导航:首页 > 装置知识 > 重油催化裂化装置设计及计算

重油催化裂化装置设计及计算

发布时间:2023-11-29 21:56:42

㈠ 重油催化裂化催化剂的我国新开发的重油催化裂化新工艺

我国开发出多种具有不同原料及产品特色的重油催化裂化新工艺,以及相配合的催化剂;其中有:
DCC(DeepCatalyticCracking)已工业化的技术DCC-I和DCC-1I,DCC-I是以最大量生产轻烯烃为目的的流化催化裂化技术,所用催化剂CHP-1和CRP-1是以择形沸石为主要活性组分的催化剂。DCC-Ⅱ是以多产轻烯烃兼顾高辛烷值汽油为目标的技术,所用催化剂为CIP一1。
MGG(MaximumGasPlusGasoline)ARGG()主要目的是多产轻烯烃和高辛烷值的优质汽油。两种技术的主要差别是MGG用于以VGO为主要原料的催化裂化装置,ARGG用于以常压渣油为原料的催化裂化装置。这两项技术使用的催化剂为RMG和RAG系列催化剂。RAG催化剂的活性组分是由几种分子筛构成,通过调整分子筛的种类和比例可制得性能各异的一系列RAG催化剂。RMG-2是MGG工艺专用的催化剂,其结构稳定性好,有良好的孔分布梯度,可使大小不同烃类的分子与活性中心进行有选择的接触,活性高,水热稳定性好,抗镍污染能力强,气体烯烃选择性好,焦炭产率低。RAG-6是ARGG技术专用催化剂,抗磨性能有待改进。
MIO(MaximumIso—Olefine)是多产异丁烯和异戊烯的流化催化技术。使用RFC―1催化剂,最大量的生产异构烯烃和高辛烷值汽油。RFC―1催化剂具有良好的异构烯烃选择性,其中异构产物中烯烃与烷烃比及异丁烯和异戊烯的产率均比常规催化裂化高一倍以上。与MGG相比,MIO汽油产率低,而异丁烯和异戊烯产率高得多,可达8.6%13.1%。
HCC(Heavy—oilContactCrackingProcess)工艺是目前国内外用重油直接裂解制乙烯的主要工艺技术之一。在HCC工艺过程中催化剂的性能有极其重要的影响,催化剂既要传递大量的热量,又要起到催化的作用,并要长期经受苛刻的操作条件。LCM-1型~LCM-9型催化剂评价结果表明,LCM-5的烯烃选择性较LCM-1有明显的提高,LCM-8的乙烯产率最高,LCM-9的丙烯产率最高。这些催化剂具有优良的活性和选择性,并具有良好的水热稳定性和抗热崩能。

㈡ 催化裂化装置吸收稳定系统的原理是什么

催化裂化生产过程的主要产品是气体、汽油和柴油,其中气体产品包括干气和液化石油气,干气作为本装置燃料气烧掉,液化石油气是宝贵的石油化工原料和民用燃料。

所谓吸收稳定,目的在于将来自分馏部分的催化富气中C2以下组分与C3以上组分分离以便分别利用,同时将混入汽油中的少量气体烃分出,以降低汽油的蒸气压,保证符合商品规格。

吸收-稳定系统包括吸收塔、解吸塔、再吸收塔、稳定塔以及相应的冷换设备

由分馏系统油气分离器出来的富气经气体压缩机升压后,冷却并分出凝缩油,压缩富气进入吸收塔底部,粗汽油和稳定汽油作为吸收剂由塔顶进入,吸收了C3、C4(及部分C2)的富吸收油由塔底抽出送至解吸塔顶部。

吸收塔设有一个中段回流以维持塔内较低的温度,吸收塔顶出来的贫气中尚夹带少量汽油,经再吸收塔用轻柴油回收其中的汽油组分后成为干气送燃料气管网。吸收了汽油的轻柴油由再吸收塔底抽出返回分馏塔。

解吸塔的作用是通过加热将富吸收油中C2组分解吸出来,由戚携塔顶引出进入中间平衡罐,塔底为脱乙烷汽油被送至稳定塔。稳定塔的目的是将汽油中C4以下的轻烃脱除,在塔顶得到液化石油气〈简称液化气〉,塔底得到合格的汽油——稳定汽油。

