A. 什么是轴承的特征频率,它有什么用途。 此频率和故障特征频率是一回吗
轴承失效四个阶段,
第一阶段(超声频率) 轴承问题的最早期表现在超声频率的异常,从250kHz
到350kHz范围;此后随故障的发展,异常频率逐步下移到20kHz到
60kHz范围,可由冲击包络监测到,一般可达到0.5gE
,实际值与测点位置、轴承型号和机器转速相关;
可采集加速度包络频谱确认轴承是否进入第一失效阶段
第二阶段(轴承固有频率)
轴承产生轻微缺陷,激起轴承部件固有频率(fn)振动或
轴承支承结构共振,一般在500Hz到2kHz范围;
在第二阶段末期,固有频率周围开始出现边频带;
第三阶段(轴承缺陷频率及其倍频)
在第三阶段,轴承缺陷频率及其倍频出现;随着轴承内磨损的发展,更多的缺陷频率倍频开始出现,围绕这些倍频以及
轴承部件固有频率的边频带的数量也逐步上升,冲击包络值继续上升
第四阶段(随机宽带振动)
在第四阶段,轴承失效接近尾声,甚至工频1X 也受影响而上升,
并产生许多工频的倍频 原先离散的轴承缺陷频率和固有频率开始“消失”,取而代之是随
机的宽带高频“噪声振动”
轴承缺陷频率:
轴承缺陷频率术语/ Terms of Defect Freqs
1. BPFI: Ball Pass Frequency on Inner race
内圈缺陷频率
2. BPFO:Ball Pass Frequency on Outer race
外圈缺陷频率
3. BSF: Ball Spin Frequency
滚珠缺陷频率
4. FTF: Fundamental Train Frequency
保持架缺陷频率
轴承缺陷频率与轴承部件尺寸及轴的转速相
轴承缺损频率计算/Compute Defect Freqs
BPFI=Nb/2*S(1+(Bd/Pd)*cosA)
BPFO=Nb/2*S(1-(Bd/Pd)*cosA)
BSF=(Pd/2Bd)*S*(1-(Bd/Pd)*CosA)2
FTF=S/2*(1-(Bd/Pd)*CosA
Nb: the number of balls/轴承滚子数
S:speed/轴转速
Bd:ball diameter/滚子直径
Pd: Pitch diameter/滚子分布圆直径
A: the contact angle( degrees)/接触角(度)
B. 轴承的故障频率怎么计算
r:轴承转速,单位:转/分钟;n:滚珠个数;d:滚动体直径;D:轴承节径;α:滚动体接触角(contact angle)
外圈故障频率=r/60 * 1/2 * n(1-d/D *cosα)
内圈故障频率=r/60 * 1/2 * n(1+d/D *cosα)
滚动体单故障频率=r/60 * 1/2 * D/d *[1-(d/D)^2 * cos^2(α)]
保持架外圈故障频率=r/60 * 1/2 * (1-d/D *cosα)
其实外圈故障频率=转速/60 *Outer Ring(BPO):过外圈频率
内圈故障频率=转速/60 *Inner Ring(BPI):过内圈频率
滚动体单故障频率=转速/60 *(BS):球的自旋频率(注意:美国数据的表格中Rolling Element=2*BS,因此表格中的参数是滚动体双故障频率)
保持架外圈故障频率=转速/60 *cage Train(FT):保持架频率
实例:驱动端的特征频率
外圈故障=104.56Hz
内圈故障=157.94Hz
滚动体故障=137.48Hz
重要说明
1.滚动故障的计算公式是针对球撞击内圈或者外圈情况。如果有疵点的滚球同时撞击内圈和外圈,那么其频率值应该加倍。
2.由于受各种实际情况如滑动、打滑、磨损、轴承各参数的不紧缺等的影响,我们计算出来的故障特征频率可能与真实值有小范围的差异。
3.有很多滚动体故障时滚动体故障频率是以偶数倍频出现的。
C. 求轴承的故障频率
滚动体通过内圈频率(BPFI):76.167Hz
滚动体通过外圈频率(BPFO):51.597Hz
保持架旋转频率(FTF):3.969Hz
滚动体自转频率(BSF):24.6Hz
滚动体故障频率(REDF):49.216Hz
D. 请教 圆柱或圆锥滚子轴承故障频率如何计算,包括内外圈和滚动体的特征频率与球滚子轴承一样吗
滚动轴承外环故障频率:BPFOr≌0.4Nn
滚动轴承内环故障频率:BPFIr≌0.6Nn
滚动轴承保持架故障频率:FTFr≌0.4N
以上符号:
n=滚动体数目。
N=轴的转速。{TodayHot}
注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转.
