導航:首頁 > 裝置知識 > 自動控制裝置設計

自動控制裝置設計

發布時間:2021-12-04 18:56:07

㈠ 電氣自動化控制系統設計

電氣自動化控制系統能夠有效提高行業領域整體的自動化水平,特別是行業的運行管理水平。並且電氣自動化控制系統可以大大節省企業的成本,提高設備、生產線等的可靠性。當前的電氣化自動化控制系統已經在眾多領域嶄露頭角並發揮重要作用。
一、電氣自動化的現狀
首先,電氣自動化系統信息化。信息技術在縱向和橫向上向電氣自動化進行滲透,縱向上,信息技術從管理層面對業務數據處理進行滲透,利用信息技術可以有效存取財務等管理數據,對生產過程動態監控,實時掌握生產信息並確保信息的全面、完整和准確;橫向上,信息技術對設備、系統等進行滲透,微電子等技術的應用使控制系統、PLC等設備界線從定義明確逐漸變得模糊,而軟體結構、組態環境、通訊能力等的作用日益凸顯,網路、多媒體等技術得到了廣泛應用。
其次,電氣自動化系統使用、維護與檢修簡易化。WindowsNT等已經成為實施電氣自動化控制平台、規范以及語言的標准,基於Windows的人機界面成為了電氣自動化的主流, 並且基於Windows的控制系統有著靈活、易於集成等優勢,也得到了廣泛的應用。採用Windows操作平台使得電氣自動化系統的使用、維護和檢修更加簡單、方便。
最後,實現分布式控制應用。電氣自動化系統通過串列電纜連接中央控制室、PLC、現場,將工業計算機、PLC的CPU、遠程I/O站、智能儀表、低壓斷路器、變頻器、馬達啟動器等連接,將現場設備的信息收集到中央控制器。分布式控制應用通過數字式分支結構的串列連接自動化系統與相關智能設備的雙向傳輸通訊匯流排,將PLC、現場設備與相應的I/O設備連接起來,使輸入輸出模塊發揮現場檢查和執行的作用。
二、電氣控制對象的特點和要求
電氣控制量與熱工控制量相比在控制要求及運行過程中有著很多不同點,電氣的主要特點表現為:
電氣控制系統相對熱機設備而言控制信息採集量小、對象少,操作頻率低,但強調快速性、准確性;電氣設備保護自動裝置要求可靠性高,動作速度快;同時對抗干擾要求較高;電氣控制系統(ECS)主要以數據採集系統和順序控制為主,聯鎖保護較多。因此,機組的電氣系統納入DCS控制,要求控制系統具有很高的可靠性。除了能實現正常起停和運行操作外,尤其要求能夠實現實時顯示異常運行和事故狀態下的各種數據和狀態,並提供相應的操作指導和應急處理措施,保證電氣系統自動控制在最安全合理的工況下工作。
三、電氣自動化控制系統的設計
1.集中監控方式
這種監控方式優點是運行維護方便,控制站的防護要求不高,系統設計容易。但由於集中式的主要特點是將系統的各個功能集中到一個處理器進行處理,處理器的任務相當繁重,處理速度受到影響。由於電氣設備全部進入監控,伴隨著監控對象的大量增加隨之而來的是主機冗餘的下降、電纜數量增加,投資加大,長距離電纜引入的干擾也可能影響系統的可靠性。同時,隔離刀閘的操作閉鎖和斷路器的聯鎖採用硬接線,由於隔離刀閘的輔助接點經常不到位,造成設備無法操作。這種接線的二次接線復雜,查線不方便,大大增加了維護量,還存在由於查線或傳動過程中由於接線復雜而造成誤操作的可能性。
2.遠程監控方式
遠程監控方式具有節約大量電纜、節省安裝費用,節約材料、可靠性高、組態靈活等優點。由於各種現場匯流排(如Lonworks匯流排,CAN匯流排等)的通訊速度不是很高,所以這種方式適合於小系統監控,而不適應於大型電氣自動化系統的構建。
3.現場匯流排監控方式
目前,現場匯流排、乙太網等技術的普遍應用和相應運行經驗的積累,智能化電氣設備得到了較快的發展,網路控制系統逐漸應用到電氣系統中,現場匯流排監控方式使系統設計更加有針對性,對於不同的間隔可以有不同的功能,這樣可以根據間隔的情況進行設計。採用這種監控方式除了具有遠程監控方式的全部優點外,還可以減少大量的隔離設備、端子櫃、I/O卡件、模擬量變送器等,而且智能設備就地安裝,與監控系統通過通信線連接,可以節省大量控制電纜,節約很多投資和安裝維護工作量,從而降低成本。另外,各裝置的功能相對獨立,裝置之間僅通過網路連接,網路組態靈活,使整個系統的可靠性大大提高,任一裝置故障僅影響相應的元件,不會導致系統癱瘓。因此現場匯流排監控方式是今後發電廠計算機監控系統的發展方向。
綜上所述,隨著智能化、信息化技術的快速發展,電氣自動化技術將不斷向科技化、信息化、開放化的趨勢發展,電氣自動化涉及的領域將不斷增多,技術更新將不斷加快,電氣自動化控制技術也將得到快速發展並不斷完善,更多http://www.big-bit.com/進行了解。