吸收解吸系统有两种流程,上面介绍的是吸收塔和解吸塔分开的所谓双塔流程;还有一种单塔流程,即一个塔同时完成吸收和解吸的任务。双塔流程优于单塔流程,它能同时满足高陆伏高吸收率和高解吸率的要求。

㈢ 怎么从重油里变出汽油来

目前,在石油产品中,作为汽车燃料的汽油和柴油的数量要占到一多半,而一般原油中含有的汽油、柴油这样的轻质馏分只有1/4左右,光是从数量上看就有很大差距,同时在质量上也达不到要求。

因而,人们便想方设法要把约占原油3/4的较重成分变成轻质燃料,以满足交通事业发展的需要。根据原油在350℃起就开始分解这个特点,20世纪初就有人开发了石油热裂化生产汽油的方法,并大规模工业化,基本满足了当时的需要。但是到了20世纪40年代,汽车数量激增,汽油机的工作条件越来越苛刻,热裂化汽油无论在数量上还是质量上都已经不能满足需要,此时一种称为催化裂化的新生产工艺便应运而生。自那时起,催化裂化迅速发展,逐渐成为生产汽油的主角,而热裂化则逐渐退出历史舞台,现在已几乎绝迹。

所谓催化裂化就是指在催化剂存在下进行裂化反应,与单纯的热裂化相比,它可以在较低的温度下、较短的时间内完成反应,大大提高了生产的效率和汽油的质量。其反应温度大体在500℃左右,反应时间只有几秒钟。催化裂化的原料比较广泛,最初主要用沸点范围为350~500℃的中间馏分为原料,现在大量采用重质原料(全部或部分掺入常压渣油或减压渣油),就是所谓重油催化裂化。催化裂化所用的催化剂现有许多品牌,但在本质上它们都是硅和铝的化合物,现在普遍采用的是一类称为Y型分子筛的固体酸催化材料,以分子筛为主要成分的裂化催化剂具有很高的催化活性、选择性及稳定性。

催化裂化装置催化裂化汽油的产率大体在50%左右,它在我国车用汽油中的份额约占80%之多。催化裂化汽油基本可达到90号车用汽油的标准,但是从环保上更高的要求来看,其中烯烃的含量较高,硫含量一般也偏高,这是目前正在设法解决的问题。此外,催化裂化还产出25%~30%的柴油馏分,其质量较差,需要经过进一步处理后才能应用。

催化裂化在生成汽油、柴油等液体产物的同时,还生成以丙烷、丙烯、丁烷、丁烯为主要成分的气体产物。它们在不太高的压力下就可以变成液体,这就是常用作民用燃料的液化气。其实,把液化气当燃料烧掉是很可惜的。因为它们是极好的石油化工原料,可以用来制取聚丙烯和聚丙烯腈等许多十分重要的产品。近年来,还开发了一系列用催化裂化方法尽量多产气体烯烃的过程,成为除了高温裂解外另一条提供石油化工原料的重要渠道。

此外,还有一类也能把大分子变小,使重质的原料变轻的过程称为加氢裂化。这种方法是在高达100多个大气压(约10兆帕)的氢气下,经过加氢裂化催化剂的作用,可以生产出质地纯净的优质喷气飞机燃料、柴油以及石油化工的原料(轻油)。