滚动轴承外环故障频率:BPFOe≌N(0.5n-1.2)
滚动轴承内环故障频率:BPFIe≌N(0.5n+1.2)
滚动轴承滚动体故障频率:BSFe≌N(0.2n-1.2/n)
滚动轴承保持架故障频率:FTFe≌N(0.5-1.2/n)
以上符号:
n=滚动体数目。
N=轴的转速。
注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转.
E. 轴承座、径向振动分别使用什么方法测量和用到什么传感器
通用振动标准-按轴承振幅的评定标准
按轴承振幅的评定标准
1969年国际电工委员会(IEC)推荐了汽轮发电机组的振动标准,如表1所示(峰-峰值,μm)。原水电部规定的评定汽轮发电机组等级与IEC标准基本相符,如表2所示(峰-峰值)。
表1 IEC振动标准
转速(r/min)1000 1500 1800 3000 3600 6000 12000
在轴承上测量 75 50 42 25 21 12 6
在轴上测量 150 100 84 50 42 25 12
表2 振动标准
转速(r/min) 优 良 合格
1500 30 50 70
3000 20 30 50
按轴承振动烈度的评定标准
国际标准化组织ISO曾颁布了一系列振动标准,作为机器质量评定的依据。现将有关标准介绍如下:
⑴ ISO2372/1:
该标准于1974年正式颁布,适用于工作转速为600~12000r/min,在轴承盖上振动频率在10~1000Hz范围内的机器振动烈度的等级评定。它将机器分成四类:
Ⅰ类为固定的小机器或固定在整机上的小电机,功率小于15KW。
Ⅱ类为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。
Ⅲ类为刚性或重型基础上的大型旋转机械,如透平发电机组。
Ⅳ类为轻型结构基础上的大型旋转机械,如透平发电机组。
每类机器都有A,B,C,D四个品质级。各类机器同样的品质级所对应的振动烈度范围是有些差别的,见表3。四个品质段的含意如下:
表3 ISO2372推荐的各类机器的振动评定标准
振动烈度分级范围 各类机器的级别
振动烈度(mm/s) 分贝(db)Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类
0.18-0.28 85-89 A A A A
0.28-0.45 89-93 A A A A
0.45-0.71 93-97 A A A A
0.71-1.12 97-101 B A A A
1.12-1.8 101-105 B B A A
1.8-2.8 105-109 C B B A
2.8-4.5 109-113 C C B B
4.5-7.1 113-117 D C C B
7.1-11.2 117-121 D D C C
11.2-18 121-125 D D D C
18-28 125-129 D D D D
28-45 129-133 D D D D
45-71 133-139 D D D D
A级:优良,振动在良好限值以下,认为振动状态良好。
B级:合格,振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。
C级:尚合格,振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。
D级:不合格,振动超过停机限值,应立即停机。
振动烈度是以人们可感觉的门槛值0.071mm/s为起点,到71mm/s的范围内分为15个量级,相邻两个烈度量级的比约为1.6,即相差4分贝。
⑵ ISO3945:
该标准为大型旋转机械的机械振动—现场振动烈度的测量和评定。在规定评定准则时,考虑了机器的性能,机器振动引起的应力和安全运行需要,同时也考虑了机器振动对人的影响和对周围环境的影响以及测量仪表的特性因素。
显然,在机器表面测得的机械振动,并不是在任何情况下都能代表关键零部件的实际振动应力、运动状态或机器传递给周围结构的振动力。在有特殊要求时,应测量其它参数。表4给出了功率大于300KW、转速为600~12000转/分大型旋转机械的振动烈度的评定等级。
注:参考值10-5mm/s。
表4 ISO3945评定等级
振动烈度 支持类型
振动烈度(mm/s) 分贝(db) 刚性支承 挠性支承
0.46-0.71 93-97 良好 良好
0.71-1.12 97-101 良好 良好
