Ⅰ 测定电解质溶液导电性的实验装置如图所示,向1molL-1氢氧化钡溶液中逐滴加入下列溶液,灯泡不是由亮→暗
氢氧化钡是强电解质,在水溶液里完全电离,
A.2HCl+Ba(OH)2=BaCl2+2H2O,氯化钡也是强电解质,反专应后溶液中电荷浓度属变大,灯泡变亮,故A选;
B.CuSO4+Ba(OH)2=BaSO4↓+Cu(OH)2↓,二者完全反应生成沉淀,导致溶液中离子浓度减小,灯泡变暗,最后熄灭,再继续滴加硫酸铜溶液,溶液中离子浓度增大,灯泡变亮,故B不选;
C.MgSO4+Ba(OH)2=BaSO4↓+Mg(OH)2↓,二者完全反应生成沉淀,导致溶液中离子浓度减小,灯泡变暗,最后熄灭,再继续滴加硫酸镁溶液,溶液中离子浓度增大,灯泡变亮,故C不选;
D.H2SO4+Ba(OH)2=BaSO4↓+2H2O,二者完全反应生成沉淀、弱电解质,导致溶液中离子浓度减小,灯泡变暗,最后熄灭,再继续滴加硫酸溶液,溶液中离子浓度增大,灯泡变亮,故D不选;
故选A.
Ⅱ 在电解质溶液的导电性实验(装置如图所示)中,若向某一电解质溶液中逐滴加入另一溶液时,则灯泡由亮变暗
A.盐酸中逐滴加入氢氧化钠溶液,生成NaCl,溶液电荷浓度不为0,灯泡不可能熄灭,故A错误;
B.硫酸铜溶液中逐滴加入氢氧化钡溶液,完全反应时生成硫酸钡和水,溶液电荷浓度接近0,灯泡熄灭,符合题目要求,故B正确;
C.硫酸钠溶液中逐滴加入氢氧化钡溶液生成NaOH和硫酸钡,溶液电荷浓度不为0,灯泡不可能熄灭,故C错误;
D.盐酸中逐滴加入硝酸银溶液生成氯化银沉淀和硝酸,溶液电荷浓度不为0,灯泡不可能熄灭,故D错误.
故选B.
Ⅲ 电导的测定及应用 实验报告 物化实验
一、实验目的和要求
1、理解溶液的电导、电导率和摩尔电导的概念
2、掌握电导率仪的使用方法
3、 掌握交流电桥测量溶液电导的实验方法及其应用
二、实验内容和原理
1、电导率的概念
电导是描述导体导电能力大小的物理量,以G来表示
其中l/A为电导池常数,以Kcell来表示,к为电导率.
通常由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率.
溶液的摩尔电导率是指把含有1mol电解质的溶液置于相距为1m的两平行板电极之间的电导,以m表示.摩尔电导率与电导率的关系为
在很稀的溶液中,强电介质的摩尔电导率与其了、浓度的平方根成直线函数.用公式表示为:
若通过浓度的平方根与摩尔电导率作图,外推即可求得无限稀释时的摩尔电导率.
惠斯登电桥基本原理
如图所示的电路图中,
实验中,通过调整电桥上的示波器,使得通过其上的电流为零,即表明C点和D点的电势相等,可以等到如下关系:
亦即
通过调节电桥臂的比值,就可以得出Rx的值.
三、主要仪器设备
仪器:音频振荡器1台;示波器1台;电导率仪;电导池;铂电极1支;转盘电阻箱3只;恒温槽装置1套;50mL移液管4支;100mL容量瓶4个
试剂:0.02mol/dm3标准KCl溶液,0.1mol/dm3标准醋酸溶液
四、操作方法和实验步骤
1、溶液的配制
用0.02mol/L的KCl溶液配制不同浓度的KCl溶液,其浓度分别为0.02、0.02/2、0.02/4、0.02/8、0.02/16.并分别做好标记,放入25℃的恒温槽中备用.
2、电路的连接
按照上图连接好电路图.注意需要按照电路图中ABCD四个点来连线.
3、测定不同浓度的KCl溶液的电阻
将电极插入溶液中,按照浓度依次升高的顺序分别测定5个溶液的电阻值.将电桥臂按照1:1、1:2、1:3三种形式进行测量.记录测定出来的数据.