㈣ 催化裂化提升管反应器的提升管反应器

提升管上端出口处设有气—固快速分离构件,其目的是使催化剂与油气快速分离以抑制反应的继续进行。快速分离构件有多种形式,比较简单的有半圆帽形、T字形的构件,为了提高分离效率,近年来较多地采用初级旋风分离器。实际上油气在沉降器及油气转移管线中仍有一段停留时间,从提升管出日到分馏塔约为10-20s。,而且温度也较高一般为450-510℃。在此条件下还会有相当程度的二次反应发生,而且主要是热裂化反应,造成于气和焦炭产率增大。对重油催化裂化,此现象更为严重,有时甚至在沉降器、油气管线及分馏塔底的器壁上结成焦块。因此,缩短油气在高温下的停留时间是很有必要的。适当减小沉降器的稀相空间体积、缩短初级旋风分离器的升气管出口与沉降器顶的旋风分离器入口之间的距离是减少二次反应的有效措施之一。据报道,采取此措施可以使油气在沉降器内的停留时间缩短至3s,热裂化反应明显减少。
提升管下部进料段的油剂接触状况对重油催化裂化的反应有重要影响。对重油进料,要求迅速汽化、有尽可能高的汽化率,而且一与催化剂的接触均匀。原料油雾化粒径小可增人传热面积,而.只由于原料油分散程度高,油雾与催化剂的接触机会较均等,从而提高了汽化速率。实验及计算结果表明,雾滴初始粒径越小则进料段内的汽化速率越高,两者之间呈指数关系。实验结果还表明,对重油催化裂化,提高进料段的汽化率能改善产品产率分布。因此,选用喷雾粒径小,而且粒径分布范围较窄的高效雾化喷嘴对重油催化裂化是很重要的。模拟计算结果表明,当雾滴平均粒径从60μm减小至50μm时,对重油催化裂化的反应结果仍有明.显的效果。除了液雾的粒径分布外,影响油雾与催化剂的接触状况的因素还有喷嘴的个数及位置、喷出液雾的形状、从预提升管上升的催化剂的流动状况等。在重油催化裂化时,对这些因素都应予以认真的研究。 中国石油大学成功开发的催化裂化汽油辅助反应器改质技术,以常规催化裂化催化剂和常规催化裂化工艺为基础,依托原有催化裂化装置,增设了一个单独的提升管与湍动床层相组合的辅助反应器,利用这一单独的改质反应器对催化裂化汽油进行进一步改质,促进了需要的氢转移和异构化反应并抑制了不需要的裂化反应,实现了催化裂化汽油的良性定向催化转化,从而达到了降低烯烃含量、维待辛烷值基本不变以生产清洁汽油的目的。其工艺流程如图5所示。工业化应用结果表明,可使催化裂化汽油烯烃含量降到20%(体积分数)以下,且维持辛烷值不变,使催化裂化装置直接生产出烯烃含量合格的高品质清洁汽油。改质过程损失小,只占整个重油催化裂化装置物料平衡的0.8%(质量分数),且操作与调变灵活,通过调整改质反应器操作,可提高丙烯产率3%左右。
除此之外,有研究报道,采用渣油单独进料并选好其注人的位置会有利于改善反应状况。对下行式钾式反应器也有不少研究。从原理上分析,卜行式反应器可能有以下一些优点:油气与催化剂一起从上而下流动,没有固体颗粒的滑落间题,流型可接近平推流而很少返混;有可能与管式再生器结合而节约投资等。这种反应器型式可能对要求高温、短接触时间的反应更为适合。关于下行式反应器的研究已有一些专利,但尚未见有工业化的报道。

㈤ 求翻译一篇学术摘要 万分感谢

摘 要 Abstract:
常减压塔蒸馏装置作为原油的一次加工工艺,在原油加工的总流程中占有重要作用,在炼厂具有举足轻重的地位。它的操作平稳是保证石油产品质量的关键。本次设计主要是设计原油年处理能力为 万吨的常压塔,其次为塔板的设计。
As a part of the crude oil processing technology, the atmospheric-vacuum distillation unit plays an important function in the overall technological procere of crude oil processing. Its smooth operation is critical to the quality assurance of petroleum procts. The primary objective of this design is for the atmospheric- vacuum tower with an annual crude oil processing capacity of xx tons; the second design is for the tower trays.

设计的基本方案是:初馏塔拔出石脑油,常压塔采取三侧线,常压塔塔顶生产汽油,三侧线分别生产煤油,轻柴油,重柴油。塔底重油作催化裂化或加氢裂化装置的原料。常压塔的设计主要是依据所给的原油实沸点蒸馏数据及产品的恩氏蒸馏数据,计算产品的各物性数据确定切割方案、计算产品收率。
The basic design is: primary tower extracts the naphtha, the atmospheric-vacuum tower adopts three lateral lines; petroleum is proced at the top of the tower, the three lateral lines separately proce kerosene, light diesel and heavy diesel. The heavy oil at the bottom of the tower will be used as raw material for catalytic cracking unit or hydrocracking unit. The design of the atmospheric-vacuum tower is to calculate the various physical data of procts to determine the cutting plan, as well as calculate the proct yield basing mainly on the provided true boiling point distillation data of crude oil and the Engler distillation data of procts.

