1. 簡述液力變矩器的基本工作原理
以液體為工作介質的一種非剛性扭矩變換器,是液力傳動的型式之一。它有一個密閉工作腔,液體在腔內循環流動,其中泵輪、渦輪和導輪分別與輸入軸、輸出軸和殼體相聯。動力機(內燃機、電動機等)帶動輸入軸旋轉時,液體從離心式泵輪流出,順次經過渦輪、導輪再返回泵輪,周而復始地循環流動。泵輪將輸入軸的機械能傳遞給液體。高速液體推動渦輪旋轉,將能量傳給輸出軸。液力變矩器靠液體與葉片相互作用產生動量矩的變化來傳遞扭矩。液力變矩器不同於液力耦合器的主要特徵是它具有固定的導輪。導輪對液體的導流作用使液力變矩器的輸出扭矩可高於或低於輸入扭矩,因而稱為變矩器。輸出扭矩與輸入扭矩的比值稱變矩系數,輸出轉速為零時的零速變矩系數通常約2~6。變矩系數隨輸出轉速的上升而下降。液力變矩器的輸入軸與輸出軸間靠液體聯系,工作構件間沒有剛性聯接。液力變矩器的特點是:能消除沖擊和振動,過載保護性能和起動性能好;輸出軸的轉速可大於或小於輸入軸的轉速,兩軸的轉速差隨傳遞扭矩的大小而不同;有良好的自動變速性能,載荷增大時輸出轉速自動下降,反之自動上升;保證動力機有穩定的工作區,載荷的瞬態變化基本不會反映到動力機上。液力變矩器在額定工況附近效率較高,最高效率為85~92%。葉輪是液力變矩器的核心。它的型式和布置位置以及葉片的形狀,對變矩器的性能有決定作用。有的液力變矩器有兩個以上的渦輪、導輪或泵輪,藉以獲得不同的性能。最常見的是正轉(輸出軸和輸入軸轉向一致)、單級(只有一個渦輪)液力變矩器。兼有變矩器和耦合器性能特點的稱為綜合式液力變矩器,例如導輪可以固定、也可以隨泵輪一起轉動的液力變矩器。為使液力變矩器正常工作,避免產生氣蝕和保證散熱,需要有一定供油壓力的輔助供油系統和冷卻系統。
2. 簡述液壓傳動的工作原理
工作原理:
電動機帶動液壓泵從油箱吸油,液壓泵把電動機的機械能轉換為液體的壓力能。液壓介質通過管道經節流閥和換向和閥進入液壓缸左腔,推動活塞帶動工作台右移,液壓缸右腔排出的液壓介質經換向閥流回油箱。
換向閥換向之後液壓介質進入液壓缸右腔,使活塞左移,推動工作台反向移動。改變節流閥的開口可調節液壓缸的運動速度。液壓系統的壓力可通過溢流閥調節。在繪制液壓系統圖時,為了簡化起見都採用規定的符號代表液壓元件,這種符號稱為職能符號。
任何一個液壓傳動系統都是由幾個基本迴路組成的,每一基本迴路都具有一定的控制功能。幾個基本迴路組合在一起,可按一定要求對執行元件的運動方向、工作壓力和運動速度進行控制。根據控制功能不同,基本迴路分為壓力控制迴路、速度控制迴路和方向控制迴路。
應用:
液壓傳動主要應用如下:
(1)一般工業用液壓系統塑料加工機械(注塑機)、壓力機械(鍛壓機)、重型機械(廢鋼壓塊機)、機床(全自動六角車床、平面磨床)等;
(2)行走機械用液壓系統工程機械(挖掘機)、起重機械(汽車吊)、建築機械(打樁機)、農業機械(聯合收割機)、汽車(轉向器、減振器)等;
(3)鋼鐵工業用液壓系統 冶金機械(軋鋼機)、提升裝置(升降機)、軋輥調整裝置等;
(4)土木工程用液壓系統 防洪閘門及堤壩裝置(浪潮防護擋板)、河床升降裝置、橋梁操縱機構和礦山機械(鑿岩機)等;
(5)發電廠用液壓系統渦輪機(調速裝置)等;
(6)特殊技術用液壓系統 巨型天線控制裝置、測量浮標、飛機起落架的收放裝置及方向舵控制裝置、升降旋轉舞台等;
(7)船舶用液壓系統 甲板起重機械(絞車)、船頭門、艙壁閥、船尾推進器等;
(8)軍事工業用液壓系統火炮操縱裝置、艦船減搖裝置、飛行器模擬等。
3. 液壓傳動系統的工作原理
最基本的是帕斯卡原理."在密閉空間內,液體壓強向各個方向均勻傳遞".壓強通常也經常叫成壓力.
