A. 什么是自动车床,自动车床的特点
只说对了一种,自动车床还有一种是靠凸轮带动生产零件的,它的优点是速度快,精密度高,成型度高!适合大批量生产的零件。学会了工资也高,只要小学文法就可以学
B. 数控机床电动四方刀架自动换刀时的动作过程
自动换刀装置的形式
自动换刀装置是加工中心的重要执行机构,它的形式多种多样,目前常见的有以下几种。
1.回转刀架换刀
数控机床使用的回转刀架是最简单的自动换刀装置,有四方刀架、六角刀架,即在其上装有四把、六把或更多的刀具。
回转刀架必须具有良好的强度和刚度,以承受粗加工的切削力:同时要保证回转刀架在每次转位的重复定位精度。
图1为数控车床六角回转刀架,它适用于盘类零件的加工。在加工轴类零件时,可以用四方回转刀架。由于两者底部安装尺寸相同,更换刀架十分方便。
回转刀架的全部动作由液压系统通过电磁换向阀和顺序阀进行控制,它的动作分为4个步骤:
(1)刀架抬起 当数控装置发出换刀指令后,压力油由a孔进入压紧液压缸的下腔,活塞1上升,刀架体2抬起,使定位用的活动插销10与固定插销9脱开。同时,活塞杆下端的端齿离合器与空套齿轮5结合。
(2)刀架转位 当刀架抬起后,压力油从c孔进入转位液压缸左腔,活塞6向右移动,通过联接板带动齿条8移动,使空套齿轮5作逆时针方向转动。通过端齿离合器使刀架转过60º。活塞的行程应等于齿轮5分度圆周长的1/6,并由限位开关控制。
(3)刀架压紧 刀架转位之后,压力油从b孔进入压紧液压缸上腔,活塞1带动刀架体2下降。齿轮3的底盘上精确地安装有6个带斜楔的圆柱固定插销9,利用活动插销10消除定位销与孔之间的间隙,实现反靠定位。刀架体2下降时,定位活动插销10与另一个固定插销9卡紧,同时齿轮3与齿圈4的锥面接触,刀架在新的位置定位并夹紧。这时,端齿离合器与空套齿轮5脱开。
(4)转位液压缸复位 刀架压紧之后,压力油从d孔进入转位液压缸的右腔,活塞6带动齿条复位,由于此时端齿离合器已脱开,齿条带动齿轮3在轴上空转。
如果定位和夹紧动作正常,推杆11与相应的触头12接触,发出信号表示换刀过程已经结束,可以继续进行切削加工。
回转刀架除了采用液压缸转位和定位销定位之外,还可以采用电动机带动离合器定位,以及其他转位和定位机构。
2.更换主轴头换刀
在带有旋转刀具的数控机床中,更换主轴头是一种简单换刀方式。主轴头通常有卧式和立式两种,而且常用转塔的转位来更换主轴头,以实现自动换刀。在转塔的各个主轴头上,预先安装有各工序所需的旋转刀具。当发出换刀指令时,各主轴头依次地转到加工位置,并接通主轴运动,使相应的主轴带动刀具旋转,而其他处于不加工位置上的主轴都与主运动脱开。
图2为卧式八轴转塔头。转塔头上径向分布着八根结构完全相同的主轴7,主轴的回转运动由齿轮12输入。当数控装置发出换刀指令时,先通过液压拨叉将移动齿轮3与齿轮12脱离啮合,同时在中心液压缸14的上腔通压力油。由于活塞杆和活塞15固定在底座上,因此中心液压缸14带着由两个推力轴承17和16支承的转塔刀架体18抬起,离合器2和1脱离啮合。然后压力油进入转位液压缸,推动活塞齿条,再经过中间齿轮使大齿轮4与转塔刀架体18一起回转45º,将下一工序的主轴转到工作位置。转位结束后,压力油进入中心液压缸14的下腔,使转塔头下降,离合器2和1重新啮合,实现了精确的定位。在压力油的作用下,转塔头被压紧,转位液压缸退回原位。最后,通过液压拨叉移动齿轮3,使它与新换上的主轴齿轮12相啮合。为了改善主轴结构的装配工艺性,整个主轴部件装在套筒5内,只要卸去螺钉10,就可以将整个部件抽出。主轴前轴承9采用锥孔双列圆柱滚子轴承,调整时,先卸下端盖6,然后拧紧螺母8,使内环做轴向移动,以便消除轴承的径向间隙。
图2 卧式八轴转塔头
1、2一离合器 3、4、12一齿轮 5一套筒 6一端盖 7一主轴 8一螺母
9、16、17一轴承 10一螺钉 1l一推动杆 13一操纵杆 14一液压缸 15一活塞 18一转塔刀架体
为了便于卸出主轴锥孔内的刀具,每根主轴都有操纵杆13,只要按压操纵杆,就能通过斜面推动杆11,顶出刀具。
转塔主轴头的转位、定位和压紧方式与鼠齿盘式分度工作台极为相似,但因为在转塔上分布着许多回转主轴部件,使结构更为复杂。
由于空间位置的限制,主轴部件的结构不可能设计得十分坚实,因而影响了主轴系统的刚度。为了保证主轴的刚度,主轴数目必须加以限制,否则将会使结构尺寸大为增加。
转塔主轴头换刀方式的主要优点在于省去了自动松夹、卸刀、装刀、夹紧以及刀具搬运等一系列复杂的操作。从而提高了换刀的可靠性,并显著地缩短了换刀时间。但由于上述结构上的原因,转塔主轴头通常只是用于工序较少、精度要求不太高的机床,例如数控钻床等。
3.带刀库的自动换刀系统
