① 人工湿地中基质的作用
人工湿地的基本组成包括基质,植物和微生物,其中基质又称基质滤料,主要包括土壤,砂土,砾石等.基质是湿地植物和微生物赖以生存的基础,这些基质一方面为微生物的生长提供稳定的依附表面,同时也为水生植物提供了载体和营养。
吸附沉淀作用
加入系统中的磷主要存留在土壤中,土壤颗粒对磷酸盐的吸收是一个重要的转换过程,对磷的去除途径研究发现,基质吸附与沉淀作用去除的总磷量高达系统投配总磷量的80%以上,是除磷的主要途径.基质对磷的吸附能力取决于两个因素;吸附位(正比于介质颗粒的表面积)和pH值.含大量钙的碱性基质的湿地以及含高浓度铝和铁的酸性基质的湿地对磷的吸附能力最强,磷通过与这些金属反应而沉淀下来.例如在高pH值下,钙与溶解性磷发生反应生成磷酸钙而从溶液中析出.磷的吸附能力还与水力传导率和表面积有关.欲获得大的水力传导率,需避免发生堵塞,因为堵塞将导致介质表面积缩小,进而磷吸收能力下降.例如作为湿地基质的土壤可以去除98%的磷,但由于水力传导率低而易于堵塞.砂石水力传导率较大,但对磷的取出能力很低,低至20%,而富铁砾石除磷高达90%.
对植物的影响
湿地植物是湿地系统中的重要组分,在污水净化过程中发挥了很重要的作用.湿地植物可分为浮生植物,挺水植物和沉水植物.湿地植物的重要功能就是将氧气从上部输送至根部,促进有机物的分解和硝化细菌的生长,达到去除污水中氮及其他污染物的目的;同时还能促进悬浮物的沉淀.植物可以直接吸收污水中的溶解性的磷,通过植物的定期收割从湿地系统中去除,有研究表明,植物的吸收作用对磷的最大去除量约为9.1%.
人工湿地中基质的种类,理化性质及其配置影响人工湿地中植物的生长(蒸散量,生物量,根密度和根长),进而影响人工湿地的净化能力的.基质的理化性质影响了植物的生长,同时也影响了植物根际的微生物活性,最终影响人工湿地的净化能力.人工湿地不同基质理化性质差异比较,如以pH值为例,红砂土的pH为4.4,炉渣的pH为12.3,而不同的植物生长的最适pH不同,为此,应根据基质的pH而配置不同的植物.另外,基质的理化性质如含盐量对植物的生长影响也比较大,如对一些含盐比较高的土壤作为人工湿地基质,或在盐碱地建立人工湿地时,应选用一些抗盐性比较强的植物如盐角草等.除此之外,还应根据不同的人工湿地类型而配置植物.对于表面流人工湿地可配置沉水植物,浮叶植物和漂浮植物以及挺水植物,而对潜流和垂直流人工湿地可配置湿生植物和挺水植物.
对微生物的作用
人工湿地是通过植物一土壤一微生物的总和作用实现对污染物的去除,其中微生物是对污染物进行吸附和降解的主要生物群体和承担者,加强对基质表面微生物的研究,了解它们在湿地基质中的状况,对于理解人工湿地去除污染物机理具有重要的意义.物质,并为湿地中大部分的物理,化学和生物反应提供反应界面.
② 谁有活性污泥处理的新工艺,包括原理、流程、优缺点、适用范围。
这个是我们最近学的。你说的活性污泥法新工艺可能是我给你的最后几行的那个方法。不过都给你发过来吧,希望能帮到你!