㈡ 求一份自動控制原理的課程設計,就是隨便一個自動控制系統的具體設計,各位大俠幫下啊·

摘 要

隨著科學技術的不斷的向前發展,人類社會的不斷進步。自動化技術取得了巨大的進步,自動控制技術廣泛應用於製造業、農業、交通、航空及航天等眾多產業部門,極大的提高了社會勞動生產率,改善了人們的勞動條件,豐富和提高了人民的生活水平。當今的社會生活中,自動化裝置無所不在,自動控制系統無所不在。因此我們有必要對一些典型、常見的控制系統進行設計或者是研究分析。
一個典型閉環控制系統的組成是很復雜的。通常都由給定系統輸入量的給定元件、產生偏差信號的比較元件、對偏差信號進行放大的放大元件、直接對被控對象起作用的執行元件、對系統進行補償的校正元件及檢測被控對象的測量元件等典型環節組成。而控制系統設計則是根據生產工藝的要求確定完成工作的必要的組成控制系統的環節,確定環節的參數、確定控制方式、對所設計的系統進行模擬、校正使其符合設計要求。同時根據生產工藝對系統的穩、快、准等具體指標選擇合適的控制元件。

原理分析
1.1 信號流圖
信號流圖是表示線性代數方程的示圖。採用信號流圖可以直接對代數方程組求解。在控制工程中,信號流圖和結構圖一樣,可以用來表示系統的結構和變數傳遞過程中的數學關系。所以,信號流圖也是控制系統的一種用圖形表示的數學模型。由於它的符號簡單,便於繪制,而且可以通過梅森公式直接求得系統的傳遞函數。因而特別適用於結構復雜的系統的分析。
信號流圖可以根據微分方程繪制,也可以從系統結構圖按照對應的關系得到。
任何線性方程都可以用信號流圖表示,但含有微分或積分的線性方程,一般應通過拉氏變換,將微分方程或積分方程變換為s的代數方程後再畫信號流圖。繪制信號流圖時,首先要對系統的每個變數指定一個節點,並按照系統中的變數的因果關系,從左到右順序排列;然後,用表明支路增益的支路,根據數學方程式將各節點變數正確連接,便得到系統的信號流圖。
在結構圖中,由於傳遞的信號標記在信號線上,方框則是對變數進行變換或運算的運算元。因此,從系統結構圖繪制信號流圖時,只需在結構圖的信號線上用小圓圈標志出的傳遞信號,便得到節點;用標有傳遞函數的線段代替結構圖中的方框,便得到支路,於是,結構圖也就變換為相應的信號流圖了。
1.2 傳遞函數
線性定常系統的傳遞函數,定義為零初始條件下,系統輸出量的拉氏變換與輸入量的拉氏變換之比。
結構圖的等效變換和簡化
由控制系統的結構圖通過等效變換(或簡化)可以方便地求取閉環系統的傳遞函數或系統輸出量的響應。實際上,這個過程對應於由元部件運動方程消去中間變數求取系統傳遞函數的過程。
一個復雜的系統結構圖,其方框間的連接必然是錯綜復雜的,但方框間的基本連接方式只有串聯、並聯和反饋連接三種。因此結構圖簡化的一般方法是移出引出點或比較點,交換比較點,進行方框運算將串聯、並聯和反饋連接的方框合並。在簡化過程中應遵循變換前後關系保持等效的原則,具體而言,就是變換前後前向通路中傳遞函數的乘積應保持不變,迴路中傳遞函數的乘積應保持不變。
串聯方框的簡化(等效)
傳遞函數分別為G1(s) 和G2(s) 的兩個方框,若G1(s) 的輸出量作為G2(s) 的輸入量,則G1(s) 與G2(s) 稱為串聯連接,見圖1 – 1 。