带刀库的自动换刀系统由刀库和刀具交换机构组成。首先把加工过程中需要使用的全部刀具分别安装在标准刀柄上,在机外进行尺寸预调整后,按一定的方式放入刀库中去。换刀时先在刀库中进行选刀,并由刀具交换装置从刀库和主轴上取出刀具,在进行交换刀具之后,将新刀具装入主轴,把旧刀具放回刀库。存放刀具的刀库具有较大的容量,它既可以安装在主轴箱的侧面或上方,也可作为单独部件安装到机床以外,并由搬运装置运送刀具。
与转塔主轴头相比较,由于带刀库的自动换刀装置数控机床主轴箱内只有一个主轴,设计主轴部件就有可能充分增强它的刚度,因而能满足精密加工的要求。另外,刀库可以存放数量很大的刀具,因而能够进行复杂零件的多工序加工,这样就明显提高了机床的适应性和加工效率。所以带刀库的自动换刀装置特别适用于数控钻床、数控铣床和数控镗床。
C. 自动车床的机床应用
经装料和调整后,能按一定程序自动完成工作循环,重复加工一批工件的车床。除装卸工件以外能自动完成工作循环的车床称为半自动车床。自动车床可减轻工人体力劳动强度,缩短辅助时间,并可由一人看管多台机床,生产率较高。
按主轴数目,自动车床分单轴和多轴两大类。前者主要有单轴纵切、单轴转塔和单轴横切3种型式;后者则主要有顺序作业的和平行作业的两种,并按主轴的配置又有立式和卧式之分。机床一般采用凸轮和挡块自动控制刀架、主轴箱的运动和其他辅助运动。单轴纵切自动车床(图1)以冷拔棒料为坯料,工作除旋转外还随主轴箱作纵向进给,刀架作横向切入和进给,可获得较高的加工精度。机床还配有钻孔、铰孔(见铰削)和切螺纹的附件,是仪表工业的重要机械加工设备。单轴转塔自动车床具有转塔刀架和多个横向刀架,可用多种刀具顺序切削,适合于加工形状复杂的小工件。单轴横切自动车床的主轴箱和刀架均不作纵向进给运动,而由成形刀具的横向进给运动完成切削加工。这种机床仅用于加工形状简单、 尺寸较小的销、 轴类工件。顺序作业多轴自动车床(图2)的多根 (通常有4、6、8根)主轴装在可周期性转位的主轴鼓内,装夹在主轴中的坯料顺序经过各工位完成不同工序的加工,并在最后一个工位切断或卸下。这种车床适合于加工形状较为复杂的工件。平行作业多轴自动车床有位置固定的几根(一般为2或4根)主轴,同时在几个工位上进行相同工序的加工,适合于加工形状简单的工件。
以凸轮和挡块作为控制元件的自动车床工作稳定可靠,在自动车床中仍占多数。但工件改变时要重新设计和制造凸轮,并需花费较多时间调整机床,故只适用于大批、大量生产。20世纪50年代以来,陆续出现了用插销板控制的程序控制自动车床和用穿孔带或电子计算机控制的数字控制自动车床,因而在中小批生产中也得到应用。
D. 数控机床材料中有关自动回转刀架的内容
数控机床自动回转刀架综述
摘要:数控机床是装备制造业的基础,振兴装备制造业首先要振兴数控机床业。一个国家 数控机床业的水平已经成为衡量该国制造业水平、工业现代化程度和国家综合竞争力的重要 标志,直接关系到国家经济建设和国防安全及战略地位。而数控车床为了能在工件的一次装 夹中完成工序加工,缩短辅助时间,减少多次装夹所引起的加工误差,必须带有自动回转刀 架。本文要对自动回转刀架的总体结构、主要的传动装置,以及以PLC 和单片机为控制系统 等方面进行分析。并对自动回转刀架的性能,要从实践中的故障分析去了解,并且要提出合 理的解决方法。
关键字:数控车床 自动刀架 转塔刀架 控制电路
0 前言 中国数控机床工业是以利用国际技术资源开始的,在摒弃了以前作为消费者和加工中历者心 的被动形式下,现在已经发展到了国内企业在立足自主创新的同时开始涉及以利用国际资 源、增强国际竞争能力为主旨的国际投资。近十多年来,机床借助于微电子、计算机技术 的飞速发展,正向着高精度、多功能、高速化、高效率、复合加工功能、智能化等方向迈进, 明显地反映出时代的特征。自动回转刀架是数控车床的关键部件之它用来安装各种切削加工 刀具,直接影响数控车床的切削性能和工作效率。自动回转刀架是普遍采用的换刀方式,常 用方刀架和转塔式回转刀架数控车床用转塔动力刀架为国际机床业刀架发展中一项主流应 用产品。现己广泛被国内外立、卧式中心产品采用。经济型数控车床都配有电动回转刀架, 回 转刀架除了必须具有良好的强度和刚度, 以承受粗加工的切削力和定位精度外, 同时通过 数控系统内置PLC 或独立PLC 和控制电路完成回转刀架的自动回转及找刀定位的全部动作, 所以自动回转刀架的PLC 程序设计对刀架的运行效率和稳定性具有重要的作用。
1 我国数控机床发展现状及方向
中国数控机床工业是以利用国际技术资源开始的,在摒弃了以前作为消费者和加工中心 的被动形式下,现在已经发展到了国内企业在立足自主创新的同时开始涉及以利用国际资 源、增强国际竞争能力为主旨的国际投资。其目标主要是:获取对方国际品牌效应、相应的 动态技术开发力量、国际市场销售网络以及有效的经营管理体系;用以建立桥头堡和橱窗来 推介我方具有市场竞争力但又缺少外销渠道的产品。如新瑞集团并购宁夏长城机床厂、常州 多棱机床厂;阿波罗集团并购长沙机床厂等。纵观我国数控车床近几年的发展并以第十届中 国国际机床展览会(CIMT2007)为例主要取得了以下几点跨越