4、用电导率仪来测定自来水和去离子水的电导率
首先对于使用高调还是低调进行估计和判断,如果电导率大于300×10-4S/m,则使用高调,反之则使用低调.在测量之前首先要校准,即在校准档将指针调至最大.测量时同样要注意从大量程向小量程调,最终达到精确.
五、实验数据记录和处理
25℃时0.02mol/dm3KCl溶液的电导率为0.2765S/m
1、 电导池常数
R1/ R2/ R3/ R/ G/S Kcell/S•m-1
1 1000 1000 222 222 4.50×10-3 61.444
2 1000 2000 446 223 4.48×10-3 61.719
3 1000 3000 666 222 4.50×10-3 61.444
Kcell平均 61.536
2、25℃时的结果
KCl浓度/mol•L-1 KCl浓度mol/m3 KCl浓度平方根 次数 R1/W R2/W R3/W R/W G/S k/ S•m-1 ∧m/S•m2•mol-1
0.02/16 1.25 1.118033989 1 1000 1000 3322 3322 0.0003010 0.018522 0.0148176
2 1000 2000 6645
3 1000 3000 9965
0.02/8 2.5 1.58113883 1 1000 1000 1702 1704 0.000587 0.036122 0.0144488
2 1000 2000 3410
3 1000 3000 5118
0.02/4 5 2.236067977 1 1000 1000 844 880 0.0011364 0.06993 0.013986
2 1000 2000 1690
3 1000 3000 2538
0.02/2 10 3.16227766 1 1000 1000 447 447.5 0.0022346 0.137508 0.0137508
2 1000 2000 895
3 1000 3000 224
0.02 20 4.472135955 1 1000 1000 226 226.8 0.0044092 0.271325 0.0135663
2 1000 2000 453
3 1000 3000 114
以KCl浓度的平方根对∧m作散点图并进行线性回归分析得到如下图形:
3. 的计算
通过图所拟合的线性回归方程可知,当 =0时,∧m=0.015 S•m2•mol-1,即
=0.015 S•m2•mol-1
六、实验结果与分析
查阅KCl溶液 的标准值为0.01499 S•m2•mol-1
则可以计算其相对误差 Er=|0.01499-0.015|/0.01499=0.667‰
七、讨论与心得
1、实验中不必扣除水的电导.因为经测定,实验所使用的去离子水的电导与待测溶液的电导相差几个数量级,因此不会对实验结果产生很大的影响.
2、溶液配制时的问题:溶液时由大浓度向小浓度一瓶一瓶稀释过来的.一旦某一瓶配制出现偏差,则将影响到后面的几瓶,因此在溶液配制的时候要及其小心,我认为这也是影响实验准确性的一个很重要的因素.
3、浓度较小时,信号不明显,即某个电阻改变一个大阻值,其示波器的变化不大,可能会导致大的偏差.
思考题:
1、如何定性地解释电解质的摩尔电导率随浓度增加而降低?
答:对强电解质而言,溶液浓度降低,摩尔电导率增大,这是因为随着溶液浓度的降低,离子间引力变小,粒子运动速度增加,故摩尔电导率增大.
对弱电解质而言,溶液浓度降低时,摩尔电导率也增加.在溶液极稀时,随着溶液浓度的降低,摩尔电导率急剧增加.
2、为什么要用音频交流电源测定电解质溶液的电导?交流电桥平衡的条件是什么?
答:使用音频交流电源可以使得电流处于高频率的波动之中,防止了使用直流电源时可能导致的电极反应,提高测量的精确性.
3、电解质溶液电导与哪些因素有关?
答:电解质溶液导电主要与电解质的性质,溶剂的性质,测量环境的温度有关.
4、测电导时为什么要恒温?实验中测电导池常数和溶液电导,温度是否要一致?
答:因为电解质溶液的电导与温度有关,温度的变化会导致电导的变化.实验中测电导池常数和溶液电导时的温度不需要一致,因为电导池常数是一个不随温度变化的物理量,因此可以直接在不同的温度下使用.