1.動力元件,例如油泵,使液壓油(或其他介質)產生壓強
2.控制元件,控制液壓油的壓力,流量和流動方向
3 執行元件,例如油缸和馬達,把液體的壓強變成機械推力(油缸),或者轉矩(馬達).在壓強相同的情況下,油缸活塞的面積越大,機械推力就越大
再具體的說,就要看專業的教材了
4. 液力耦合器基本工作原理
液力耦合器的結構與工作原理
1、液力耦合器的結構組成
液力耦合器是一種液力傳動裝置,又稱液力聯軸器。在不考慮機械損失的情況下,輸出力矩與輸入力矩相等。它的主要功能有兩個方面,一是防止發動機過載,二是調節工作機構的轉速。其結構主要由殼體、泵輪、渦輪三個部分組成。
液力耦合器的殼體安裝在發動機飛輪上,泵輪與殼體焊接在一起,隨發動機曲軸的轉動而轉動,是液力耦合器的主動部分:渦輪和輸出軸連接在一起,是液力耦合器的從動部分。泵輪和渦輪相對安裝,統稱為工作輪。在泵輪和渦輪上有徑向排列的平直葉片,泵輪和渦輪互不接觸。兩者之間有一定的間隙(約3mm~4mm);泵輪與渦輪裝合成一個整體後,其軸線斷面一般為圓形,在其內腔中充滿液壓油。
2、液力耦合器的工作原理
當發動機運轉時,曲軸帶動液力耦合器的殼體和泵輪一同轉動,泵輪葉片內的液壓油在泵輪的帶動下隨之一同旋轉,在離心力的作用下,液壓油被甩向泵輪葉片外緣處,並在外緣處沖向渦輪葉片,使渦輪在液壓沖擊力的作用下旋轉;沖向渦輪葉片的液壓油沿渦輪葉片向內緣流動,返回到泵輪內緣的液壓油,又被泵輪再次甩向外緣。液壓油就這樣從泵輪流向渦輪,又從渦輪返回到泵輪而形成循環的液流。
液力耦合器中的循環液壓油,在從泵輪葉片內緣流向外緣的過程中,泵輪對其作功,其速度和動能逐漸增大;而在從渦輪葉片外緣流向內緣的過程中,液壓油對渦輪作功,其速度和動能逐漸減小。液力耦合器要實現傳動,必須在泵輪和渦輪之間有油液的循環流動。而油液循環流動的產生,是由於泵輪和渦輪之間存在著轉速差,使兩輪葉片外緣處產生壓力差所致。如果泵輪和渦輪的轉速相等,則液力耦合器不起傳動作用。因此,液力耦合器工作時,發動機的動能通過泵輪傳給液壓油,液壓油在循環流動的過程中又將動能傳給渦輪輸出。由於在液力耦合器內只有泵輪和渦輪兩個工作輪,液壓油在循環流動的過程中,除了受泵輪和渦輪之間的作用力之外,沒有受到其他任何附加的外力。根據作用力與反作用力相等的原理,液壓油作用在渦輪上的扭矩應等於泵輪作用在液壓油上的扭矩,即發動機傳給泵輪的扭矩與渦輪上輸出的扭矩相等,這就是液力耦合器的傳動特點
5. 液力變速器的工作原理
您好!與液力耦合器一樣,液力變矩器在正常工作時,儲於環形腔內的油液,除有繞變矩器軸線的圓周運動外,還有在循環圓中如箭頭所示的循環流動,故可將轉矩從泵輪傳至渦輪。與液力耦合器不同的是,液力變矩器不僅能傳遞轉矩,而且還能在泵輪轉矩不變的情況下,隨著渦輪轉速的不同自動地改變渦輪輸出的轉矩值,即「變矩」。液力變矩器之所以能起變矩作用,就是因為在結構上比液力耦合器多了一個導輪機構。 存在循環流動才可以增大轉矩。當本來轉速高於渦輪轉速時才發生轉矩增大。在渦輪低轉速時,導輪引起迴流的工作液產生高速的循環流動,這使泵輪轉動更有效,並且增大推動渦輪工作液的作用力液力變矩器的工作原理可以通過一對風扇的工作來描述。將風扇A通電,將氣流吹動起來,並使未通電的電扇B也轉動起來,此時動力由電扇A傳遞到電扇B。為了實現轉矩的放大,在兩台電扇的背面加上一條空氣通道,使穿過風扇B的氣流通過空氣通道的導向,從電扇A的背面流回,這會加強電扇A吹動的氣流,使吹向電扇B的轉矩增加。即電扇A相當於泵輪,電扇B相當於渦輪,空氣通道相當於導輪,空氣相當於AT油。希望可以幫到您。