。发展方向从以下几点叙述(1) 中国自主出安全的加工平台(2) 突破无芯化(3)五轴联动数控技术更加成熟(4)即可供 应网络制造(5)复合加工技术(6)数控技术与国产大重型数控机闷烂猛床(7)进入世界高速高 精密数控机床生产国行列(8)进入全数控化螺旋齿锥齿轮铣齿机生产国行列(9)技术上可 靠性的问题有所缓解(10)中国数控系统产业的技术得到国外认可(11)我国数控技术目前 面临的形势;发展方向 (1)专业化生产是发展的方向(2)重视旧机床及生产线数控化改 造(3)以市场需求为导向,开发中高档数控机床(4)重视复合型人才培养
2 数控蚂桥刀架在数控机床中的地位及发展方向
数控机床是多品种小批量生产的高效自动化的技术群体, 它是把多工序加工、切削处 理、刀具磨损和测量等各种功能集为一体的自动化机床。随着科学技术的迅猛发展, 各种数 控机床已经进入实用化阶段, 成为生产现场的主力军。在各种数控机床中,对数控车床来说, 无论是它的开发到利用, 无论是它的使用上的优良性能和价格均很可观。在进入实用阶段后, 实现了高可靠性、高速度和高效率。目前数控车床向数控车削中心发展, 而其中数控车床与 数控车削中心的一个重要组成部分是数控转塔刀架。数控转塔刀架的工作质量直接影响到数 控机床尤其是加工中心的质量。数控转塔刀架的工作质量主要表现在换刀时间和故障率。加 工中心的故障率有 50 %以上与自动换刀装置有关, 自动换刀装置的投资常常占整台机床的 30%--50 %[ 5] 。为了相应降低整机的价格, 应在满足使用条件的前提下, 尽量选择结构简 单和可靠性高的自动换刀装置。发展方向从(1)刀架转位时间最短, 且转位准确。(2)刀架定 位精度高、动作迅速、稳定可靠。(3)可多刀夹持, 双向转位和任意刀位就近选刀。(4)应用 范围广, 维修方便等特点。
3 现代典型数控转塔刀架的结构分析
液压式这类刀架用液压缸实现刀盘锁紧,低速大扭矩液压马达驱动刀盘转位。液压缸可获 得很大的锁紧力,故刀架刚性很好。该机构适用于重负荷切削,且易双向转位就近换刀,大型 数控车床应用较多。
液压机械式这类刀架用液压缸锁紧刀盘,转位和预分度则用点电机通过机械传动装置实 现, 如槽轮机构。目前趋向采用动态性能较好的间歇凸轮转位机构。
电动势有以下几种(1)单面凸爪锁紧式是我国自行开发的小型产品刀盘主轴上固联有 单向凸爪离合器的右半。电机经蜗轮传动使主动凸爪(离合器左半)正向旋转,两个半离合器 结合,两定位多齿盘觉分开啮合,刀盘转位。到位后反向旋转,刀盘转动被预分度机构
构的定位 销阻止,由于凸爪斜面作用使离合器左右两半分离,使刀盘右移实现定位锁紧。(2)双插销 反靠式这类刀架以 T 形丝杠螺母机构产生锁紧力。电机正转时丝杠移动使两多齿盘分离, 再由反靠盘及插销带动刀盘转动到位,检测装置发讯时电机反转,插销向预分度糟反靠实现 预分度。由于另一端插销斜面作用,反靠盘与之分离,电机继续反转则使丝杠连同刀盘反向位 移至多齿盘啮合锁紧。(3)双向滚子端面凸轮锁紧式类刀架采用正反方向均可实现转位锁 紧的滚子端面凸轮机构,能就近换刀
4 刀架整体结构和工作原理
4.1 结构设计
自动回转刀架必须有很好的强度和刚性结构,可以承受切削抗力。它还需要有可靠的定 位和合理的结构,保证定位的精度。刀架的自动换刀功能由驱动电路和控制系统完成。本文 采用立式转位刀架结构,因此选择蜗杆副减速。蜗杆副传动能够改变运动方向,获得传动比 大,确保传动的平稳性和高精度,整个装置小巧灵活。其上刀体的锁进玉定位机构选择端面 齿盘,使上下刀体的配合面变成梯形端面齿。当刀架锁紧时,上下端面齿啮合,此时上刀体 无法绕刀架轴旋转;进行换刀时电动机正转,上刀体抬起,等到上下端面齿脱开,上刀体围 绕中心轴转动,实现转位。本文选择螺杆一螺母副使上刀体抬起,上刀体有内螺纹,电动机 带动蜗杆绕中心轴转动时,上刀体当作螺母转动或者上下移动。当刀架锁紧时,上下刀体的 端面齿啮合,此时上刀体不和螺杆一起转动,上刀体是向上移动的。当端面齿脱离时,上刀 体才和螺杆一起转动。
4.2 换刀工作原理