Ⅳ 电导率的测量方法
电导率的测量通常是溶液的电导率测量。固体导体的电阻率可以通过欧姆定律和电阻定律测量。电解质溶液电导率的测量一般采用交流信号作用于电导池的两电极板,由测量到的电导池常数K和两电极板之间的电导G而求得电导率σ。
电导率测量中最早采用的是交流电桥法,它直接测量到的是电导值。最常用的仪器设置有常数调节器、温度系数调节器和自动温度补偿器,在一次仪表部分由电导池和温度传感器组成,可以直接测量电解质溶液电导率。 电导率的测量原理是将相互平行且距离是固定值L的两块极板(或圆柱电极),放到被测溶液中,在极板的两端加上一定的电势(为了避免溶液电解,通常为正弦波电压,频率1~3kHz)。然后通过电导仪测量极板间电导。
电导率的测量需要两方面信息。一个是溶液的电导G,另一个是溶液的电导池常数Q。电导可以通过电流、电压的测量得到。
根据关系式K=Q×G可以得到电导率的数值。这一测量原理在直接显示测量仪表中得到广泛应用。
而Q= L/A
A——测量电极的有效极板面积
L——两极板的距离
这一值则被称为电极常数。在电极间存在均匀电场的情况下,电极常数可以通过几何尺寸算出。当两个面积为1cm2的方形极板,之间相隔1cm组成电极时,此电极的常数Q=1cm-1。如果用此对电极测得电导值G=1000μs,则被测溶液的电导率K=1000μs/ cm。
一般情况下,电极常形成部分非均匀电场。此时,电极常数必须用标准溶液进行确定。标准溶液一般都使用KCl溶液这是因为KCl的电导率的不同的温度和浓度情况下非常稳定,准确。0.1mol/l的KCl溶液在25℃时电导率为12.88ms/cm。
所谓非均匀电场(也称作杂散场,漏泄场)没有常数,而是与离子的种类和浓度有关。因此,一个纯杂散场电极是最复杂的电极,它通过一次校准不能满足宽的测量范围的需要。 电导电极一般分为二电极式和多电极式两种类型。
二电极式电导电极是目前国内使用最多的电导电极类型,实验式二电极式电导电极的结构是将二片铂片烧结在二平行玻璃片上,或圆形玻璃管的内壁上,调节铂片的面积和距离,就可以制成不同常数值的电导电极。通常有K=1.K=5.K=10等类型。而在线电导率仪上使用的二电极式电导电极常制成圆柱形对称的电极。当K=1时,常采用石墨,当K=0.1.0.01时,材料可以是不锈钢或钛合金。
多电极式电导电极,一般在支持体上有几个环状的电极,通过环状电极的串联和并联的不同组合,可以制成不同常数的电导电极。环状电极的材料可以是石墨、不锈钢、钛合金和铂金。
电导电极还有四电极类型和电磁式类型。四电极电导电极的优点是可以避免电极极化带来的测量误差,在国外的实验式和在线式电导率仪上较多使用。电磁式电导电极的特点是适宜于测量高电导率的溶液,一般用于工业电导率仪中,或利用其测量原理制成单组分的浓度计,如盐酸浓度计、硝酸浓度计等。 根据公式K=S/G,电极常数K可以通过测量电导电极在一定浓度的KCL溶液中的电导G来求得,此时KCL溶液的电导率S是已知的。
由于测量溶液的浓度和温度不同,以及测量仪器的精度和频率也不同,电导电极常数K有时会出现较大的误差,使用一段时间后,电极常数也可能会有变化,因此,新购的电导电极,以及使用一段时间后的电导电极,电极常数应重新测量标定,电导电极常数测量时应注意以下几点:
1. 测量时应采用配套使用的电导率仪,不要采用其它型号的电导率仪。
2. 测量电极常数的KCL溶液的温度,以接近实际被测溶液的温度为好。
