① 制动系统的传动装置
目前,轿抄车上的制动传动装置有机械式和液压式两种。 目前,轿车的行车制动系统都采用了液压传动装置,主要由制动主缸(制动总泵)、液压管路、后轮鼓式制动器中的制动轮缸(制动分泵)、前轮钳盘式制动器中的液压缸等组成,见右图。主缸与轮缸间的连接油管除用金属管(铜管)外,还采用特制的橡胶制动软管。各液压元件之间及各段油管之间还有各种管接头。制动前,液压系统中充满专门配制的制动液。
踩下制动踏板4,制动主缸5将制动液压入制动轮缸6和制动钳2,将制动块推向制动鼓和制动盘。在制动器间隙消失并开始产生制动力矩时,液压与踏板力方能继续增长直到完全制动。此过程中,由于在液压作用下,油管的弹性膨胀变形和摩擦元件的弹性压缩变形,踏板和轮缸活塞都可以继续移动一段距离。放开踏板,制动蹄和轮缸活塞在回位弹簧作用下回位,将制动液压回主缸。
② 气压制动装置由什么组成的
气压制动系统供能装置由以下四个部分组成:
一是产生压缩空,的空气压缩机和储存压缩空气的储气筒;
二是将气体压力限制在一个安全范围的调压阀和安全阀;
三是改善压缩空气质量的各种空气滤清器、油水分离器、空气干燥器和防冻器等;四是在一个回路损坏时用以保护其他回路,使其中气压能不受损失的多回路保护阀等。
首先,气压制动装置是利用压缩空气作为制动装置的动力源。
特点:制动操纵省力,制动强度大,踏板行程小;但需要消耗发动机的动力;制动较粗暴且结构相对复杂。应用车型:一般载重汽车和部分中型汽车上采用此类气压制动装置。其次,构造主要由空气压缩机、制动气室、储气筒、调压阀、制动控制阀等组成。
①空气压缩机:由发动机通过传动带、齿轮、或采用凸轮轴直接驱动。按缸数分单缸、双缸(如东风EQ1090E型汽车用的是单缸、解放CA1092汽车用的是双缸)。
②制动气室:把储气筒的压力,转变为转动凸轮的机械力。
③储气筒:
④调压阀:调节储气筒中压缩空气压力,使其保持在规定压力范围。
⑤制动控制阀:控制制动气室中的工作压力,并可以使其变化,也可随动作用(即保证制动气室气压与踏板行程有一定的比例关系)。工作:
驾驶员踩下制动踏板时,拉杆带动制动控制阀拉臂摆动,使制动控制阀工作,储气筒前腔的压缩空气经过制动控制阀的上腔进入后制动气室,使后轮制动。
同时,储气筒后腔的压缩空气通过制动控制阀下腔进入前制动室。
当放松制动踏板时,制动控制阀使各制动气室通大气(通常我们听到的大卡车“哧~~”的声音,就是气压泄压的声音)以解除制动。结语:
气动制动装置的特点,也确定其应用的车型范围。在其车型工作原理中,也涉及到其他零部件,但根本作用依旧是保障气路气压等作用,如放气阀、气压表等。
③ 气压制动装置由什么组成
气压式制动传动装置是利用压缩空气作力源的动力式制动装置。驾驶员只须按不同的制动强度要求,控制制动踏板的行程,便可控制制动气压的大小来获得所需要的制动力。
气压制动传动装置的基本组成和工作原理
1.组成
气压制动传动装置由两大部分组成:一是气源部分——它包括空气压缩机1、调压机构(卸荷阀2和调压阀3)、贮气筒5、气压表8和安全阀6等部件。二是控制部分——它包括制动踏板9、制动控制阀10、控制管路、制动气室11、12、制动灯开关13等部件。
1-空气压缩机;2-卸荷阀;3-调压器;4-单向阀;5-贮气筒;6-安全阀;7-油水放出阀;8-气压表;
9-制动踏板;10-制动控制阀;11-前制动气室,12-后制动气室;13-制动灯开关
④ 汽车制动系统的组成构造和工作原理