6. 液力傳動的基本原理
液力傳動的基本原理可以用下圖來說明。原動機(內燃機、電動機等)帶動泵輪旋轉,使工作液體的速度和壓力增加,這一過程實現了機械能向液體動能的轉化;然後具有動能的工作液體再沖擊渦輪,此時液體釋放能量給渦輪,使渦輪轉動將動力輸出,實現能量傳遞。
7. 液力傳動的液力傳動裝置
液力傳動裝置是以液體為工作介質以液體的動能來實現能量傳遞的裝置,常見的有液力耦合器、液力變矩器和液力機械元件。
目前,液力傳動元件主要有液力元件和液力機械兩大類。液力元件有液力耦合器和液力變矩器;液力機械裝置是液力傳動裝置與機械傳動裝置組合而成的,因此,它既具有液力傳動變矩性能好的特點,又具有機械傳動效率高的特徵。
液力傳動裝置主要由三個關鍵部件組成,即泵輪、渦輪、導輪。
泵輪:能量輸入部件,它能接受原動機傳來的機械能並將其轉換為液體的動能;
渦輪:能量輸出部分,它將液體的動能轉換為機械能而輸出;
導輪:液體導流部件,它對流動的液體導向,使其根據一定的要求,按照一定的方向沖擊泵輪的葉片。 下圖a是液力變矩器的實物模型圖,圖b是其結構原理簡圖。它主要由泵輪、渦輪、導輪等構成。泵輪、渦輪分別與主動軸、從動軸連接,導輪則與殼體固定在一起不能轉動。當液力變矩器工作時,因導輪D對液體的作用,而使液力變矩器輸入力矩與輸出力矩不相等。當傳動比小時,輸出力矩大,輸出轉速低;反之,輸出力矩小而轉速高。它可以隨著負載的變化自動增大或減小輸出力矩與轉速。因此,液力變矩器是一個無級力矩變換器。
下面以目前廣泛使用的三元件綜合式液力變矩器來具體說明其工作原理。
如圖4所示,泵輪與變矩器外殼連為一體,是主動元件;渦輪通過花鍵與輸出軸相連,是從動元件;導輪置於泵輪和渦輪之間,通過單向離合器及導輪軸套固定在變速器外殼上。
發動機啟動後,曲軸通過飛輪帶動泵輪旋轉,因旋轉產生的離心力使泵輪葉片間的工作液沿葉片從內緣向外緣甩出;這部分工作液既具有隨泵輪一起轉動的園周向的分速度,又有沖向渦輪的軸向分速度。這些工作液沖擊渦輪葉片,推動渦輪與泵輪同方向轉動。
從渦輪流出工作液的速度可以看為工作液相對於渦輪葉片表面流出的切向速度與隨渦輪一起轉動的圓周速度的合成。當渦輪轉速比較小時,從渦輪流出的工作液是向後的,工作液沖擊導輪葉片的前面。因為導輪被單向離合器限定不能向後轉動,所以導輪葉片將向後流動的工作液導向向前推動泵輪葉片,促進泵輪旋轉,從而使作用於渦輪的轉矩增大。
隨著渦輪轉速的增加,圓周速度變大,當切向速度與圓周速度的合速度開始指向導輪葉片的背面時,變矩器到達臨界點。當渦輪轉速進一步增加時,工作液將沖擊導輪葉片的背面。因為單向離合器允許導輪與泵輪一同向前旋轉,所以在工作液的帶動下,導輪沿泵輪轉動方向自由旋轉,工作液順利地迴流到泵輪。當從渦輪流出的工作液正好與導輪葉片出口方向一致時,變矩器不產生增扭作用(這時液力變矩器的工況稱為液力偶合工況)。