圖1 – 1 串聯方框的簡化(等效)
1.3.2 並聯方框的簡化(等效)
傳遞函數分別為G1(s) 和G2(s) 的兩個方框,如果他們有相同的輸入量,而輸出量等於兩個方框輸出量的代數和,則G1(s) 與G2(s) 稱為並聯連接,
見圖1 – 2 。

圖1 – 2 串聯方框的簡化(等效)
1.3.3反饋連接方框的簡化(等效)
若傳遞函數分別為G1(s) 和G2(s) 的兩個方框,如圖1 – 3 形式連接,則稱為反饋連接。「 + 」號為正反饋,表示輸入信號與反饋信號相加;「 — 」則表示相減,是負反饋。

圖1-3 反饋連接方框的簡化(等效 )
Ф(s)表示閉環傳遞函數,負反饋時, Ф(s)的分母為1+迴路傳遞函數,分子是前向通路傳遞函數。正反饋時, Ф(s)的分母為1-迴路傳遞函數,分子為前向通路傳遞函數。單位負反饋時,
1.4穩定裕度
控制系統穩定與否是絕對穩定性的問題。而對一個穩定的系統而言,還存在著一個穩定的程度的問題。系統的穩定程度則是相對穩定的概念。相對穩定性與系統的瞬態響應指標有著密切的關系。在設計一個控制系統時,不僅要求它是絕對穩定的,而且還應保證系統具有一定的穩定程度,即具備適當的穩定性。只有這樣,才能不致因建立數學模型和系統分析計算中的某些簡化處理,或因系統參數變化而導致系統不穩定。
對於一個開環傳遞函數中沒有虛軸右側零、極點的最小相位系統而論,G K ( jω ) 曲線越靠近 (- 1,j 0)點,系統階躍相應的震盪就越強烈,系統的相對穩定性就越差。因此,可用G K ( jω ) 曲線對(- 1,j 0)點的靠近程度來表示系統的相對穩定程度。通常,這種靠近程度是以相角裕度和幅值裕度來表示的。
1.4.1 相角裕度
設ωc 為系統的截止頻率,A ( ωc ) = | G ( jωc ) H( jω c) | = 1 ,定義相角裕度為
γ =180° +∠G ( jωc ) H( jω c)
相角裕度γ的含義是,對於閉環穩定系統,如果系統開環相頻特性再滯後γ度後,則系統將處於臨界穩定狀態。
1.4.2 幅值裕度
設ωx為系統的穿越頻率 ,
φ( ωx ) = ∠ G ( jωx ) H( jω x ) = ( 2k + 1 ) π ; k = 0 , ± 1 , ± 2 ……定義幅值裕度為
h = 1 /|G(jωx)H(jωx)|
幅值裕度h的含義是,對於閉環穩定系統,如果系統開環幅頻特性再增大h倍,則系統將處於臨界穩定狀態,復平面中γ和h的表示如圖1-4 所示

圖1-4 相角裕度和幅值裕度
1.5 線性系統的校正方法
基於一個控制系統可視為由控制器和被控對象兩大部分組成,當被控對象確定後,對系統的設計實際上歸結為對控制器的設計,這項工作稱為對控制系統的校正。按照校正系統在系統中的連接方式,控制系統校正方式可分為串聯校正、反饋校正、前饋校正和復合校正。
1.5.1 串聯校正
串聯校正裝置一般接在系統誤差測量點之後和放大器之間,串接於系統前向通路之中,如圖1 – 5 。串聯校正裝置有源參數可調整。

圖1 – 5 串聯校正
1.5.2 反饋校正
反饋校正裝著接在系統反饋通路之中。如圖1 – 6 。反饋校正不需要放大器,可消除系統原有部分參數波動對系統性能的影響。

圖1 – 6 反饋校正
1.5.3 前饋校正
前饋校正又稱順饋校正,是在系統主反饋迴路之外採用的校正方式。前饋校正裝置接在系統給定值之後及主反饋作用點之前的前向通路上,如圖1 – 7 所示,這種校正方式的作用相當於給定值信號進行整形或濾波後,再送入反饋系統;另一種前饋校正裝置接在系統可測擾動作用點與誤差測量點之間,對擾動信號進行直接或間接測量,並經變換後接入系統,形成一條附加的對擾動影響進行補償的通道,如圖1 – 8 所示。