活性污泥法(Activated Sludge Process)
利用悬浮生长的微生物絮体处理有机废水的一类好氧生物处理方法。
活性污泥,是指由好气性微生物(包括细菌、真菌、原生动物和后生动物)及其代谢和吸附的有机物、无机物所共同组成的微生物絮体。活性污泥法中,进行污染物降解过程的主体是活性污泥中的微生物。可溶性有机物能被细菌、真菌等作为营养物质直接利用分解,而不能作为微型动物的直接营养源。细菌等腐生性微生物起着主要作用。此外,还存在原生动物、微型后生动物等完全动物营养性的微生物。
形成活性污泥絮状体的细菌
菌胶团细菌
构成活性污泥絮状体的主要成分,有很强的吸附、氧化有机物的能力。絮状体的形成能使细菌避免被微型动物所吞噬,且关系到污泥沉降和二沉池中能否有效进行泥水分离。
菌胶团形成机理
交替基质说
细胞老龄阶段,出现氮限制,细胞外聚合物分泌增加,这些细菌多糖能使细菌聚集。
纤维素学说
细菌细胞分泌许多粘液或分泌纤维素,使细胞聚合成团,形成絮凝体。
活性污泥中的丝状细菌
丝状细菌也是活性污泥的重要组成部分。
交叉穿织于菌胶团内,或附生于絮凝体表少数游离。
具有很强的氧化分解有机物的能力,能起净化污水的作用。
活性污泥中的丝状细菌与污泥膨胀
当丝状细菌数量超过菌胶团细菌时,污泥絮凝体沉降性能变差,严重时引起活性污泥膨胀,导致出水水质下降。
主要有浮游球衣菌、贝氏硫细菌、发硫细菌等。
活性污泥膨胀原因:非丝状菌膨胀。丝状菌膨胀。
活性污泥法降解过程
吸附阶段
微生物在生长繁殖过程中形成表面积较大的菌胶团,大量絮凝和吸附废水,污水中大部分有机污染物通过吸附去除。
摄取、分解阶段
细菌将被吸附的污染物摄入细胞内,进行代谢,一部分转化为菌体本身的结构组分和新的细胞,另一部分完全被氧化为二氧化碳和水。
活性污泥法基本原理
1914年英国人Ardern和Lockett创建该法。
1916年英国建成了第一座污水处理厂。
活性污泥法的基本特征
利用生物絮凝体为生化反应的主体物;
利用曝气设备向生化反应系统分散空气或氧气,为微生物提供氧源;
对体系进行混合搅拌以增加接触和加速生化反应传质过程;
采用沉淀方式去除有机物,降低出水中的微生物固体含量;
通过回流使沉淀池浓缩的微生物絮凝体返回到反应系统;
为保证系统内生物细胞平均停留的时间的稳定,经常排出一部分生物固体。
活性污泥法的主要类型:
按废水和回流污泥的进入方式及其在曝气池中的混合方式:
推流式:若干狭长流槽,废水从一端进入,另一端流出,随水流的过程,底物降解,微生物增长。
完全混合式:废水进入曝气池后,在搅拌下立即与池内活性污泥混合液混合,使进水得到良好稀释,污泥与废水充分混合,最大限度承受废水水质变化冲击。
推流式活性污泥法
废水和回流污泥从曝气池一端同时进入反应系统,水流呈推流式。
包括四个单元:初沉池、曝气池、二沉池和污泥回流装置。
曝气池内,污染物浓度(F)与微生物的生物量(M)的比值F/M沿流程不断降低。
短时曝气法
在曝气方法上加以改进:加大进口的通气量,然后随有机物浓度的逐渐降低而相应的减少通气量。又称为渐减曝气法。
阶段曝气法
在普通推流式曝气法基础上,对进水点加以调整,使废水沿池长分若干点流入。
又称为多点进水法。优点:可以降低曝气池前端的耗氧速率,避免缺氧情况,提高了空气利用率和曝气池的工作能力。可以使曝气池体积缩小30%左右。
生物吸附法(再生吸附曝气法)
特点:废水的吸附和污泥的再生,即活性污泥净化废水的吸附阶段和氧化分解阶段,分别在两个池子或一个池子的两部分进行。
优点:对于处理废水中的胶状污染物较为理想。
能够使吸附和再生曝气池总体积减少50%以上。
不足:由于活性污泥在短时间内对可溶性有机物的吸附有一定限度,因而处理效果会略有降低。
完全混合式活性污泥法
使原生污水和回流污泥进入曝气池后,立即与池内原有的混合液完全混合,使浓废水得到较好稀释。
优点:能够忍受较大的冲击负荷,而且充氧均匀。
不足:废水在池内停留时间较短,细菌始终处于对数生长期,所以处理效果一般比推流式处理差
完全混合式曝气池中,曝气区由叶轮进行搅拌,起着充氧、提升污泥和泥水混合的作用。
序批式间歇反应器(Series Batch Reactor,SBR)
活性污泥法新工艺
通过程序化自动控制充水、反应、沉淀、排水排泥和停置五个阶段,实现对废水的生化处理。
运行期,各阶段的控制时间和总水力停留时间根据实验确定,并进行相应自动控制。
当采用完全曝气时,反应器内发生需氧过程在限量曝气条件下,反应器内产生缺氧或厌氧环境
SBR工艺优点:
1. 可获得沉淀性能好的活性污泥
2. 可极大提高活性污泥浓度