液力耦合器其實是一種非剛性聯軸器,液力變矩器實質上是一種力矩變換器。它們所傳遞的功率大小與輸入軸轉速的3次方、與葉輪尺寸的5次方成正比。傳動效率在額定工況附近較高:耦合器約為96~98.5%,變矩器約為85~92%。偏離額定工況時效率有較大的下降。根據使用場合的要求,液力傳動可以是單獨使用的液力變矩器或液力耦合器;也可以與齒輪變速器聯合使用,或與具有功率分流的行星齒輪差速器(見行星齒輪傳動)聯合使用。與行星齒輪差速器聯合組成的常稱為液力-機械傳動。
液力傳動裝置的整體性能跟它與原動機的匹配情況有關。若匹配不當便不能獲得良好的傳動性能。因此,應對總體動力性能和經濟性能進行分析計算,在此基礎上設計整個液力傳動裝置。為了構成一個完整的液力傳動裝置,還需要配備相應的供油、冷卻和操作控制系統。
8. 一般的液壓傳動系統由哪幾部分組成,基本工作原理是什麼
液壓傳動系統由液壓動力元件(液壓油泵)、液壓控制元件(各種液壓閥)、液壓執行元件(液壓缸和液壓馬達等)、液壓輔件(管道和蓄能器等)和液壓油組成。
基本工作原理:
電動機帶動液壓泵從油箱吸油,液壓泵把電動機的機械能轉換為液體的壓力能。液壓介質通過管道經節流閥和換向和閥進入液壓缸左腔,推動活塞帶動工作台右移,液壓缸右腔排出的液壓介質經換向閥流回油箱。換向閥換向之後液壓介質進入液壓缸右腔,使活塞左移,推動工作台反向移動。
1、液壓泵是將原動機的機械能轉換為液體的壓力動能(表現為壓力、流量),為液壓系統提供壓力油,是系統的動力來源。
2、液壓缸或液壓馬達將液壓能轉換為機械能而對外做功,液壓缸可驅動工作機構實現往復直線運動(或擺動),液壓馬達可實現回轉運動。
3、各種液壓閥可以控制和調節液壓系統中液體的壓力、流量和方向等,保證執行元件能按照要求進行工作。
4、液壓輔件提供必要的條件使系統正常工作並便於監測控制。
5、液壓油,液壓系統就是通過液壓油實現運動和動力傳遞的,液壓油還可以對液壓元件中相互運動的零件起潤滑作用。
(8)液力傳動裝置的基本工作原理擴展閱讀:
液壓傳動系統的優點
1、液壓傳動可以輸出大的推力或大轉矩,可實現低速大噸位運動。
2、液壓傳動能很方便地實現無級調速,調速范圍大,且可在系統運行過程中調速。
3、在相同功率條件下,液壓傳動裝置體積小、重量輕、結構緊湊。液壓元件之間可採用管道連接、或採用集成式連接,其布局、安裝有很大的靈活性,可以構成用其它傳動方式難以組成的復雜系統。
4、液壓傳動能使執行元件的運動十分均勻穩定,可使運動部件換向時無換向沖擊。而且由於其反應速度快,故可實現頻繁換向。
5、操作簡單,調整控制方便,易於實現自動化。特別是和機、電聯合使用時,能方便地實現復雜的自動工作循環。
6、液壓系統便於實現過載保護,使用安全、可靠。由於各液壓元件中的運動件均在油液中工作,能自行潤滑,故元件的使用壽命長。
7、液壓元件易於實現系列化、標准化和通用化,便於設計、製造、維修和推廣使用。
9. 液力變矩器的基本構造和工作原理
液力變矩器的基本工作原理:1-由泵輪沖向渦輪的液壓油方向 2-由渦輪沖向導輪的液壓油方向 3-由導輪流回泵輪的液壓油方向。