3. 测量电极常数的KCL溶液的浓度,以接近实际被测溶液的浓度为好。 电导率测量是与温度相关的。温度对电导率的影响程度依溶液的不同而不同,可以用下面的公式求得:
Gt = Gtcal{1 + α(T-Tcal)}
其中:
Gt = 某一温度(°C)下的电导率
Gtcal = 标准温度(°C)下的电导率
Tcal = 温度修正值
α = 标准温度(°C)下溶液的温度系数。
下表列出了常用溶液的α值。要得到其他溶液的α值,只要测量某个温度范围内的电导率,并以温度为纵轴绘出 溶液
(25°C) 浓度 Alpha
(α) 盐酸 10 wt% 1.56 氯化钾溶液 10 wt% 1.88 硫酸 50 wt% 1.93 氯化钠溶液 10 wt% 2.14 氢氟酸 1.5 wt% 7.20 硝酸 31 wt% 31.0 相应的电导率的变化曲线,与标准温度相对应的曲线点为该溶液的α值。
市场上所销售的所有电导仪都可以参照标准温度(通常为25°C)进行调节的或自动温度补偿。大多数固定温度补偿的电导仪的α调节为2%/°C(近似25°C时氯化钠溶液的α)。可调节温度补偿的电导仪可以把α调节到更加接近所测溶液的α。
Ⅳ 怎么看溶液的导电能力
溶液导电能力的判断可以自己做一个实验装置,用导线、灯泡、电池、容器(里面加所需判断溶液),连接好后,随溶液中导电粒子浓度的变化灯泡亮度会相应变强或变弱。
溶液有水和溶质组成,导电溶液的溶质分为强电解质、弱电解质、
强电解质有强酸、强碱、等。在水中大部分以酸根离子和氢离子、氢氧根离子形式存在通电时溶液再次电离,随电级而发生运动。导电能力强
弱电解质有弱酸、弱碱、强酸弱碱盐(如NH4Cl、Al2(SO4)3等,水解后溶液呈酸性)、强碱弱酸盐(如CH3COONa、Na2CO3等,水解后溶液呈碱性)、多元弱酸盐还要考虑分步水解。部分呈离子形式存在,大部分呈分子形式在水中存在。
溶液的离子浓度一般由酸碱程度表示,也就是氢离子、氢氧根离子浓度决定,氢离子与氢氧根在一定温度下,[H+]与[OH-]的乘积是一个常数:水的离子积Kw=[H+]·[OH-],在25℃时,Kw=1×10-14。 溶液中的存在守恒关系(电荷守恒:电解质溶液中所有阳离子所带有的正电荷数与所有的阴离子所带的负电荷数相等。物料守恒:电解质溶液中由于电离或水解因素,离子会发生变化变成其它离子或分子等,但离子或分子中某种特定元素的原子的总数是不会改变的。质子守恒:电解质溶液中分子或离子得到或失去质子(H+)的物质的量应相等。)根据受很关系可以算出[H+]与[OH-]的浓度。
Ⅵ 如何来定量的表示电解质溶液的导电能力
一、溶液导电性的测量
在化学教育专业的课程设置中都少不了《普通物理》这门课程。每个学生都要学到“电学”,并接触到用惠更斯电桥之类方法测某物体电阻的实验。于是一部分人就以为,凭这些知识,自然也就可以测量出溶液的导电性了。
其实问题并没有这么简单。这部分人没有注意到“电学”与“电化学”间的区别。在电学中测导体的电阻时用的都是直流电源(如下左图一)。而在电化学中这种方法根本就是不能被允许的。
1.先向烧杯里注入50毫升0.1摩尔浓度的氢氧化钡溶液。接通电源,发生什么现象(不必回答电极上的现象,下同)?为什么?
2.然后逐滴加入50毫升0.2摩尔浓度的硫酸溶液。发生什么现象?写出有关反应的离子方程式。
3.如果用0.1摩尔浓度的氯化钡溶液代替氢氧化钡溶液。重复上面的实验,能观察到什么不同的现象?为什么?