3. 使活性污泥的活性明显提高
4. 具有较快的生物繁殖速率
5. 通过缺氧-厌氧-好氧过程,完成对难降解有机物的分解
深水曝气活性污泥法
特点:曝气池深,提高了混合液的饱和溶解氧浓度,加快了氧传入混合液的速度,有利于有机污染物的降解与去除。
优点:曝气池纵深发展,占地面积小,节省动力消耗,剩余污泥少,由于利用水压所形成的强供氧能力,可进行高负荷运行。
氧化沟
双沟式氧化沟:整个运行过程通过双沟交替进行,转刷低速时进行反硝化作用,高速时进行硝化作用,沟 1和沟 2交替出水。
优点:与常规的活性污泥法相比,氧化沟的污泥停留时间长,硝化反应容易进行,通过调节供氧量,可以获得较高的脱氮效率。
③ CASS工艺和CAST工艺是不是同一种工艺吗,适不适合用来处理农村生活污水
不是同一种工艺。两种都不太适合用来处理农村生活用水,但如果硬要比较,CASS工艺相比较而言更能够符合农村生活污水处理的运营要求。
1、CASS(Cyclic Activated Sludge System)工艺
CASS工艺是在序批式活性污泥法(SBR)基础上,将反应池沿长度方向分为预反应区和主反应区两部分,并在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气沉淀、排水于一体的一种污水废水处理工艺。
CASS工艺运行过程包括充水-曝气、沉淀、滗水、闲置四个阶段,是一个厌氧/缺氧/好氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷。
具有工艺流程简单,占地面积小,投资较低,生化反应推动力大,沉淀效果好,运行灵活,抗冲击能力强,不易发生污泥膨胀,适用范围广,适合分期建设,剩余污泥量小,性质稳定等优点。
2、CAST(Cyclic Activated Sludge Technology)工艺
CAST工艺是一种在SBR工艺的基础上,增加了选择器及污泥回流设施,并对时序做了一些调整,从而大大提高了SBR工艺的可靠性及效率的生活污水处理工艺。
将SBR处理池分为了生物选择区、兼氧区和主曝气区三部分,运行阶段可划分为进水搅拌或曝气阶段、曝气阶段、静置沉淀阶段和排气(闲置)阶段这四个阶段,能间歇性地和周期性地循环操作。
CAST工艺相比较于CASS工艺,在SBR工艺基础上做了进一步的改进。进水方式从沉淀阶段可以进水变为沉淀阶段不能进水,在选择区和主曝气区的之间加入了兼氧区,系统更为复杂,但是提高了CASS工艺的除氮和除磷效率。
农村生活污水处理需要污水处理工艺具有低成本,小规模以及较好的处理效果等优点。因此CASS工艺相比较而言更能够符合农村生活污水处理的运营要求,而CAST工艺因为系统较为复杂,尽管处理效果更佳,但是不如CASS工艺对农村生活污水的处理好。
尽管如此,现有污水处理方法并不适合农村生活污水处理,真正适合农村生活污水的处理工艺还有待研究和开发。
(3)人工湿地实验装置的优缺点扩展阅读
适合处理农村生活污水的几种方法
1、人工湿地处理
人工湿地处理系统总体来说,即将生活污水有控制地投配到土壤经常处于饱和状态、生长有沼泽生植物的土地上,利用植物根系的吸收和微生物的作用,并经过多层过滤,来达到降解污染、净化水质的目的。
生活污水湿地处理系统分自然和人工湿地处理系统,自然湿地就是自然的沼泽地,人工湿地污水处理技术是一种基于自然生态原理,使污水处理达到工程化、实用化的新技术。这是一种将污水净化的天然与人工处理相结合的复合工艺。
2、地下土壤渗滤净化
土壤渗滤处理系统是一种人工强化的污水生态工程处理技术,它充分利用在地表下面的土壤中栖息的土壤动物、土壤微生物、植物根系以及土壤所具有的物理、化学特性将污水净化,属于小型的污水土地处理系统。适用于村镇小型的污水处理工程。
3、好氧生物处理
好氧生物处理系统是新农村污水处理中较为常用的一种处理技术。该种方法就是通过风机等设备给污水输氧,培养生物菌种和微生物,利用菌种和微生物把污水中的大部分有机物分解为无污染的物质,使污水得以净化排放。污水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。
生物处理法和自然处理系统比较,占地面积小,抗气候等外界影响的能力强,建设的地点选择范围大,处理稳定,处理效率高,但基建投资、运行成本等相对较高。
4、厌氧生物处理
我国从上个世纪80年代开始开展生活污水厌氧生物法的开发和研制工作,许多形式各异的无动力或微动力的低能耗型一体化污水处理装置得到应用。微动力地埋式生活污水处理装置采用厌氧生物膜技术,此类技术普遍能耗较低,在分散式污水处理项目中优势显著。