圖1 – 7 前饋校正1 圖1 – 8 前饋校正2
1.5.4 復合校正
復合校正方式是在反饋控制迴路中,加入前饋校正通路,形成一個有機整體,如圖1 – 9 所示。

圖1 – 9 復合校正
1.6 期望對數頻率特性設計方法
期望特性設計方法是在對數頻率特性上進行的,設計的關鍵是根據性能指標繪制出所期望的對數幅頻特性。而常用的期望對數頻率特性又有二階期望特性、三階期望特性及四階期望特性之分。
1.6.1 基本概念
系統經串聯校正後的結構圖如圖所示。其中G0(s)是系統固有部分的傳遞函數,Gc(s)是串聯校正裝置的傳遞函數;顯然,校正後的系統開環傳遞函數為
G(s) = Gc(s) G0(s)
取頻率特性,有
G(jω) = Gc(jω) G0(jω)
對上式兩邊取對數幅頻特性,則
L(ω) =Lc(ω) + L0(ω)
式中,L0(ω)為系統固有部分的對數幅頻特性;
Lc(ω)為串聯校正裝置的對數幅頻特性;
L(ω)為系統校正後的所期望得到的對數幅頻特性,稱為期望對數幅頻特性。
上式表明:一旦繪制出期望對數幅頻特性L(ω),將它與固有特性L0(ω)相減,即可獲得校正裝置的對數幅頻特性Lc(ω)。在最小相位系統中,根據Lc(ω)的形狀即可寫出校正裝置的傳遞函數,進而用適當的網路加以實現,這就是期望頻率特性設計法的大致過程。
1.6.2 典型的期望對數頻率特性
通常用到的典型期望對數頻率特性有如下幾種;
1.6.2.1 二階期望特性
校正後系統成為典型的二階系統,又稱為 Ⅰ 型二階系統,其開環傳遞函數為
G(s) = Gc(s) G0(s) = K /s (Ts +1 ) = ωn2 / s ( s + 2§ωn ) = ( ωn/( 2§))/(s(1/(2§ωn) s+1))
式中,T = 1 / 2§ωn , 為時間常數;K = ωn/ 2§ ,為開環傳遞函數。
相應的頻率特性表達式是
G ( jω ) = ( ωn/( 2§))/(jω(1/(2§ωn) jω+1))
按上式給出的二階期望對數頻率特性如圖 1 – 10 所示,其截止頻率
ωc = K =ωn/ 2§
轉折頻率ω2 = 1 / T = 2§ωn 。 兩者之比為
ω2 /ωc = 4 § 2
工程上常以 § = 0.707 時的二階期望特性作為二階工程最佳特性。此時,二階系統的各項性能指標為
σ % = 4.3 %
ts = 4.144 T
由漸進特性 :ωc =ω2 / 2 , γ = 63.4° ;
由准確特性 :ω2 = 0.455ω2 ,γ = 65.53°

圖 1 – 10 二階期望對數頻率特性
1.6.2.2 三階期望特性
校正後系統成為三階系統,又稱為 Ⅱ型三階系統,其開環傳遞函數為
G(s)= K ( T1 s + 1 ) / s2 (T2 s + 1 )
式中,1 / T1 <√K < 1 / T2 。相應的頻率特性表達式為
G ( jω ) = K ( jT1ω + 1 ) / (jω)2 (jT2ω + 1 )
三階期望對數幅頻特性如圖 1 – 11 所示。其中 ω 1 = 1 / T1 ,ω2 =1 / T2。
由於三階期望特性為Ⅱ型系統,故穩態速度誤差系數Kv = ∞ ,而加速度誤差系數Ka = K。
三階期望特性的瞬態性能和截止頻率ωc 有關,又和中頻段的寬度系數h有關。
h = ω2 /ω1 = T1 / T2
在h值一定的情況下,一般可按下列關系確定轉折頻率ω1和ω2:
ω1 = 2ωc /h+1 , ω2 = 2hωc /h+1

圖 1 – 11 三階期望對數幅頻特性
1.6.2.3 四階期望特性
校正後系統成為三階系統,又稱為 Ⅱ型三階系統,其開環傳遞函數為
G(s)= K ( T2 s + 1 ) / s (T1 s + 1 ) (T3 s + 1 ) (T4 s + 1 )
相應的頻率特性表達式為
G(jω)= K (jT2 ω + 1 ) / jω(jT1 ω + 1 ) (jT3 ω + 1 ) (jT4 ω + 1 )
對數幅頻特性如圖 1 – 12 所示。