汽车制动系统的组成和结构汽车制动系统是一个复杂的制动安全系统,一般由制动传动装置和制动器组成。1)制动传动装置制动传动装置包括向制动器传递制动能量的各种零件和管路,如制动踏板、制动总泵、轮缸和连接管路等。2)制动器制动器是产生阻碍车辆运动或趋势的力的部件。一般是通过固定元件与旋转元件工作面之间的摩擦来实现的。一个完善的制动系统还要有制动力调节装置、报警装置、压力保护装置等附加装置。制动系统的工作原理连接在车身(或车架)上的非旋转元件和连接在车轮(或传动轴)上的旋转元件之间的相互摩擦,用来阻止车轮转动或有转动的趋势。运动汽车的动能转化为摩擦副的热能,耗散到大气中。现在以液压行车制动系统为例来说明制动系统的工作原理,如图15.1所示。车轮制动器主要由转动部分、固定部分和开启机构组成。转动部分是制动鼓,固定在轮毂上,随车轮转动,其工作面是内圆柱面。固定部分主要包括闸瓦和制动底板等。制动器底板用螺栓固定在转向节法兰(前轮)或桥壳法兰(后轮)上。在固定制动底板上,有两个支撑销支撑两个弧形制动蹄的下端。制动蹄的外周面设有摩擦片,上端通过制动蹄回位弹簧张紧压靠在轮缸活塞上。制动蹄可以通过诸如凸轮或制动轮缸的打开机构打开。制动轮缸也安装在制动底板上。液压制动传动机构主要由制动踏板和推杆组成!主缸、制动轮缸和油管等。安装在车身上的制动总泵通过油管与制动轮缸连接,驾驶员可以通过制动踏板操纵制动总泵的活塞。1)没有刹车过程。不制动时,制动鼓的内圆柱面与摩擦片之间保持一定的间隙,使制动鼓能随车轮转动。2)制动过程为了让行驶中的汽车减速停车,需要利用路面对汽车的车轮施加反方向的力,也就是制动力。制动时,驾驶员踩下制动踏板,推杆推动制动总泵活塞,迫使制动油通过油管进入制动轮缸。机油的压力使制动轮缸的活塞克服回位弹簧的拉力推动制动蹄绕支承销转动,上端向外张开,消除制动蹄与制动鼓之间的间隙后压在制动鼓上。这样,非旋转制动蹄的摩擦件对旋转制动鼓产生一个摩擦力矩M,其方向与车轮的旋转方向相反,其大小取决告旦烂于制动轮缸活塞的开启力、制动蹄与制动鼓之间的摩擦系数以及制动鼓和制动蹄的大小。制动鼓将扭矩M传递给车轮。由于车轮和路面之间的附着力,车轮在路面上施加一个向前的圆周力F。同时路面也给了车轮一个向后的切向反作用力F,即车轮上的路面制动力。各个车轮的路面制动力之和就是汽车的总制动力,通过车轴和悬架从车轮传递到车架和车身,迫使整车产生一定的减速度。制动力越大,减速度越大。3)制动器释放过袜漏程松开制动踏板,在回位弹簧的作用下,制动蹄与制动鼓之间的间隙将恢复,从而松开制动器。制动时,车轮上的制动力Fb随着踏板力和制动力矩的增大而增大。但由于轮胎与路面附着力的限制,制动力f不能超过附着力f!f等于轮胎上的垂直载荷G和轮胎与路面的附着系数Q的乘积,即Fb=GQ。当制动力等于附着力时,车轮就会抱死,在路面上被拖行。打滑会严重磨损胎面局部,在路面上留下黑色的痕迹。时间同步拖动造成胎面局部高温和局部变薄,就像轮胎和路面之间隔了一层润滑剂,降低了附着系数。最大制迟汪动力和最短制动距离不是出现在车轮抱死的时候,而是出现在车轮即将抱死但没有完全抱死的时候。制动力接近附着力,即在所谓的“临界状态”达到最大值。可以看出,当制动到锁定状态时可以实现的制动力与车轮上的垂直载荷成比例。也就是说,车轮上的负载越大,可能的制动力就越大。因此,应根据各种汽车前轮和后轮轴轮分配质量的差异,包括附着质量和传递质量,从制动器的结构类型,如开启机构、制动鼓、制动蹄的类型和尺寸等方面合理分配制动力。从而获得理想的制动功。实际上,一般结构的车轮制动器在制动过程中,由于车轮的载荷及其与地面的附着系数并不恒定,很难完全避免车轮抱死和打滑。许多汽车在制动系统中增加了前轮和后轮轴轮的制动力分配和调节装置,可以减少车轮抱死现象。不过最理想的还是电控自动防抱死制动装置,俗称ABS装置。
⑤ 一般汽车制动系包括哪些装置
一般汽车制动系统包括供能装置、控制装置、传动装置和制动器4部分。