解:这个题编写的是比较好的(可以清楚地看出装置中使用的是220V的市电)。学生只要按照教师所强调的,抓住溶液组成这个关键,根据其中电解质种类的变化情况,就可以得出正确的答案。
对第一问,Ba(OH)2溶液是一个可溶性的强电解质。可以导电,故灯泡会亮起来。
对第二问,先写出反应的化学方程式Ba(OH)2+H2SO4=BaSO4↓+2H2O。由于两个反应产物中,一个是不溶的、另一个是不导电的水,所以完全中和后,灯泡会熄灭。
但H2SO4是过量的,达等当点后,这个过量的强电解质会使灯泡重新再亮起来。
由上方程式改写出其离子方程式,Ba2++2OH-+2H++SO42-=BaSO4↓+2H2O。
对第三问,反应的化学方程式为BaCl2+H2SO4=BaSO4↓+2HCl。由于反应前的BaCl2及反应后的HCl都是可溶性的强电解质(都导电),所以灯泡始终是明亮的。
这个题目在命题的科学性方面是没有什么问题的。
例2,1964年的高考化学题,第四题(10分):
向20ml 0.1 mol∙L-1的醋酸溶液里逐滴加入20ml 0.1 mol∙L-1氢氧化钠溶液时,溶液的导电性_________,因为__________________________________。
向20ml 0.1 mol∙L-1的氢氧化钠溶液里逐滴加入20ml 0.1 mol∙L-1的醋酸溶液时,溶液的导电性_________,因为__________________________________。
解:还是按照确定溶液组成的方法来解题。
对第一问,写出的方程式为,HAc+NaOH=NaAc+H2O。
可见,反应前的弱电解质HAc(有弱导电性),变成了强电解质NaAc(有强导电性)。所以让学生回答出“逐渐增强”,还是比较容易的。
对第二问,虽然这个方程式还是,NaOH + HAc =NaAc+H2O。但是,反应前是强电解质的NaOH(有强导电性),反应后变成的仍是强电解质NaAc(有强导电性)。所以学生多数都会考虑回答溶液导电性“基本不变”。
但是,这样回答学生的“6分”一下就没有了。因为学生的这个回答只是根据物质种类做出的“定性”回答。
而标准答案是“逐渐减弱”。原因是“强电解质氢氧化钠变成强电解质醋酸钠,离子的数目不变,但溶液体积逐渐增大,以致离子的浓度逐渐变小”。命题者要求的是定量的,要考虑溶液浓度变化情况下的答案。
他们认为,由于在滴定操作后溶液中强电解质的浓度要被稀释一倍,所以溶液的导电性要减小一倍。
这其实是命题人的一个“捡芝麻丢西瓜”看法。
应该用数据来说话。从上表一可看出,0.1mol∙L-1NaOH溶液的电导率就是2.18(欧姆-1∙米-1),不难计算出来,稀释一倍后溶液的电导率约是1.09(欧姆-1∙米-1)。稀释造成的是其一半、也就是“1.09”的数值降低。
而NaOH变成NaAc溶液后,NaAc的电导率仅是0.73(欧姆-1∙米-1),这一步就降低了“1.45”。在此基础上再稀释一倍,就仅剩0.37(欧姆-1∙米-1)了。
从原来的2.18(欧姆-1∙米-1),变成最终的0.37(欧姆-1∙米-1),怎么能用溶液稀释来解释呢?这个大幅度的电导减低,主要是由离子种类的变化引起的。有时离子种类的变化对导电性的影响,比稀释作用的影响还要大。
导电性强的OH-离子被导电能力很弱的Ac-离子代替,从而使溶液的导电性降低,这才是这个变化的主要原因。而离子浓度的影响是次要的。
这个题在忽略了离子种类对溶液导电性影响的情况下,去讨论离子浓度对溶液导电性的影响,实际上是有片面性且不科学的。
四、对溶液导电性内容的教学要求及规范
通过上面的讨论不难看出,对中学化学教学中溶液的导电性问题,教师应该就教学范围和教学要求达成一个共识才好。
类似于1964年高考题的溶液“导电性”的问法应该避免。因为导电性是以电导或电导率做其变化依据,是一种较精确的、严格的变化情况的度量。要求的是学生无法掌握的较为定量的回答。