电动机正转→驱动蜗杆正转→蜗轮正转→蜗轮带动连体的螺杆旋转→螺杆上的螺母即 上刀体向上移动→上刀体与下刀体的定位齿分离→上刀体正转→所选择的刀到达工作位置 →开关接通→电动机反转→蜗轮反转→蜗轮带动连体的螺杆旋转→上刀体惯性作用冲过工 作位置→上刀体和蜗轮带动连体螺杆相对旋转→上刀体向下并反转→上刀体和下刀体的定 位齿接触→上刀体停止转动并向下压紧下刀体→电动机电流增大→电动机停电→上刀体完 成换刀。该系统存在的缺点是故障率高,特别是换刀时上刀架一直转动停不下来等故障。 原 因是塔式罩内清干爽并密封后仍然会进水,并不断增加刀位置传感器开关接触不良,此外, 原来的控制器使用了W 个小继电器,也易造成其触点接触不良。经过改进实验和经验总结, 设计了全新控制系统。
5 自动回转刀架控制系统
刀架的换刀过程通过PLC对控制刀架的所有I/O信号进行逻辑处理及计算, 实现刀架的 顺序控制,
另外为了保证换刀能够正确进行, 系统还要设置一些相应的系统参数来对换刀 过程进行调整。本设计采用西门子S7 -200 编程软件进行程序设计。数控刀架换刀有两种模 式, 一种是手动换刀, 另一种是通过T 指令进行自动换刀。手动换刀是指将机床调至手动状 态, 通过刀位选择按键进行目的刀位选择,有的系统是利用波段开关的形式进行实现, 有的 系统是利用记数的形式来实现, 比如说通过检测刀位选择信号的状态, 如果按下刀位选择 按键, 计数器的数值会发生改变, 系统选择也会发生相应的改变。也可以采用单键换刀, 一 个短促的按键可以换下一个刀位。T 指令换刀是直接通过编程刀号作为目的刀位进行换刀。 刀架电机顺时针旋转时为选刀过程, 逆时针旋转时为锁紧过程, 选刀监控时间和锁紧监控 时间由PLC 定时器决定。
6 自动回转刀架典型故障的分析与排除
对于刀架,要使其正常工作,均涉及到机械、电气、控制系统等多方面的稳定、可靠 工作。刀架一旦出现某种故障现象,则可能是机械原因,也有可能是电气、控制系统方面的 原因。因此,应根据不同故障类型,找准原因,准确迅速确定故障点,方能及时排除故障。 对于刀架,要使其正常工作,均涉及到机械、电气、控制系统等多方面的稳定、可靠工作。 刀架一旦出现某种故障现象,则可能是机械原因,也有可能是电气、控制系统方面的原因。 因此,应根据不同故障类型,找准原因,准确迅速确定故障点,方能及时排除故障。故障现 象一:刀架不能启动(1)机械方面的原因1)刀架预紧力过大。2)刀架内部机械卡死。当从 蜗杆端部转动蜗杆时,顺时针方向转不动,其原因是机械卡死。首先,检查夹紧装置反靠定 位销是否在反靠棘轮槽内,若在,则需将反靠棘轮与螺杆连接销孔回转一个角度重新打孔连 接;其次,检查主轴螺母是否锁死,如螺母锁死,应重新调整;再次,由于润滑不良造成旋 转件研死,此时,应拆开,观察实际情况,加以润滑处理。(2)电器方面的原因1)电源不 通、电机不转。检查溶芯是否完好、电源开关是否良好接通、开关位置是否正确。当用万用 表测量电容时,电压值是否在规定范围内,可通过更换保险、调整开关位置、使接通部位接 触良好等相应措施来排除。除此以外,电源不通的原因还可考虑刀架至控制器断线、刀架内 部断线、电刷式霍尔元件位置变化导致不能正常通断等情况。2)电源通,电机反转。可确定 为电机相序接反。通过检查线路,变换相序排除。3)手动换刀正常、机控不换刀。此时应重 点检查微机与刀架控制器引线、微机I/O 接口及刀
架到位回答信号。故障现象二:刀架连 续运转、到位不停由于刀架能够连续运转,所以,机械方面出现故障的可能性较小,主要从 电气方面检查。1)检查刀架到位信号是否发出,若没有到位信号,则是发讯盘故障。此时 可检查:发讯盘弹性触头是否磨坏、发讯盘地线是否断路或接触不良或漏接,是否需要更换 弹性片触头或重修,针对其线路中的继电器接触情况、到位开关接触情况、线路连接情况相 应地进行线路故障排除。2)当仅出现某号刀不能定位时,则一般是由于该号刀位线断路所 至。故障现象三:刀架越位过冲或转不到位刀架越位过冲故障的机械原因可能性较大。主要 是后靠装置不起征作用。1)检查后靠定位销是否灵活,弹簧是否疲劳。此时应修复定位销 使其灵活或更换弹簧。2)检查后靠棘轮与蜗杆连接是否断开,若断开,需更换连接销。若 仍出现过冲现象则可能是由于刀具太长过重,应更换弹性模量稍大的定位销弹簧。3)出现 刀架运转不到位(有时中途位置突然停留),主要是由于发讯盘触点与弹性片触点错位,即刀 位信号胶木盘位置固定偏移所至。此时,应重新调整发讯盘与弹性片触头位置并固定牢靠。 4)若仍不能排除故障,则可能是发讯盘夹紧螺母松动,造成位置移动。
结语
近年来,世界传统机床制造业强国正处于调整期。国内数控机床企业应抓住这一机遇, 从基本国情的角度出发,以国家的战略需求和国民经济的市场需求为导向,如注重机床的数 控改造以及功能部件的可靠性和专业化生产。并继续通过并购海外先进企业或合资经营等方 式,加强国际合作,善借“外脑”助创薪提升自身技术水平。经济型数控机床价格低适合我 国市场需要,是当前的主流产品。数控车床在工件一次装夹中实现多工序加工,以减少误差、 缩短时间, 而带有自动回转刀架。刀架要求具备很好的刚度和坚硬的强度、合理的结构等 使其能高精度重复定位。它通过驱动电路和控制系统实现其功能。自动回转刀架在数控车床 中占有极其重要的地位。在数控机床使用过程中,难免会出现各种故障,在日常故障中,我 们常见的是刀架类、主轴类、螺纹加工类、系统显示类、驱动类、通信类等故障。而刀架故 障在其中占有很大比例。维修数控机床结构和控制电路比较复杂。掌握一些数控设备维修技 术可以快速判断故障所在,缩短维修时间,以降低维修成本。
