在約-218攝氏度時變成雪花狀的淡藍色固體。
2.氮氣的用途 氮是植物生長必需的營養要素之一,是氮肥的主要組分和多種復合肥料的主要組分之一,可製成氨,再通過氨加工進一步製成各種肥料。氮氣可供充填燈泡,用作易氧化、易揮發、易燃物質以及反應器中的保護氣體,在食品工業中用來防止食品由於氧化、發霉或細菌作用腐爛變質,在焊接方面有助於防止氧化,在冶金工業中有助於滲碳及除碳,在塑料、橡膠成型中,可作為發泡劑(見泡沫塑料)。液氮用於冷凍乾燥,在醫學方面作為冷凍劑用以保護血液、活組織等,在機械工業中用作儀器或機件的深度冷凍劑。
氮氣的輸送有兩種形式:大部分氮氣直接用管道輸送給用戶;少量氮氣被壓縮成高壓氣體,用鋼瓶輸送。
氮氣增壓就是一般所謂的NOS,而NOS則是由"NitrousOxide System",縮寫而來,不過NOS究竟是什麼呢?簡單的說,就是一種將一氧化二氮(N20)強制灌入引擎中的系統。大家都知道,要使引擎產生更大動力的不二法門,就是讓引擎吸入更多空氣,並且搭配上適當比例的燃油,藉此產生更高的油氣爆發效率,turbo或Super Charger這一類增壓系統,即是靠著增壓器來將空氣壓縮後送入引擎,才得以在排氣量不變的情況下,令引擎產生更大的動力。NOS改裝的基本原理也是如此,只不過NOS的結構上簡單許多,而且NOS並非只是單純的壓縮空氣,而是透過前面提到的一氧化二氮令引擎發揮更大效率。
為何將一氧化二氮送入引擎就能提升動力?一氧化二氮受熱之後會分解成兩個氮分子,以及一個氧分子,其中的氧分子就可以增加混合氣中氧分子的濃度,令混合器的爆炸壓力更為強大。一氧化二氮又稱為氧化亞氮,坊間則是有不少人習慣以『笑氣,稱之,這是因為一氧化二氮和醫學上廣泛使用在麻醉用途的氣體相當近似,所以『笑氣,這個昵稱也正是由此而來.
3.氬氣功能
採用非蒸散型鋯鋁16吸氣劑及分子篩為凈化劑。在一定的溫度下,吸氣劑可與氬氣中的微量雜質O2、N2、H2、H2O、CO、CH4等等形成穩定的化合物或固溶體,對氬氣精製的一種裝置。
用途1 脫氮 脫氮時,有時伴著脫氧,用金屬吸氣劑吸收•金屬吸氣劑有鈣、鈦、鈾和鋯鋁16.
用金屬鈣做吸氣劑,同時吸收氮和氧,反應溫度650-680℃,出口雜質20-50 PPm
用鈦,鋯鋁16可以同時吸收氧、氮、氫,水蒸氣,一氧化碳,二氧化碳和烴
2 脫氧 用化學法脫氧,常用的脫氧劑有氧化錳和Ag-X分子篩
用氧化錳吸收氧,工作溫度150℃,氧脫除到2PPm
常溫用Ag-X分子篩脫氧, 氧脫除到3PPm
3 脫氫 脫除氫用氧化銅和Pd-X分子篩
用氧化銅脫除氫•,反應溫度350-400℃,氫氣脫到0.1PPm
用Pd-X分子篩脫除氫•,反應溫度350-400℃,氫氣脫到1PPm
4 碳化物的脫除,
用金屬劑鋯鋁16在脫碳的同時,一次性脫除一氧化碳,二氧化碳,和烴類.,可達1PPm
乙炔功能及用途
在液態和固態下或在氣態和一定壓力下有猛烈爆炸的危險,受熱、震動、電火花等因素都可以引發爆炸,因此不能在加壓液化後貯存或運輸。難溶於水,易溶於丙酮,在15℃和總壓力為15大氣壓時,在丙酮中的溶解度為237克/升,溶液是穩定的。因此,工業上是在裝滿石棉等多孔物質的鋼桶或鋼罐中,使多孔物質吸收丙酮後將乙炔壓入,以便貯存和運輸。
乙炔分子中的兩個π鍵
和空氣的混合物在乙炔含量2.5%~80%范圍內有爆炸性。如供給適量空氣,可以安全燃燒而發白光,在沒有電源的地方用作光源。在氧氣中燃燒,氧炔焰的溫度高達3200℃左右,可用來切割和焊接金屬。
化學性質很活潑,易起加成反應,生成多種重要的化工產品。在氯化汞存在下與氯化氫加成,生成氯乙烯:
HC≡CH+HCl→H2C = CHCl
在乙酸鋅存在下與乙酸加成,生成乙酸乙烯酯:
HC≡CH+CH3COOH→H2C = CHOCOCH3
在羰基鎳存在下與一氧化碳和水或醇作用 ,生成丙烯酸或丙烯酸酯,氯乙烯、乙酸乙烯酯、丙烯酸和丙烯酸酯都是生產高聚物的原料。乙炔分子中的氫有微弱酸性,可被金屬取代生成乙炔化物,例如將乙炔通入亞銅鹽或銀鹽的氨水溶液中,立即沉澱出紅棕色的乙炔亞銅CuC≡CCu ,或乙炔銀AgC≡CAg,此反應可用於乙炔的定性檢驗。
工業上由甲烷部分地燃燒,甲烷或低級烷在高溫下熱解,或碳化鈣(電石)水解生產。由碳化鈣制備的乙炔由於含磷化氫等雜質而有惡臭。
5.丙烷的功能及用途
丙烷在較高溫度下與過量氯氣作用,生成四氯化碳和四氯乙烯(Cl2C=CCl2);在氣相與硝酸作用,生成1-硝基丙烷CH3CH2CH2NO2、2-硝基丙烷(CH3)2CHNO2、硝基乙烷CH3CH2NO2和硝基甲烷CH3NO2的混合物。工業上丙烷可從油田氣和裂化氣中分離得到。可做生產乙烯和丙烯的原料或煉油工業中的溶劑;丙烷、丁烷和少量乙烷的混合物液化後可用作民用燃料,即液化石油氣。
6.二氧化碳
用途
二氧化碳滅火器
1. 滅火 因為二氧化碳不燃燒,又不支持一般燃燒物的燃燒,同時二氧化碳的密度又比空氣的密度大, 所以常用二氧化碳來滅火。用二氧化碳來隔絕空氣,以達到滅火的目的。
2. 致冷劑 固體的二氧化碳(乾冰)在融化時直接變成氣體,融化的過程中吸收熱量,從而降低了周圍的溫度。所以,乾冰經常被用來做致冷劑。
3. 人工降雨 用飛機在高空中噴撒乾冰,可以使空氣中的水蒸氣凝結,從而形成人工降雨。
碳酸飲料
4. 工業原料 在化學工業上,二氧化碳是一種重要的原料,大量用於生產純鹼、小蘇打、尿素、碳顏料鉛白等。在輕工業上,用高壓溶入較多的二氧化碳,可用來生產碳酸飲料、啤酒、汽水等。
5. 貯藏食品 用二氧化碳貯藏的食品由於缺氧和二氧化碳本身的抑製作用,可有效地防止食品中細菌、黴菌、蟲子生長,避免變質和有害健康的過氧化物產生,並能保鮮和維持食品原有的風味和營養成分。如瑞典一家公司就推出了用充滿了100%的二氧化碳氣體的包裝、容器、貯藏室來貯藏肉類的新方法。(http://www.foodqs.com/news/jsdt01/200443082720.htm)