参考同类装置确定塔板数、进料及侧线抽出位置,在假设各主要部位的操作温度及操作压力,进行全塔热平衡计算,采取塔顶二级冷凝冷却和两个中段回流。塔顶取热:第一中段回流取热:第二中段回流取热为5:2:3,最后校核各主要部位温度都在允许的误差范围内。
塔板形式选用浮阀塔板,依据常压塔内最大汽、液相负荷处算得塔径为4.2m,板间距取0.8m。这部分最主要的是核算塔板流体力学性能及操作性能,使塔板在适宜的操作范围内操作。
Refer to similar unit to decide on the number of tower trays, feed inlet and lateral line extraction positions. Conct the heat balance calculation of the tower with the hypothesis of the operating temperature and pressure of the various key positions; adopt tower top two-stage condensing and cooling and two middle-stage reflux. The arrangement of taking temperatures at the tower top, first middle-stage reflux and second middle-stage reflux is 5:3:2. Finally check the temperatures at various key positions are within the permissible deviations.
The type of tray used is the float valve trays; based on the maximum gas-liquid load in the tower, the tower diameter is 4.2 meters, the distance between the trays is 0.8 meter. The most important in this section is to calculate the hydrodynamic and operating performance of the tower trays, so that the tower trays are operating within the suitable operation scope.

关键词:常压塔,节能,浮阀塔板,流体力学
Key words: atmospheric-vacuum tower, energy saving, floating valve tower tray, hydrodynamic.

【英语牛人团】

㈥ 催化裂化过程详解

催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。催化裂化原料是原油通过原油蒸馏(或其他石油炼制过程)分馏所得的重质馏分油;或在重质馏分油中掺入少量渣油,或经溶剂脱沥青后的脱沥青渣油;或全部用常压渣油或减压渣油。在反应过程

中由于不挥发的类碳物质沉积在催化剂上,缩合为焦炭,使催化剂活性下降,需要用空气烧去(见催化剂再生),以恢复催化活性,并提供裂化反应所需热量。催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高(马达法80左右),裂化气(一种炼厂气)含丙烯、丁烯、异构烃多。催化裂化技术由法国E.J.胡德利研究成功,于1936年由美国索康尼真空油公司和太阳石油公司合作实现工业化,当时采用固定床反应器,反应和催化剂再生交替进行。由于高压缩比的汽油发动机需要较高辛烷值汽油,催化裂化向移动床(反应和催化剂再生在移动床反应器中进行)和流化床(反应和催化剂再生在流化床反应器中进行)两个方向发展。移动床催化裂化因设备复杂逐渐被淘汰;流化床催化裂化设备较简单、处理能力大、较易操作,得到较大发展。60年代,出现分子筛催化剂,因其活性高,裂化反应改在一个管式反应器(提升管反应器)中进行,称为提升管催化裂化。
催化裂化
中国1958年在兰州建成移动床催化裂化装置,1965年在抚顺建成流化床催化裂化装置,1974年在玉门建成提升管催化裂化装置。1984年,中国催化裂化装置共39套,占原油加工能力23%。
希望可以帮助你哦!!!

㈦ 石油的催化裂化

石油工业的一个重要组成部分,是把原油通过石油炼制过程加工为各种石油产品的工业。包括石油炼厂、石油炼制的研究和设计机构等,石油炼厂中的主要生产装置通常有:原油蒸馏(常、减压蒸馏)、热裂化、催化裂化、加氢裂化、石油焦化、催化重整以及炼厂气加工、石油产品精制等,主要生产汽油、喷气燃料、煤油、柴油、燃料油、润滑油、石油蜡、石油沥青、石油焦和各种石油化工原料。

重要性 石油炼制工业和国民经济的发展十分密切,无论工业、农业、交通运输和国防建设都离不开石油产品。石油燃料是使用方便、较洁净、能量利用效率较高的液体燃料。各种高速度、大功率的交通运输工具和军用机动设备,如飞机、汽车、内燃机车、拖拉机、坦克、船舶和舰艇,它们的燃料主要都是石油炼制工业提供的。一架波音707飞机飞行1000km要用喷气燃料6t;一辆4t载重汽车百吨公里耗油约5kg;一辆 4t柴油汽车百吨公里耗柴油约3kg;一标准台拖拉机年耗柴油约4t以上。

处在运动中的机械,都需要一定数量的各种润滑剂(润滑油、润滑脂),以减少机件的磨擦和延长使用寿命。当前,润滑剂的品种达数百种,绝大多数是由石油炼制工业生产的。

石油炼制工业提供的石油化工原料,可用于生产合成纤维、合成橡胶、塑料以及化肥、农药等。

世界概况 1984年,世界原油总加工能力约 3.7Gt,炼厂数约 700余座。年加工量在70Mt以上者有11个国家,其中最大的是美国,约占世界总量的五分之一,其次是苏联、日本和西欧一些国家(见表1984年世界主要国家原油加工能力和炼厂数)。为了节省投资和降低生产费用,现代炼油厂的年加工原油量均在3.5Mt以上,有的已超过10Mt。