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
数控机床自动回转刀架综述
数控机床自动回转刀架综述
摘要:数控机床是装备制造业的基础,振兴装备制造业首先要振兴数控机床业。一个国家 数控机床业的水平已经成为衡量该国制造业水平、工业现代化程度和国家综合竞争力的重要 标志,直接关系到国家经济建设和国防安全及战略地位。而数控车床为了能在工件的一次装 夹中完成工序加工,缩短辅助时间,减少多次装夹所引起的加工误差,必须带有自动回转刀 架。本文要对自动回转刀架的总体结构、主要的传动装置,以及以PLC 和单片机为控制系统 等方面进行分析。并对自动回转刀架的性能,要从实践中的故障分析去了解,并且要提出合 理的解决方法。
第 1 页
关键字:数控车床 自动刀架 转塔刀架 控制电路
0 前言 中国数控机床工业是以利用国际技术资源开始的,在摒弃了以前作为消费者和加工中心 的被动形式下,现在已经发展到了国内企业在立足自主创新的同时开始涉及以利用国际资 源、增强国际竞争能力为主旨的国际投资。近十多年来,机床借助于微电子、计算机技术 的飞速发展,正向着高精度、多功能、高速化、高效率、复合加工功能、智能化等方向迈进, 明显地反映出时代的特征。自动回转刀架是数控车床的关键部件之它用来安装各种切削加工 刀具,直接影响数控车床的切削性能和工作效率。自动回转刀架是普遍采用的换刀方式,常 用方刀架和转塔式回转刀架
E. 什么是走心机
走心车床一般会用在棒材类加工小零件,批量大,好多都是一次成型的零件。只要是涉及到棒材类加工,直径(不要超过32)不要太大的话,走心车床配合送料机他的优势很大(因为走心车床必须配上送料机来加工),这样他就是一个小型的独立的生产线,不管是加工速度、人工成本、他都是有优势的。
最主要的区别是:走心机的材料在动,走刀机是刀在动在,
走心机国内以前的老叫法应该是纵切车床。主要用于捧料小零件,大批量加工。
一般是送料机将棒料从主轴通孔穿过,弹簧夹头自动夹紧。如果零件悬伸长就需要配顶尖。如果要尾部需要加工的话,就要配第二主轴。如果还需要加工四与六钻孔等分孔要配动力刀座和主轴分度。
走心机主要受到材料的直径限制,一般最大型号的走心车床只能加工直径20毫米的零件,我只在资料上见过可以加工直径32毫米的走心车床。只要是走心机可以加工的零件,其加工精度,加工速度,走刀机都难以相提并论!优势主要有以下几点:
1:一次装夹不停主轴可以车削200mm以上长度的零件,如果你是车一个5mm长度的零件,走刀走心都可以车,但走心一气呵成可以车出20~30个零件才需要停车送料
2:走心车床切削时永远在材料固定最近位置,所以刚性是非常之好的,你想想你的车床夹紧零件之后,刀具贴住夹紧位置几mm的地方来车削,刚性会好到什么程度。
3:走心机都是车铣一体的,一次加工成型的复杂程度也非走刀机可比原来有老式自动车,我们俗称凸轮机车床。而现在更高级的CNC自动车床,我们称之为走心车床或纵切车床。主要是主轴Z向前后移动,而刀可以X、Y移动,可以实现立体加工,一次成型。以前基本是用进口的,但价格高得不得了,现在国内也有自己成熟的技术了,比如说四川的宁江、广东的瑞鹏机床、大连大力(大连机床)、还有很多浙江一带生产的更低档的。
F. 纵切车床的简介
车铣复合机床,走心式数控车床
纵切车床,顾名思义就是在金属切削加工中,刀具的运动轨迹相对于工件的中轴线是垂直的,也就是在车削加工中工件是旋转和移动的,车刀不需要跟随工件移动,与常规的车床有着本质的区别。常规的车床在加工中是依靠刀具的移动来完成对多余毛坯料的车削,但是在针对精密细长轴类的加工中,常规车床显然无法满足加工需要,而纵切车床的出现使批量加工精密轴类工件成为可能。该机床也可称为走心式数控车床、主轴箱移动型数控自动车床或经济型车铣复合机床。
G. CM1107型精密单轴纵切自动车床
问题没有说明具体是什么,不知道你是不是需要这方面的知识,希望能帮到你
CM1107机床
自动车床在投入生产之前,必须做好以下几项生产准备工作:
1.
拟订零件的加工工艺过程,选用适当的切削用量 标准刀具和辅具,必要时设计特殊的刀 辅具;
2.
根据零件的加工工艺,拟订机床调整卡;
3.
根据调整卡的数据,设计并制造凸轮;
4.