供能装置可以是人工的也可以是助力(空气助力、液压助力、空液助力)的。
控制装置即制动踏板以及驻车制动器(也有人工或电子之分)。
传动装置包括气管、液压管、拉索等,作用是将制动能量传送到制动器。
制动器则是制动执行部件,可分为鼓式制动器与盘式制动器。
制动系统的主要功用是使行驶中的汽车减速甚至停车、使下坡行驶的汽车速度保持稳定、使已停驶的汽车保持不动。
制动系统的工作原理是利用与车身或车架相连的非旋转元件和与车轮或传动轴相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。
汽车制动系统失灵处理措施
当发生制动失效时,司机首先要保持沉着冷静,切莫惊慌失措。
正确的措施是:在根据路况和车速控制好方向的同时迅速减档。高速档抢入直接档再迅速抢入中速档,这时发动机会有很大的牵引阻力使车速迅速降低,此时可以用手制动再迅速抢进低速档和最低档,然后用手制动控制车辆停住。
如果手制动效果不好也可利用山坡迫使车辆停下或低速控制车辆至平坦路段逐渐停下。上坡制动失效时应适时减入中、低速档。保持足够的动力驶上坡顶停车。
如需半坡停车,应保持前进低档位,拉紧手制动,随车人员及时用石块、垫木等物品卡住车轮,如有后滑现象,车尾应朝山坡或安全一面,并打开大灯和紧急信号灯以引起前后车辆的注意和避让。
⑥ 按制动传动机构回路的布置形式
按制动传动机构的布置形式,通常可分为单回路制动
系与双回路制动系两类。其中双回路制动系提高了汽车制动的安全性与可靠性。
4、车轮制动器主要由旋转机构、固定机构、张开机构、调整机构等四部分组成。
5、液力制动装置主要由制动主缸、制动轮缸、车轮制动器、踏板、油管等组成。
6、车轮制动器按其制动时两制动蹄对制动鼓径向力就是否平衡,可分
为非平衡式制动器、平衡式制动器与自增力式制动器。
7、浮钳型盘式车轮制动器主要由轮毂、制动盘、制动钳、制动块、活塞、液压工作缸、密封圈、油管等零件组成。
8、盘式车轮制动器活塞密封圈的作用就是: 密
封、制动解除后活塞回位与自动调整制动间隙。
9、双回路液力制动传动机构主要由双腔主缸、制动力调节器、管路等零件组成。
10、在采用增压伺服制动系统的汽车上,根据制动增压装置的力源不同,可分
为真空增压伺服制动系统与气压增压伺服制动系
统两种。
11、在真空增压伺服制动传动装置中加装了由真空单向
阀、真空罐、真空增压器与真空管
⑦ 液压制动装置由哪些部件组成它是如何工作的
液压制动装置由哪些部件组成?它是如何工作的?液压制动装置由哪些部件组成?它是如何工作的?电源装置:包括各种部件,用于提供和调节制动和改善传输介质状态所需的能量。用于产生制动作用和控制制动效果的各种部件,如制动踏板。LAION head发射器:包括用于传输制动能量的各种部件,例如制动缸车轮制动缸盖的主制动缸:阻碍车辆移动或倾向的部件。制动系统通常由两个主要部分组成:制动机构和制动器。
确保缸内的制动液产生压力,并通过油管将制动轮各缸内的油压下。轮缸活塞向外打开,推动闸瓦与制动鼓接触,产生制动效果。主要回答:制动器的液压气动传动装置主要由制动踏板、制动缸、油箱、顶出器、,储气罐、空气压缩机、制动轮缸、制动控制阀、气室、辅助缸、安全缸等部件。
⑧ 液压式制动传动装置
液压制动传动装置类似于离合器液压控制装置。它以专用油为介质,将驾驶员施加在制动踏板上的踏板力放大后传递给车轮制动器,再将液压转化为制动蹄片开口的机械推力,使车轮制动器产生制动效果。它具有结构简单、制动滞后时间短、无摩擦部件、制动稳定性好、对各种车轮制动器适应性强等优点,因此被广泛应用于中小型汽车。
液压传动装置的主要部件如下
1.制动主缸