圖 1 – 12 對數幅頻特性
其中截止頻率ωc 、中頻段寬度h可由要求的調節時間ts 和最大起調量σ% 確定,即
ωc ≥ (6 ~ 8)/ts h ≥ σ+64 / σ- 16
近似確定ω2 和ω3 如下:
ω2 = 2ωc /h+1 , ω3 = 2hωc /h+1
四階期望對數幅頻特性由若干段組成,各段特性的斜率依次為-20dB/dec、-40dB/dec、-20dB/dec、-40dB/dec、-60dB/dec。若以-20dB/dec作為1個斜率單位,則-40dB/dec可用2表示,-60dB/dec可用3表示。於是,各段的斜率依次為1、2、1、2、3,這就是工程上常見的所謂1-2-1-2-3型系統。其中:
低頻段:斜率為-20dB/dec,其高度由開環傳遞函數決定。
中頻段:斜率為-20dB/dec,使系統具有較好的相對穩定性。
低中頻連接段、中高頻連接段和高頻段:這些對系統的性能不會產生終於影響。因此,在繪制時,為使校正裝置易於實現,應盡可能考慮校正前原系統的特性。也就是說,在繪制期望特性曲線時,應使這些頻段盡可能等於或平行於原系統的相應頻段,連轉折頻率也應盡可能取未校正系統相應的數值。

具體分析及計算過程
2.1 畫信號流圖
信號流圖如圖2 – 1 所示

G1 (s) = 4 ,G2 (s) = 10 ,
G3 (s) = 2.0 / (0.0.25 s+1) , G4 (s) = 2.5 / s(0.1 s+1)
圖2 – 1 小功率隨動系統信號流圖
2.2 求閉環傳遞函數
系統的開環傳遞函數為
G(s) = G1 (s) G2 (s) G3 (s) G4 (s)
= 200 / s (0.025 s + 1 ) (0.1 s + 1)
= 200 / ( 0.0025 s3 + 0.125 s2 + s )
則系統的閉環傳遞函數為
Ф = 200 / ( 0.0025 s3 + 0.125 s2 + s + 200 )
求開環系統的截至頻率
G(s) = 200 / s (0.025 s + 1 ) (0.1 s + 1)
相應的頻率特性表達式為
G(jω) = 200 / jω (0.025 jω + 1 ) (0.1 jω + 1)
由|G(jω)|= 1 可得截止頻率 ωc = 38 s-1
求相角裕度
將ωc = 38 s-1帶入G(jω),可得
相角裕度γ= 180°+(0°- 90°- arctan1/0.95- arctan1/3.8)=-28.3°

求幅值裕度
令G(jω)的虛部等於0.可得穿越頻率ωx=20 s-1
此時,G(jω)=A(ω)=0.0833,則幅值裕度h=1/ A(ω)=12

設計串聯校正裝置
繪制未校正系統的對數幅頻特性,程序如下
num=200;
den=[0.0025,0.125,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
未校正系統的對數幅頻特性如圖2 – 2 所示,其低頻特性已滿足期望特性要求

圖2 – 2 未校正系統的對數幅頻特性
計算期望特性中頻段的參數:
ωc ≥ (6 ~ 8)/ts = (6 ~ 8)/ 0.5 = 12 ~ 16(rad s-1)
h ≥ σ+64 / σ- 16 =25 + 64 / 25- 16 = 9.89
取ωc = 20 rad s-1 ,h = 10。
計算ω2 ,ω3 :
ω2 = 2ωc /h+1=≅ 2ωc / h = 2×20 / 10 = 4
ω3 = 2hωc / h + 1 ≅ 2 × 20 = 40
由此可畫出期望特性的中頻段,如圖2 – 3所示。
根據期望對數頻率特性設計方法,可以畫出期望對數幅頻特性曲線,如圖2 – 3。

圖2 – 3 期望對數幅頻特性曲線
將L ( ω )減去L 0( ω )(縱坐標相減)即得L c( ω ),L c( ω )即為系統中所串進的校正裝置的對數幅頻特性,如圖2 – 4 所示。

圖2 – 4 校正裝置的對數幅頻特性
根據其形狀特點,可寫出校正裝置的傳遞函數為
Gc(s) = ( 0.25s + 1 ) ( 0.1s + 1 ) / ( 2.5s + 1 ) ( 0.01s + 1 )
要獲得上式所描述的傳遞函數,既可用無源校正網路實現,又可用有源校正網路實現。
採用無源滯後------超前網路
無源滯後------超前網路如圖2 – 5