按照调整卡调整机床
面以零件“轮轴”的加工为例(见表2-2)说明拟订工艺过程的注意事项,调整卡的制定方法和凸轮曲线的绘制方法。
(一)零件的加工工艺过程的拟订
加工工艺是指定调整卡和设计凸轮的基础,合理的加工工艺是发挥机床效能和提高产品质量的有力保证。拟订加工工艺时,除了应遵循《机械制造工艺学》和《金属切削原理和刀具》课程中所指出的一般原则外,还应当考虑单轴纵切自动车床的特点,注意下列几点:
1.尽量采用多刀同时加工,力求工序重合,以缩短加工时间
CM1107型 由于结构上的原因,No1和No2两个刀架不能同时参加切削。No 3 与No 4刀架之间和No 4与No 5之间,因距离较近,同时工作可能会出现干涉现象。所以不能安排它们同时参加切削。
2.尽量减少空行程对单件加工时间的影响。
可使空行程与工作行程重合,或让 空行程和空行程重合。
在加工实例中,采用No 3刀架退回与No 1刀架快进重合:No 2刀架退回与No 5刀架倒角No 3刀架切断三者重合,以缩短单间工时。
3.选择适当的刀架参加切削
机床的五个刀架中,No 1刀架是靠弹簧的拉力进给,并用钢性挡快限制其行程终点位置,他能完成较精确的纵向车削,但不宜做切削力较大的径向切入。No 2刀架由凸轮推动进给,刚性较好,宜用于较宽的刀刃做成型切削,或做带径向切入的纵向切削。No 3刀架的杠杆传动比较小,加工精度低,常用它来切断。No 4和No 5号刀架一般用于加工次要的外圆面和切槽倒角等。
实例中,因¢3外圆要求精确,所以用No1刀架加工;为了减少空行程,¢5外圆也由No1刀架车削。2刀架做带径向切入的纵向切削,加工¢4,¢6外圆。倒角和切断分别有No5和No3刀架来完成。
4、 每个工作行程之后,均须安排“停留”工步
在个工作行程之后,让刀架或主轴箱在原处稍事停留,实现短时间的无进给切削,目的是为了得到较准确的尺寸和较好的光洁表面。“停留”工步在凸轮上所占的圆心角通常取2°,其凸轮半径等于工作行程曲线终点的半径。
5、工艺过程的第一步是“切断刀退回”
因为机床采用切断刀作为挡料装置,所以,工艺过程的第一步应当安排切断刀退回。
实例的加工工艺过程可参看表2-2的“工步内容”栏
*(二)机床调整卡的制定
机床调整卡是调整机床和设计凸轮曲线必不可少的工艺文件。在调整卡中通常包括下列主要内容:
1、 被加工零件图;
2、加工工艺过程,刀具布置图(或工步简图)和各工步所需刀具,辅具;
3、各工步采用的切削用量及工作行程长度;
4、加工一个零件所要的时间,挂轮的齿数及皮带轮的直径;
5、设计凸轮几调整挡块位置所必须的数据。包括:每个挡块的位置;每个凸轮工作行程和空行程曲线的升程以及它们在凸轮圆周上的起止度数和起止半径等。
表2-2是“轮轴”的调整卡实例。下面结合实例中的部分内容,说明制定调整卡的主要步骤和方法:
1、确定主轴速及主运动变速带轮的直径
(1)选择切削速度v
根据加工方式和工件及刀具材料,按自动车床切削用量选择切削速度v(机床说明书内通常附有这些资料)。
(2)确定主轴转速n和主运动皮带轮直径A和B
n= r/min
式中d-----加工表面的直径(mm);
v-----切削速度(m/min).
实例中,d=7mm,v=40m/min,
所以 n= =1819 r/min
按表2-5,可选主轴转速n=1810r/min,皮带轮直径A=100mm , B=210mm.
2.选取各工步的进给量f
各工步的进给量一般按照自动车床常用切削量选取(机床说明书内通常有该资料,实例的各工步进给量见表2-2)。
3.确定各工步的工作行程长度L
工作行程包括刀具行程和主轴箱行程。刀具行程的大小取决于工件加工表面的半径或长度和刀具的起始位置。在刀具有快速趋近工件转为工作进给时,为了避免刀具快速碰撞到工件表面上,应在刀刃距加工表面一定距离时,就转入工作进给。此距离称为切入留量,通常,纵向车削时切入留量取0.5-1mm,径向车削时取0.2-0.5mm。
实例中各刀具的进给起始位置取在刀刃距棒料外径0.5mm处,所以,各刀尖的进给起始位置布置在¢8的圆周位置上。
主轴箱的行程长度与工件的加工长度及刀具的轴向位置有关。若以中心架支承套前端为基准面,切断刀的切断面到基准面的距离,通常取1-2mm(实例中取2mm)。因为No1刀架不宜作径向切入,故其刀刃到切削表面之间应保留0.5mm的轴向间隙。主轴箱后退进行送料的长度,决定于工件的长度和切断刀的宽度。而切断刀的宽度由棒料直径决定,通常可按表2-3选取
根据以上所述,实例中刀具和主轴箱的部分行程长度计算如下(参看表2-2工步简图):
工步1 No3刀架的切断刀退回
L1 = +0.5 = 4.5mm
式中,8为No3刀刃进给起始位置的直径。0.5是切断刀的刀刃越过主轴中心线的距离,即过切量,其目的是保证切断面光洁平整,切断刀的行程如图2-30所示
工步2 No1刀架的外圆车刀快进至¢3
L2 = — =2.5mm
工步3 主轴箱进给,由No1刀架车¢3 外圆面
L3 = 7+0.5= 7.5mm
式中,7为工件¢3 外圆的加工长度。0.5是No 1与No 3刀具主切削刃轴向
位置的差值(见表2-2工步简图中工步1与工步2。即2.5-2=0.5)。
工步10 主轴箱快进(¢7外圆为不加工面)
L10 = 5+1= 6mm
式中,5为工件¢7外圆的长度,1是No2与No1刀具主切削刃轴向位置的差
值(即3.5-2.5=1)。因为工步11为No2刀架径向切入加工¢6外圆,而No2与
No1刀具主切削刃在轴向有1mm差值,所以主轴箱多进给1mm的长度。
工步 19 No5刀架的倒角刀进给至¢1
L19 = — = 3.5mm