世界主要炼油国家油品消费结构中,以汽油、柴油和燃料油的消费量最大。日本和西欧的一些国家因煤和天然气短缺,电站锅炉和工业窑炉大量使用原油常减压蒸馏的渣油作为燃料油,因而炼油厂的加工深度较浅,催化裂化、石油焦化、加氢裂化等装置所占的比例较小。而美国等因煤和天然气较多,可用作锅炉燃料,还由于汽油需用量很大,故炼油厂多为深度加工,大部分渣油被加工转化为汽油。

中国概况 中国是最早发现和利用石油的国家之一(见石油炼制工业发展史),但近代石油炼制工业是在中华人民共和国成立后,随着大庆油田的开发和原油产量的增长才得到迅速发展的。1983年原油加工能力已超过100kt,1984年居世界第7位。而且加工手段和石油产品品种比较齐全,装置具有相当规模和一定技术水平,已成为一个能基本满足国内需要,并有部分出口的加工行业。

1983年石油产品消费结构中,直接作为燃料的重油消耗量较大,正逐步加以调整。石油炼厂规模年产在 2.5Mt以上的有22个,炼厂主要分布在东北、华东、中南和华北地区。炼油厂装置的组成是根据中国原油特点和产品需要而确定的。中国大多数原油含重馏分多、含蜡量高、含硫量低。因此,催化裂化、焦化、热裂化、加氢裂化等二次加工装置所占的比例达三分之一以上,而加氢精制和催化重整所占比例相对较低。

发展趋势 从1973年开始,原油国际市场价格上涨,并由于世界很多油田开采已处于中后期,轻质原油开采量减少,重质原油产量相对增加。此外,国际上对环境保护日益重视,对石油产品质量要求更高。这些因素促使近年来石油炼制工业发生以下重大变化:

①世界原油加工能力的增长速度减慢 发达国家的原油加工能力过剩,开工率降到60%~70%,在此期间,中东产油国的石油炼制工业则迅速发展。

②石油产品结构发生较大变化 燃料油需要量大幅度减少,喷气燃料、柴油等中间馏分需要量增加,因而原油深度加工受到普遍重视,减粘裂化、催化裂化、加氢裂化、石油焦化等生产轻质油品的装置增建较多。与此同时,还开发了很多加工重质馏分油和渣油的新工艺。

③节能技术有了很大发展 采取了整顿性措施,如对设备和管线进行保温,消除泄漏,加强换热,降低加热炉排烟温度等。并逐步实施节能新技术,如采用加热炉新型燃烧火嘴和各种空气预热器,催化裂化装置使用CO助燃剂、配备CO锅炉和烟气能量回收机组,采用新型填料和干式减压蒸馏、低温热量致冷和发电、热泵、多效蒸发、液力透平等。从而使每吨原油的加工能耗明显降低。例如:美国1981年比1972年减少20%;中国1983年比1978年降低30.7%。

阅读全文

与重油催化裂化装置设计及计算相关的资料

热点内容
全自动跟踪定位射流灭火装置品牌哪家好 浏览:886
手机机械键盘多少钱 浏览:479
二手荷兰网设备多少钱 浏览:753
电子仪器生产需要具备哪些证书 浏览:362
永康电动工具装配任新招聘 浏览:81
机械硬盘很卡是什么原因 浏览:33
车轴承怎么损坏 浏览:410
铸造用型砂是什么砂 浏览:388
污水净化设备要多少钱 浏览:705
体质检测仪器设备有哪些 浏览:566
怎么完成机械第二次觉醒任务 浏览:150
如何如何使用车载北斗定位设备 浏览:145
安全联锁装置的作用有 浏览:961
药厂设备部如何做到安全生产 浏览:757
如何设计自动冲水装置 浏览:287
机械师职业认知小结怎么写 浏览:981
钱大五金制品有限公司做什么的 浏览:373
为什么开离心风机时要关闭出口阀门 浏览:972
微脉冲激光设备多少钱 浏览:677
机械路霸成本多少 浏览:168