主缸可以将制动踏板输入的机械力转化为液压。大部分制动缸由铸铁或合金制成,其中一些与储油室成一体,形成一个整体的主缸,另一些相互分离,然后通过油管连接,这是一个分离的主缸。分体式总泵的储油室多采用透明塑料成型,部分配有防溅浮子或低液位报警灯开关。根据工作室的数量,主缸可以分为单室和双腔。单线液压制动传动装置采用单室主缸,现已淘汰。双腔制动总泵应用广泛。下面简单介绍一下双腔制动总泵。
1)结构组成
双腔制动总泵一般是串联的,如图17.5所示。主要由主缸、前活塞及回位弹簧、前活塞弹簧座、前活塞杯、限位螺栓、后活塞及杯等组成。主缸体中的工作面精度高、光滑。缸体上有进油孔和补偿孔,有两个活塞。后活塞9为主活塞,右端凹槽与推杆之间有一定间隙。前活塞6位于气缸中部,将主缸内腔分为前腔B和后腔A两个工作腔,两个工作腔分别与前后液压管路连接,前腔B产生的液压通过出油口11和管路与后轮制动器连接,后腔A产生的液压通过出油口10和管路与前轮制动器连接。
2)工作条件
当踩下制动踏板时,推杆推动主活塞9向左移动,直到杯8盖住补偿孔,后腔A内的液压上升,建立起一定的液压。一方面,机油通过后机油出口流入前制动管路,另一方面,机油推动前活塞6向左移动。在后腔A中的液压和弹簧的作用下,前活塞向左移动,前腔B中的压力也随之增加。油通过空腔内的出油口进入后制动管路,这样两条制动管路制动汽车车轮制动器。
当持续踩下制动踏板时,前腔B和后腔A中的液压会继续增大,从而加强前后轮制动器的制动。
当制动器松开时,活塞在弹簧的作用下复位,高压油从制动管路流回制动总泵。如果活塞复位过快,工作室的容积会迅速增加,油压会迅速下降。由于管路阻力的影响,制动管路中的油将无法充分回流到工作腔,从而在工作腔内形成一定的真空度,这样储液腔内的油将通过进油口和活塞上的轴向孔将垫片和杯体推入工作腔内。当活塞完全复位时,补偿孔打开,制动管路中回流到工作室的多余油通过I补偿孔流回储液室。
如果连接到前室B的制动管路损坏漏油,踩下制动踏板时,只有后室A能积聚一定的液压,但前室B中没有液压,此时,在液压压差的作用下,前活塞6迅速被推向底部,直到接触到油缸的顶部。前活塞被推到底部后,后室A的液压可能会上升到制动所需的值。
如果连接到后室A的制动管路损坏漏油,当踩下制动踏板时,起初只有主活塞9向前移动,但前活塞6不能被推动,因此后室A中的液压无法建立。然而,当主活塞的顶部接触前活塞6时,推杆的力可以推动前活塞,从而可以在前室中建立液压。
可以看出,在双管路液压系统中,当任何一条管路损坏漏油时,另一条仍能工作,只是增加了所需的管路。
上海 桑塔纳 ( 查成交价 | 车型详解 )使用的制动总泵也是串联双腔制动总泵。主缸用两个螺母连接在真空助力器前面,主缸上有两个橡胶头与储液罐连接。制动液通过进油孔供应至前后工作室。主缸前后有两个对称的M10 X1 出油螺孔,相互成100度角,通过制动管路与四轮制动器的轮缸交叉布置连接。
当踏板松开时,活塞和推杆分别在回位弹簧的作用下回到初始位置。由于回程速度快,在制动管路中很容易生成 tru e空。因此,前活塞和后活塞的头部有三个l.4毫米的小孔,相互间隔120度,制动液可以通过小孔流回两个工作室,从而减少负压。
为了保证主缸活塞完全回位,推杆与制动主缸活塞之间有一定的间隙,这种间隙体现在制动踏板的行程上,称为制动踏板自由行程。
制动踏板的自由行程对制动效果和行车安全有很大影响。如果自由行程过大,制动踏板有效行程减小,制动过晚,导致制动不良或失效。如果自由行程过小或过小,刹车不能及时完全释放,造成刹车拖滞,加速刹车磨损,影响动力传递效率,增加汽车油耗。
制动踏板的自由行程可以通过推杆的长度来调节。
2.制动轮缸
制动轮缸将来自主缸的液压转换成机械推力,以打开制动蹄。由于车轮制动器的结构不同,轮缸的数量和结构也不同,通常分为双活塞制动轮缸和单活塞制动轮缸。