式中。8为No5刀尖进给起始位置的直径。1是No5刀尖进给至终点位置时的直径,其值可由图2-31求出。因为被加工零件全部倒角为0.5*45°,若采用90°双边倒角刀加工,设:倒角刀进给至终点位置时,刀尖到轴心的距离为k,¢3外圆倒角后¢2外圆至刀尖的距离为a,¢4外圆倒角后¢3外圆至刀尖的距离为b。
图2-31 倒角
由此即求出b=1,a=0.5,k=0.5,
k为半径值,直径为1。
工步23 主轴箱向后退的距离,即
送料长度,它应等于工件长度与切
断刀宽度之和,也等于主轴箱各行
程长度之和。
L23=22+1.5=23.5 mm
或 L23=L3+L7+L10+L13+L17
式中,22是工件长度,1.5是切断刀宽度。
4.计算各工步所需要的主轴转数N i
计算各工步所需的主轴转数,是为了求各工步所需时间而进行的统一折算。各工步所需转数的多少,取决于每个工步的行程长度Li和Fi。每个工步所需的主轴转数可按下方式进行计算:
Ni =Li / Fi r
调整卡中“工步主轴转数”栏内有两个数据。其中,“本工步”栏内填写的是完成本工步所需转数,而“计算工步”栏内的数值,只填写本工步中影响工件加工时间长短的那一部分主轴转数,其值应视本工步与其他工步有无重合而定。
例如:实例中工步3, L3 = 7.5mm,F3 = 0.01mm/r
N3 =7.5 / 0.01=750 r
在“工步主轴转数”栏下“本工步”内填写750。因本工步与其他工步无重合,故“计算工步”也填750。
又如: 工步19 L19=3.5mm,F10 = 0.01 mm/r
N19 =3.5 / 0.01 = 350 r
在“工步主轴转数”栏下“本工步”栏填写350,但因本工步与工步17重合,而工步17所需主轴转数大于本工步所需主轴转数,即本工步与17完全重合,所以,该工步的“计算工步”栏内的数值是零。
在求得各工步所需主轴转数后,就可以计算出加工一个工件时间内用于工作行程所需的主轴转数和∑Ni。
实例中∑Ni=750+100+150+150+200+100+200+500+450=2600 r 。
5杠杆传动比的选择
传动各刀架和主轴箱的杠杆,其传动比都是可以调整的。传动比的大小,一般根据加工精度要求来选择。杠杆比大时,反映到工件上的凸轮制造误差就可以缩小,对于提高加工精度有利,但空行程损失也将增大。通常,对于加工精度要求高的尺寸,取大传动比;对于加工精度要求不高的尺寸,取小的传动比。
CM1107单轴纵切自动车床的凸轮杠杆比见图2-32。图中D为凸轮毛胚最大直径。d1是凸轮允许的最小直径,R1是分度圆弧中心点轨迹的半径,R2是分度圆弧半径。No5刀架上有两个触头,适当地调整触头的位置,可以用同一把车刀切出两个要求稍高的外圆面,所以他有两组杠杆传动比。
6、确定工作行程和空行程曲线在凸轮上所占的角度
凸轮的轮廓由工作形成曲线和空行程曲线两部分组成。工作行程曲线主要控制主轴箱和刀架切削加工的工作行程。它除了要保证行程长度和位置以外,还应保证按规定的进给速度进行切削。空行程曲线主要控制各机构的辅助运动,如刀架的快进,快退,夹料夹头的夹紧,松开等。它应保证在不产生冲击和不使机构受力过大的情况下,尽量减少空行程所占的时间。
机床完成一个自动工作循环,分配轴转过一转。这时凸轮跳过360°。所以,各凸轮的毛坯 按360°等分划线。如果一个凸轮的空行程曲线所占的角度总和用∑βi表示。则工作行程曲线所占的角度总和∑ai可用下式求得:
∑ai=360-∑βi
加工时,机床主轴等速旋转。各工作行程曲线在凸轮上应占的角度可由下式求出:
式中,Ni——第i工步所需主轴转数;
ai——第i工步工作行程曲线所占的角度。
各空行程曲线在凸轮上所占的角度β,通常是根据试验或经验数据来确定的,一般在机床说明书中有这些数据。表2-4为CM1107型机床空行程曲线角度值表,表中列出了各凸轮空行程曲线上升或下降1mm时所占的角度。此数值还与生产率A值有关。A值通常可根据工件尺寸,精度要求及复杂程度粗略估计;也可以用下式粗略估算(t为加工一个零件所需时间):
t =∑Ni/n min
实例中,t =2600/1810=1.4min。每分钟加工零件的数量A<8 件/分
在工步2中L2=2.5mm,所以No1刀架的杠杆比u=3:1,空行程曲线上升H2=L2,
u=2.5*3=7.5mm。从表2-4可查得A≤8件/分 时凸轮曲线每下降1mm占角度为0.5°。所以。工步2所占角度β2=7.5*0.5=3.75°为便于凸轮制造圆整为整数。取β2 =4°。
调整卡“空行程角度”栏,除可工步1,18和20是重合工步外,其余各工步的“本工步”与“计算工步”的数值都相同(见表2-2)将各空行程“计算工步”的角度相加∑βi=77°,在求得∑βi以后便可计算出∑ai,
∑ai=360°-∑βi=360°-77°=283°
由Ni,∑Ni和∑ai便可计算出各工作行程所占角度ai。计算所得的各工作行程所占角度总和应当与上式计算的∑Ni想等,如果不等应当作必要的修正。
调整卡“工作行程角度”栏也分为“本工步”和“计算工步”两项。例如工步3两项值都是81°。而对于工步19,因为它与工步17相重合,所以工步19的“本工步”项数值为38°,“计算工步”项数值为零。重合工步虽然不影响单件工时,但对绘制凸轮曲线和调整机床,这些数据是不可缺少的 。所以,也必须分别计算出来并填入调整卡。
“凸轮曲线数据”栏中,角度的起止数值,应按工步的顺序,根据各工步空行程和工步行程所占的角度依次递增地填入,重合工步的角度,按其重合位置填写。例如,工步1与工步2空行程所占角度β1=4°,β2=4°,虽然工步1与工步2重合,但他们分别由凸轮C和凸轮B控制,所以“凸轮曲线数据”的“角度”都是“起--0°”,“止--4°”,工步3工作行程所占角度a3 =81°,其“角度”为:“起--4°”,“终--85°”,同理,依次可以计算出其余各工步凸轮曲线的起止角度。从0°开始一直计算到360°为止。