圖2 – 5 無源滯後------超前網路
其傳遞函數Gc(s)=(( T1 s + 1 ) ( T2 s + 1 ))/(( T1 s / β + 1 ) ( βT2s + 1 ))
比較上式與校正裝置的傳遞函數可得
T2 s = R2 C2 = 0.25 , βT2 = 2.5
T1 s = R1 C1 = 0.1 , T1 / β = 0.01
如選C1 =0.33μF,C2=5μF,則可算得
R1=0.1/0.33×10-6=3000kΩ
R2=0.25/5×10-6=50 kΩ
系統校正後的結構圖如圖2 – 6 所示

圖2 – 6 系統校正後的結構圖
採用有源校正網路
由於運算放大器組成的有源校正網路同時兼有校正和放大作用,故圖2 – 7 中的電壓放大和串聯校正兩個環節可以合並,且由單一的有源網路實現。如圖2 – 7 所示的網路中,當R5≫R3時,導出的傳遞函數為
G ( s ) = - Z2 ( Z2 + Z4 ) / Z1 Z4 )
式中,
Z 1 = R1 ;Z2 = R 5 + R 2 / R 2 C 1 s + R2
Z 3 = R3 ;Z4 = R 4 + 1/ C 2 s
再經一級倒相後,網路的傳遞函數可表示成
G(s)=(R2+R5)/R1 (R2R5/(R2+R5) C1s+1)/(R2C1s+1) ((R3+R4)C2s+1)/(R4C2s+1)

圖2 – 7 有源校正網路
電壓放大與校正環節合並後的傳遞函數為
10 Gc(s)=10×( 0.25s + 1 ) ( 0.1s + 1 ) / ( 2.5s + 1 ) ( 0.01s + 1 )
比較以上兩式,並選C1=10μF, C2=20μF,則可求得校正網路的參數如下:
R 2 C 1=2.5,故R 2=250kΩ
R 4 C 2=0.01,故R 4=500kΩ
(R 3+ R 4)C2=0.1, 故R 3=4.5kΩ
R2R5/(R2+R5) C1= 0.25,故R 5=28kΩ
(R2+R5)/R1=10,故R 1=28kΩ
取R 0=R 1=28kΩ。則系統校正後的結構圖如圖2 – 8 所示。

圖2 – 8 系統校正後的結構圖

3繪制校正前後系統的bode圖
3.1 繪制未校正系統的對數幅頻特性
未校正系統的對數幅頻特性如圖2 – 2。程序如下
num=200;
den=[0.0025,0.125,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)

3.2 繪制校正系統的對數幅頻特性
校正系統的對數幅頻特性,如圖2 – 3 。程序如下
num=[0.025,0.35,1];
den=[0.025,2.51,1];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
3.3 繪制校正後系統的對數幅頻特性
校正後系統的對數幅頻特性如圖2 – 4 。程序如下:
num=[50,200];
den=[0.000625,0.08775,2.535,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)

總結
課程設計不僅是對前面所學知識的一種檢驗,而且也是對自己能力的一種提高。通過這次課程設計使我明白了自己原來知識還比較欠缺。自己要學習的東西還太多,以前老是覺得自己什麼東西都會,什麼東西都懂,有點眼高手低。通過這次課程設計,我才明白學習是一個長期積累的過程,在以後的工作、生活中都應該不斷的學習,努力提高自己知識和綜合素質。
在設計過程中,我通過查閱大量有關資料,與同學交流經驗和自學,並向老師請教等方式,使自己學到了不少知識,也經歷了不少艱辛,但收獲同樣巨大。在整個設計中我懂得了許多東西,也培養了我獨立工作的能力,樹立了對自己工作能力的信心,相信會對今後的學習工作生活有非常重要的影響。而且大大提高了動手的能力,使我充分體會到了在創造過程中探索的艱難和成功時的喜悅。雖然這個設計做的也不太好,但是在設計過程中所學到的東西是這次課程設計的最大收獲和財富,使我終身受益。

㈢ 如何設計自動控制系統

明確控制目的,確定控制變數和被控變數;
建立數學模型,分析系統動態和穩態性能;
設計內控制系統,容分析加入控制後的系統性能,具體的控制方法有很多,比如PID、自適應控制、最優控制、魯棒控制等。控制結構有單迴路反饋控制、前饋-串級控制、選擇性控制、解耦控制等。從特徵根的角度來看,若被控系統閉環穩定,則只需要根據需求將主導極點移動到指定位置附近,若閉環系統不穩定,則需要用其他方法先使閉環系統穩定,再根據需求移動閉環主導極點;
模擬驗證,實搭驗證,修改矯正直到滿足要求。
(PS:本人很菜,沒有工程經驗,上述只是我的想法,不詳細和不對的地方,希望有大佬批評指正。不過我的初衷是拋磚引玉,大家共同交流學習。)