1)双活塞制动轮缸
双活塞制动轮缸的结构如图17所示。6.缸体用螺栓固定在制动底板上。气缸里有两个塞子。具有相对切削刃的密封杯分别被弹簧压靠在两个活塞上,以保持杯之间的进油孔畅通。防护罩用于防止灰尘和湿气进入气缸。2)单活塞制动轮缸
单活塞制动轮缸的结构如图17所示。7.顶块压在单活塞制动轮缸活塞外端凸台孔内的制动蹄上端。排气阀安装在缸体上方,用于排出气体。为了减小轴向尺寸,安装在活塞导向面上的橡胶圈用于密封液腔,进油间隙由活塞端面的凸台保持。
单活塞制动轮缸多用于单向助力平衡轮制动器,目前趋于淘汰。
单活塞制动轮缸的活塞直径大于主缸的直径,并且与前后轴上的实际负载分布成比例。这样,作用在前制动器和后轮轴制动器上的制动力应该是踏板力和制动踏板杠杆与活塞直径之比。3.制动管路
制动管路用于输送和承受一定压力的制动液。制动管路有两种:金属管和橡胶管。由于主缸和轮缸的相对位置经常变化,除了金属管外,有些制动管有相对运动的截面,用高强度橡胶管连接。
4.制动液
要求制动液具有冰点低、高温老化低、流动性好的特点。制动液对普通金属和橡胶有腐蚀性,制动系统中所有与制动液接触的零件都由耐腐蚀材料制成。因此,为了保证可靠的制动性能,在修理和更换相关零件时,必须使用原装零件或认证零件。桑塔纳用的制动液是D0T4。 @2019
⑨ 液压制动传动装置的布置形式
液压制动传动装置有两种布置方式:单管路液压制动传动装置和双管路液压制动传动装置。单管路液压传动装置利用一个制动总泵,通过一组相互连接的管路来控制整车的车轮制动,如图17.1所示。该装置由制动踏板、推杆、制动总泵、储液室、制动轮缸、油管等组成。如果单管路液压制动传动装置的任何一个部位漏油,整个系统都会失效。因为可靠性差,现在很少用在汽车上。双管路液压传动装置采用两个独立的液压系统。当一个液压系统出现故障时,另一个液压系统仍然照常工作。双管路的布置应力求降低一套管路失效时的制动效率,最好保持前后轴橘棚制动力分配比不变,以提高附着利用率,保证车辆良好的操纵性和稳定性。常见的双管液压制动装置有两种:1.两套管路,如国产桑塔纳和部分进口丰田车,由串联双腔制动总泵控制。2.单腔制动总泵,配有安全缸或隔离器,控制两套管路,如国产NJ1041。双管路液压传动装置通常采用前后独立方式和交叉方式布置。1.双管道前后独立模式:双管路前后独立液压传动装置由轴控制,即两个轴各有一套控制管路,如图17所示。该装置由制动踏板、推杆、双腔制动主缸、储液室、制动轮缸、油管等组成。它主要用于后置发动机的后轮驱动车辆,这些车辆严重依赖后轮制动。制动时踩下制动踏板,双腔制动主缸推杆推动主缸前后活塞,使主缸前后腔油压升高,制动液分开流动。制动前后轮的轮缸,迫使轮缸的活塞在油压的作用下向外运动,推动制动蹄打开产生制动。当松开制动踏板时,制动蹄和轮缸活塞在回位弹簧的作用下回位,制动液回流到制动总泵,汽车解除制动。每个制动缸的管路分为控制轴上的车轮制动器和后轮轴。如果其中一个管路失效,另一个管路仍有一定的制动效率,但前后轴制动力分配比被破坏,导致附着利用率下降,制动效率低于50%。2.双管道穿越模式:双管路交叉液压制动传动装置是通过两套管路分别控制前、后轮轴制动器的一个制动轮缸,如图17所示。它主要用于对前轮制动力依赖性较大的前轮驱动车辆。汽车制动时,如果其中一个管路失效,剩余的总制动力仍能保持圆氏则正常值的50%。即使正常工作管道中的车轮制动器抱死打滑,故障管道也不会制动。动轮仍能传递侧向力,前后轮制动力分配达到3.36=1。汽车高速制动时,可以保证后轮不抱死核桐,或者前轮先于后轮抱死,避免制动时后轮失去侧向附着力,导致汽车失控,如图17所示。