对溶液导电性的教学要求,是否以1963年高考提出的“灯泡亮度变化”为度,这样才好。因为“灯泡亮度”是一个定性,允许人的视觉有较大误差,只有变化幅度很大时才能被观察到,只需把强、弱电解质的导电性差别,就能进行回答的问题。
当溶液导电能力的变化用“灯泡亮度”的形式来表示时,不同离子的导电能力及浓度变化(在一般情况下也不过是一倍、两倍的稀释)是反映不出来的。所以完全可以用反应前后电解质的强弱、及是否有不溶物存在来判断。
这类题的具体解题方法是:
写出化学方程式。观察反应前被测溶液、及反应后被测溶液的组成。去掉其中不被观察的物质,再看其中是否有可溶性的强电解质、弱电解质,还是极弱电解质。以其中的强、弱电解质为判断“亮”与“暗”的依据。
还需注意的是,变化后的情况可能还需要分成两步来考虑。一步是某电解质加入后的变化。再一步是其过量加入后的变化。
这样,可能的情况不外乎以下的四种:
第一种是,弱电解质反应后有强电解质生成。灯泡“由暗变亮”。
第二种是,强电解质反应后有弱电解质生成。灯泡“由亮变暗”。
第三种是,强电解质反应后有弱电解质生成。但随强电解质的不断加入,强电解质的量由少变多。这时,灯泡“由亮变暗,然后又由暗变亮”。
第四种是,强电解质反应后仍为强电解质。灯泡的“亮度基本不变”。
对以上几种情况可各举例如下:
第一种情况如“用HAc来滴定氨水”。反应方程式为NH3∙H2O+HAc=NH4Ac+H2O。从去掉不被观察的滴定剂(涂有阴影)不难看出,是弱电解质变成了强电解质。所以灯泡“由暗变亮”。
第二种情况如“用10ml 0.10 mol∙L-1H2SO4来滴定10ml 0.10mol∙L-1Ba(OH)2”。反应方程式为H2SO4+ Ba(OH)2= BaSO4↓ +2H2O。不难看出,是强电解质变成了极弱的电解质。所以灯泡“由亮变暗”,以至于最后可能完全“熄灭”。
第三种情况如“用足量的CO2气体通入饱和的Ca(OH)2溶液中”。反应方程式为Ca(OH)2+CO2= CaCO3↓+H2O。去掉不被观察对象不难看出,是强电解质变成了极弱电解质。所以有灯泡“由亮变暗”的现象。
由于CO2气体是过量的。还会有反应,CaCO3↓+H2O +CO2= Ca(HCO3)2。这是一个由弱电解质变强电解质的过程。所以,还会看到灯泡“由暗变亮”的现象。
第四种情况就是“用醋酸来滴定氢氧化钠溶液”的情况。反应为NaOH +HAc=NaAc+H2O。反应前后都有强电解质,回答“灯泡亮度基本不变”,还是比较合适的。
由于学生没有接触到,不同离子间的导电性可能相差很大、这方面的知识,对他们似乎不应该提出过高的要求。
在教学中应极力避免1964年考题“溶液的导电性”这种直白的表述。因为学生有可能将其理解为电导或电导率,这种要同时考虑溶液浓度及离子种类的定量处理问题的要求。
应该与教材一致,用“灯泡亮度”,这种粗略且定性的方式,来表示溶液的导电性。在这里,允许人的视觉有较大误差,被观察到只是导电性的大幅度变化。
也就是说,只要把强与弱电解质间的差别能反映出来就可以了。不同物质间溶液导电性比较,最好限于在强与弱两类电解质间进行
由于溶液导电性的判断,是比较侧重于定量的回答。所以这种比较,应该限制在浓度相差不大的强、弱电解质间来进行。或是在同一电解质的不同浓度溶液间来进行。
如,在浓度相差不大的情况下,NaOH溶液的导电性要强于氨水,NaCl溶液的导电性要强于醋酸。
对NaOH溶液来说,其0.2 mol∙L-1溶液的导电性,要强于0.1 mol∙L-1溶液的导电性。对氨水来说,其0.2 mol∙L-1溶液的导电性,也要强于0.1 mol∙L-1溶液的导电性。
如果是用0.1 mol∙L-1NaOH溶液,与0.2 mol∙L-1NaCl溶液,来进行导电性的比较。那就是在难为学生了。因为只有通过查数据表才能知道,两者几乎是相当的。
在教学中对浓硫酸应“另案”处理。由于在这种情况下,硫酸主要以分子的形式来存在。应该将其当做弱电解质来看待(有微弱的导电性)。不宜从离子相互作用的角度来解释。