1.12-1.8 101-105 良好 良好
1.8-2.8 105-109 满意 良好
2.8-4.6 109-113 满意 满意
4.6-7.1 113-117 不满意 满意
7.1-11.2 117-121 不满意 不满意
11.2-18 121-125 不允许 不满意
18-28 125-129 不允许 不允许
28-45 129-139 不允许 不允许
该标准所规定的振动烈度评定等级决定于机器系统的支承状态,它分为刚性支承和挠性支承两大类,相当于ISO2372中的Ⅲ与Ⅳ类。对于挠性支承,机器—支承系统的基本固有频率低于它的工作频率,而对于刚性支承,机器—支承系统的基本固有频率高于它的工作频率。
按轴振幅的评定标准
ISO7919/1《转轴振动的测量评定—第一部分总则》于1986年正式颁布。ISO/DIS79110-2《旋转机器轴振动的测量与评定—第二部分:大型汽轮发电机组应用指南》于1987年制订,它规定了50MW以上汽轮发电机组轴振动的限值,见表5和表6,分别适用于轴的相对振动与轴的绝对振动。
表中级段A,B,C的意义与前述相同。轴振动的测量应用电涡流传感器。
表5 汽轮机发电机组轴相对振动的限值(位移峰-峰值,单位μm)
极段 转速(r/min)
1500 1800 3000 3600
A 100 90 80 75
B 200 185 165 150
C 300 290 260 240
表6 汽轮机发电机组轴绝对振动的限值(位移峰-峰值,单位μm)
极段 转速(r/min)
1500 1800 3000 3600
A 120 110 100 900
B 240 220 200 180
C 385 350 300 290
有关轴承座与轴振动评定标准的几点说明:
⑴ 根据ISO2372及7919的规定,有以下两个准则应注意
准则一:在额定转速下整个负荷范围内的稳定工况下运行时,各轴承座和轴振动不超过某个规定的限值。
准则二:若轴承座振动或轴振动的幅值合格,但变化量超过报警限值的25%,不论是振动变大或者变小都要报警。因振动变化大意味着机组可能有故障,特别是振动变化较大、变化较快的情况下更应注意。
⑵ 根据我国情况,功率在50MW以下的机组一般只测量轴承座振动,不要求测量轴振动。功率在200MW以上的机组要求同时测量轴承座振动和轴振动。功率大于50MW、小于200MW的机组,要求测量轴承座振动,而在有条件情况下或在新机组启动及对机组故障分析时,则测量轴振动。
⑶ 轴承座振动与轴振动之间一般不存在一种固定的比例关系。这是因为两者振动与很多因素有关,如油膜参数,轴承座刚度,基础刚度等,一般可根据统计资料给出一个比例的变化范围。根据ISO资料,机组轴振动与轴承座振动的比例一般为2~6。
德国工程师协会1981年颁布了《透平机组转轴振动测量及评价》,简称VDI—2059,将机组振动状态分为良好、报警、停机三个等级,分别采用三个公式计算,转化后得到的轴相对振动如表7所示。
表7 VDI-2059汽轮发电机组轴相对振动的限值(位移峰-峰值,单位μm)
转速(r/min)
1500 1800 3000 3600
良好 124 113 88 80
报警 232 212 164 150
停机 341 311 241 220
http://www.djwxw.com/News/HtmlPage/2007-08-14/TT_14416_1.htm
F. 轴承SM1103KS技术指标
SM1103KS轴承技术参数如下:
配备传感器:剪切式压电传感器,能精确捕捉各种动态数据。
频率范围广泛:高频加速度为1000Hz至5000Hz,加速度为10Hz至1000Hz,速度测量范围同样在10Hz至1000Hz,而位移测量则限定在10Hz至500Hz。
型号为SS.34-M01BM213,具备多种测量规格:高频加速度单峰值范围为0.1~199.9m/s²,加速度单峰值范围同样为0.1~199.9 m/s²;速度真有效值测量范围为0.1~199.9 mm/s;位移峰-峰值测量范围为1~1999um。
精度保证:±5%的精度,相当于±2个字的误差范围。
该轴承支持单通道测量,适用于现场环境中的实时数据采集。
工作条件要求:操作温度介于0~40℃之间,相对湿度需保持在85%以下。
尺寸规格为150×25×20mm,重量为100克,包含电池和传感器在内。供电系统采用3.6V锂离子电池,能够连续工作超过20小时。
SM1103KS轴承享有1年的保修期,为您的使用提供保障。