㈣ 機電一體化自動控制裝置畢業設計怎麼寫

我有現成做好的畢業設計,
http://blog.sina.com.cn/cy19860517
博客裡面沒有的
可以專QQ找我154578820
希望能夠幫屬到你

㈤ 自動控制原理課程設計

「自控原理課程設計」參考設計流程

一、理論分析設計
1、確定原系統數學模型;
當開關S斷開時,求原模擬電路的開環傳遞函數個G(s)。
2、繪制原系統對數頻率特性,確定原系統性能:c、(c);
3、確定校正裝置傳遞函數Gc(s),並驗算設計結果;
設超前校正裝置傳遞函數為:
,rd>1
若校正後系統的截止頻率c=m,原系統在c處的對數幅值為L(c),則:

由此得:

由 ,得時間常數T為:

4、在同一坐標系裡,繪制校正前、後、校正裝置對數頻率特性;
二、Matlab模擬設計(串聯超前校正模擬設計過程)
注意:下述模擬設計過程僅供參考,本設計與此有所不同。

利用Matlab進行模擬設計(校正),就是藉助Matlab相關語句進行上述運算,完成以下任務:①確定校正裝置;②繪制校正前、後、校正裝置對數頻率特性;③確定校正後性能指標。從而達到利用Matlab輔助分析設計的目的。
例:已知單位反饋線性系統開環傳遞函數為:

要求系統在單位斜坡輸入信號作用時,開環截止頻率c≥7.5弧度/秒,相位裕量≥450,幅值裕量h≥10dB,利用Matlab進行串聯超前校正。
1、繪制原系統對數頻率特性,並求原系統幅值穿越頻率wc、相位穿越頻率wj、相位裕量Pm[即(c)]、幅值裕量Gm
num=[20];
den=[1,1,0];
G=tf(num,den); %求原系統傳遞函數
bode(G); %繪制原系統對數頻率特性
margin(G); %求原系統相位裕度、幅值裕度、截止頻率
[Gm,Pm,wj,wc]=margin(G);
grid; %繪制網格線(該條指令可有可無)
原系統伯德圖如圖1所示,其截止頻率、相位裕量、幅值裕量從圖中可見。另外,在MATLAB Workspace下,也可得到此值。由於截止頻率和相位裕量都小於要求值,故採用串聯超前校正較為合適。

圖1 校正前系統伯德圖
2、求校正裝置Gc(s)(即Gc)傳遞函數
L=20*log10(20/(7.5*sqrt(7.5^2+1))); %求原系統在c=7.5處的對數幅值L
rd=10^(-L/10); %求校正裝置參數rd
wc=7.5;
T= sqrt(rd)/wc; %求校正裝置參數T
numc=[T,1];
denc=[T/ rd,1];
Gc=tf(numc,denc); %求校正裝置傳遞函數Gc
3、求校正後系統傳遞函數G(s)(即Ga)
numa=conv(num,numc);
dena=conv(den,denc);
Ga=tf(numa,dena); %求校正後系統傳遞函數Ga
4、繪制校正後系統對數頻率特性,並與原系統及校正裝置頻率特性進行比較;
求校正後幅值穿越頻率wc、相位穿越頻率wj、相位裕量Pm、幅值裕量Gm。
bode(Ga); %繪制校正後系統對數頻率特性
hold on; %保留曲線,以便在同一坐標系內繪制其他特性
bode(G,':'); %繪制原系統對數頻率特性
hold on; %保留曲線,以便在同一坐標系內繪制其他特性
bode(Gc,'-.'); %繪制校正裝置對數頻率特性
margin(Ga); %求校正後系統相位裕度、幅值裕度、截止頻率
[Gm,Pm,wj,wc]=margin(Ga);
grid; %繪制網格線(該條指令可有可無)
校正前、後及校正裝置伯德圖如圖2所示,從圖中可見其:截止頻率wc=7.5;
相位裕量Pm=58.80;幅值裕量Gm=inf dB(即),校正後各項性能指標均達到要求。
從MATLAB Workspace空間可知校正裝置參數:rd=8.0508,T=0.37832,校正裝置傳遞函數為 。