當汽車在液力變矩器輸出扭矩的作用下起步後,與驅動輪相連接的渦輪也開始轉動,其轉速隨著汽車的加速不斷增加。這時由泵輪沖向渦輪的液壓油除了沿著渦輪葉片流動之外,還要隨著渦輪一同轉動,使得由渦輪下緣出口處沖向導輪的液壓油的方向發生變化,不再與渦輪出口處葉片的方向相同,而是順著渦輪轉動的方向向前偏斜了一個角度,使沖向導輪的液流方向與導輪葉片之間的夾角變小,導輪上所受到的沖擊力矩也減小,液力變矩器的增扭作用亦隨之減小。車速愈高,渦輪轉速愈大,沖向導輪的液壓油方向與導輪葉片的夾角就愈小,液力變矩器的增扭作用亦愈小;反之,車速愈低,液力變矩器的增扭作用就愈小。因此,與液力耦合器相比,液力變矩器在汽車低速行駛時有較大的輸出扭矩,在汽車起步,上坡或遇到較大行駛阻力時,能使驅動輪獲得較大的驅動力矩。
當渦輪轉速隨車速的提高而增大到某一數值時,沖向導輪的液壓油的方向與導輪葉片之間的夾角減小為0,這時導輪將不受液壓油的沖擊作用,液力變矩器失去增扭作用,其輸出扭矩等於輸入扭矩。
若渦輪轉速進一步增大,沖向導輪的液壓油方向繼續向前斜,使液壓油沖擊在導輪葉片的背面,這時導輪對液壓油的反作用扭矩Ms的方向與泵輪對液壓油扭矩Mp的方向相反,故此渦輪上的輸出扭矩為二者之差,即Mt=Mp-Ms,液力變矩器的輸出扭矩反而比輸入扭矩小,其傳動效率也隨之減小。當渦輪轉速較低時,液力變矩器的傳動效率高於液力耦合器的傳動效率;當渦輪的轉速增加到某一數值時,液力變矩器的傳動效率等於液力耦合器的傳動效率;當渦輪轉速繼續增大後,液力變矩器的傳動效率將小於液力耦合器的傳動效率,其輸出扭矩也隨之下降。因此,上述這種液力變矩器是不適合實際使用的
當渦輪轉速較低時,從渦輪流出的液壓油從正面沖擊導輪葉片,對導輪施加一個朝逆時針方向旋轉的力矩,但由於單向超越離合器在逆時針方向具有鎖止作用,將導輪鎖止在導輪固定套上固定不動,因此這時該變矩器的工作特性和液力變矩器相同,渦輪上的輸出扭矩大於泵輪上的輸入扭矩即具有一定的增扭作用。當渦輪轉速增大到某一數值時,液壓油對導輪的沖擊方向與導輪葉片之間的夾角為0,此是渦輪上的輸出扭矩等於泵輪上的輸入扭矩。若渦輪轉速繼續增大,液壓油將從反面沖擊導輪,對導輪產生一個順時針方向的扭矩。由於單向超越離合器在順時針方向沒有鎖止作用,可以像軸承一樣滑轉,所以導輪在液壓油的沖擊作用下開始朝順時針方向旋轉。由於自由轉動的導輪對液壓油沒有反作用力矩,液壓油只受到泵輪和渦輪的反作用力矩的作用。因此這時該變矩器的不能起增扭作用,其工作特性和液力耦合器相同。這時渦輪轉速較高,該變矩器亦處於高效率的工作范圍。
導輪開始空轉的工作點稱為偶合點。由上述分析可知,綜合式液力變矩器在渦輪轉速由0至偶合點的工作范圍內按液力變矩器的特性工作,在渦輪轉速超過偶合點轉速之後按液力耦合器的特性工作。因此,這種變矩器既利用了液力變矩器在渦輪轉速較低時所具有的增扭特性,又利用了液力耦合器渦輪轉速較高時所具有的高傳動效率的特性。
3、鎖止式液力變矩器的結構與工作原理
變矩器是用液力來傳遞汽車動力的,而液壓油的內部摩擦會造成一定的能量損失,因此傳動效率較低。為提高汽車的傳動效率,減少燃油消耗,現代很多轎車的自動變速器採用一種帶鎖止離合器的綜合式液力變矩器。這種變矩器內有一個由液壓油操縱的鎖止離合器。鎖止離合器的主動盤即為變矩器殼體,從動盤是一個可作軸向移動的壓盤,它通過花鍵套與渦輪連接.壓盤背面的液壓油與變矩器泵輪、渦輪中的液壓油相通,保持一定的油壓(該壓力稱為變矩器壓力);壓盤左側(壓盤與變矩器殼體之間)的液壓油通過變矩器輸出軸中間的控制油道與閥板總成上的鎖止控制閥相通。鎖止控制閥由自動變速器電腦通過鎖止電磁閥來控制