7、凸轮曲线半径的确定
凸轮曲线的半径,主要决定于工作行程长度L、杠杆比u以及凸轮毛坯的有关尺寸参数。
在确定凸轮半径时,应尽量采用较大的半径。因为在凸轮曲线的升程和圆心角一定时,凸轮半径愈小,压力角愈大,整个工作机构的工作条件就愈差。为了减小压力角,在可能的情况下,尽量使凸轮曲线的最大半径等于毛坯的半径。这样,刀具或主轴箱进给到终点时,杠杆的触销位于凸轮毛坯的圆周上,这也有利于凸轮的制造。通常凸轮工作的最大半径选它等于毛坯的半径,最小半径不小于允许值(凸轮允许的最小值见图2-32d1)
下面以实例中主轴箱凸轮为例,说明凸轮半径的确定方法。
首先定出凸轮的最大工作半径,由表2-2的工步简图可知,当加工进行到工步17终了时,主轴箱移动到最前端位置,与此位置对应的凸轮曲线半径应为最大,故取工步17终点的凸轮曲线半径等于凸轮毛坯半径,即80mm。其它各工步凸轮曲线的起止半径,就可以从最大半径开始按曲线的升降值计算出来。例如:
工步17 凸轮曲线的终止半径R17终=80mm工作行程L17=5mm,杠杆传动比U=2:1。凸轮曲线升程H17=L17* u=5*2=10mm,∴凸轮曲线的起点半径R17起=80-10=70mm 。
工步23 R23起=R17终=80mm,L23=23.5mm,H23=L23*u=23.5*2=47mm. ∴R23终=80-47=33mm。
工步13 R13终=R17起=70mm,L13=2mm,H13=L13*u=2*2=4mm,∴R15起=70-4=66mm
依次类推,可以计算出主轴箱凸轮其他各工步的R起和R终。
天平刀架做摆动进给,为了使刀架两边摆动的幅度基本一致,取凸轮的最大半径与最小半径的中间值为基准半径,使凸轮在基准半径时,刀架处于水平位置,由基准半径开始,再行上升或下降。由图2-32知,天平刀架凸轮最大半径为60mm,最小半径为35mm。则基准半径应为35+ =47.5mm。为使计算方便起见,取它等于48mm。
工步2是No1刀架快进,取R2起=48mm,L2=2.5mm,u=3:1、H2=L2*u=2.5*3=7.5mm。∴R2终=48-7.5=40.5mm。
工步11是No2刀架进给,R11起=48mm,L11=1mm,H11=L11*u=1*3=3mm,∴R11终=48+3=51mm
同理,可以计算出其他凸轮曲线的起止半径(见表2-2)。
8、确定机床的生产率,交换齿轮齿数和带轮直径
(1)计算机床的生产率
机床的生产率A,是指单位时间内机床加工出来的工件数量。它取决于机床所采用的主轴转数n,以及加工一个工件所需要主轴转过的转数N,
(2)选定交换齿轮齿数和皮带轮直径
计算出生产率A值,也就是定出了要求的分配轴转速。即可选取交换齿轮a、b的齿数,以及图2-5中轴Ⅰ与轴Ⅲ之间的三角带轮直径。通常,可由机床说明书中查得,
表2-5是CM1107型机床生产率表。表中列出了机床生产率A值(表中列出的是分配轴转数r/min),因为分配轴转过一转加工出一个零件,所以分配轴转数值与生产率A值相等),以及与A值相对应的a=38,b=80,三角带轮代号为D、H(由图2-5可知D=146、H=117)。
由表2-5查得实际的A值后,便可计算出加工一个零件实际所需要的时间T。
T=60/A=60/0.541=110.9≈111 s
(三)凸轮曲线的设计
根据机床调整卡中“凸轮曲线数据”和图2-32中有关参数,就可以绘制相应的凸轮曲线。
凸轮的工作行程曲线应保证起从动件运动速度均匀,因此,在绘制凸轮曲线时,采用与机构工作状态一致的条件来进行。对于主轴箱凸轮,因为其顶杆做直线运动,所以在圆周上用径向辐射线来分度,辐射线的中心即为凸轮的中心。对于刀架凸轮,因为其顶销做圆周运动,故在圆周上用圆弧来分度。分度圆弧的半径就是杠杆臂长(见图2-32中的R2),分度圆弧的圆心,在以凸轮圆心为圆心,以杠杆支点支分配轴轴心距离为半径(图2-32中的R1)的圆周上。按上述要求对凸轮进行分度后,即可根据“凸轮曲线数据”在凸轮上标明各工作行程的起止角度和起止半径。再将没段工作行程曲线按起止半径做径向界限,径向界限之间的差值用辐射直线或圆弧将他们等分(周向与径向的等分数相同)。再将各对应交点用曲线板连接起来,就可以得到凸轮各工作行程曲线(见图2-33)
由于分配轴中部固定有传动蜗轮,所以各凸轮应从分配轴两端分别进行安装。除主轴箱凸轮在蜗轮的左端外,其余凸轮都在蜗轮的右端。绘制时,习惯上从两端向蜗轮处投影,因此。主轴箱凸轮曲线分度的起止点按逆时针方向计算,其余各凸轮的分度都按顺时针方向进行计算。如图2-33所示,其中图a是刀架凸轮,图b是主轴箱凸轮。
设计空行程曲线时,应当使机构无冲击、接触点的 压力角不致过大、理论上应采用对数曲线或其他曲线。但是绘制这种曲线比较麻烦,所以,为方便起见,通常机床都备有空行程曲线样板。图2.34是CM1107型车床空行程曲线样板。三块样板分别用于主轴箱、天平刀架和上刀架。每块样板由两部分组成,上部分用于生产率A≤8时,下部分用于A>8时,每部分又分为快进和快退曲线。使用时,将样板中心与凸轮中心对准,再分别按快进或快退曲线进行绘制。
图2-35、2-36、2-37和2-38分别是实例中的主轴箱、天平刀架、No3刀架和No5刀架的凸轮。其中有两处凸轮半径尺寸的实际值与计算值相差0.5mm。其目的是使用刚性定位来保证加工精度,以减少凸轮制造误差对加工精度的影响。一处在主轴箱凸轮的最小半径处,计算值是33,实际采用的是32.5;另一处在天平刀架凸轮最小半径处,计算值是40.5,而实际采用的是40。