圖2 校正前、後、校正裝置伯德圖
三、Simulink模擬分析(求校正前、後系統單位階躍響應)
注意:下述模擬過程僅供參考,本設計與此有所不同。

線性控制系統校正過程不僅可以利用Matlab語句編程實現,而且也可以利用Matlab-Simulink工具箱構建模擬模型,分析系統校正前、後單位階躍響應特性。
1、原系統單位階躍響應
原系統模擬模型如圖3所示。

圖3 原系統模擬模型
系統運行後,其輸出階躍響應如圖4所示。

圖4 原系統階躍向應曲線
2、校正後系統單位階躍響應
校正後系統模擬模型如圖5所示。

圖5 校正後系統模擬模型
系統運行後,其輸出階躍響應如圖6所示。

圖6 校正後系統階躍向應曲線
3、校正前、後系統單位階躍響應比較
模擬模型如圖7所示。

圖7 校正前、後系統模擬模型
系統運行後,其輸出階躍響應如圖8所示。

圖8 校正前、後系統階躍響應曲線
四、確定有源超前校正網路參數R、C值
有源超前校正裝置如圖9所示。

圖9 有源超前校正網路

當放大器的放大倍數很大時,該網路傳遞函數為:
(1)
其中 , , ,「-」號表示反向輸入端。
該網路具有相位超前特性,當Kc=1時,其對數頻率特性近似於無源超前校正網路的對數頻率特性。
根據前述計算的校正裝置傳遞函數Gc(s),與(1)式比較,即可確定R4、C值,即設計任務書中要求的R、C值。
注意:下述計算僅供參考,本設計與此計算結果不同。

如:由設計任務書得知:R1=100K,R2=R3=50K,顯然

T=R4C 解得R4=3.5K,C=13.3F
請採納答案,支持我一下。

㈥ 路燈自動控制裝置 設計電路圖(自己實踐的)

呵呵,這個沒有知道你要什麼樣的,本人是搞電子電氣的,可以說說你的方案探討一下!看能不能用得上我的愚見!!

㈦ 自動控制原理設計矯正裝置

自動控制原理的
最快的時間,
最理想的

㈧ 斷路器自動控制電路怎麼設計

可以用分勵脫扣器吧?用另外一個電源,接一個中間繼電器,用中間繼電器的版常開觸點權接這里的分勵脫扣器。中間繼電器線圈取的是另外一個線路的電,分勵脫扣器取的是這個斷路器本身進線電源就可以了。

手動送電、斷電不影響,但另一個線路有電時,中間繼電器閉合,常開觸點閉合,這里的分勵脫扣器就工作了,這邊跳閘斷開。

不知道是不是滿足你的要求。

㈨ 液位自動控制系統設計

這就用簡單的液位變送器配一個控制儀表就行了,一般生產液位的跟他說一下就能做出來

㈩ 我是大一自動化專業的,請問怎樣設計一個簡單的自動控制系統最好提供一個簡單的自動控制系統圖

既然要做一個自動化系統都不是很簡單的,不過也有最優途徑,我給你推薦一本不錯的書吧,《電氣自動化工程師 速成教程》很基礎,但很有用,在當當上買還打8折。我剛看完,還是挺不錯的

閱讀全文

與自動控制裝置設計相關的資料

熱點內容
檢查腦細胞用什麼儀器 瀏覽:848
185kw電機軸承什麼型號 瀏覽:356
眾泰電動汽車怎麼開啟製冷空調 瀏覽:879
河北供水設備多少錢 瀏覽:65
安裝地暖溫控閥門都需要什麼意思 瀏覽:207
香港有個女機器人電影完整版 瀏覽:805
歐美尺度床戲 瀏覽:337
有關妻子出軌客戶的電影 瀏覽:928
在線可投屏的免費影視網站 瀏覽:121
上蔡縣消防器材在哪裡 瀏覽:884
眾泰sr9儀表盤c是什麼意思 瀏覽:978
一套完整的監控有哪些設備組成 瀏覽:303
家裡地熱閥門怎麼開關 瀏覽:444
湯陰升達機械有限公司怎麼樣 瀏覽:387
什麼視頻看電影會員免費的 瀏覽:447
環保部門為什麼要拖拉廠裡面的設備 瀏覽:326
石蠟裂解實驗裝置 瀏覽:806
主題賓館器材怎麼用 瀏覽:43
vip影視 安卓 瀏覽:495
軸承裝配後的游隙變小怎麼辦 瀏覽:14