㈠ 根据工作原理,试解释平带,v带传动主要依靠什么来传递运动和动力
带传动是利用张紧在带轮上的柔性带进行运动或动力传递的一种机械传动。版根据传动原权理的不同,有靠带与带轮间的摩擦力传动的摩擦型带传动,也有靠带与带轮上的齿相互啮合传动的同步带传动。
1、平带传动
有开口传动、交叉传动和半交叉传动等,分别适应主动轴与从动轴不同相对位置和不同旋转方向的需要。平型带传动结构简单,但容易打滑,通常用于传动比为3左右的传动。
2、V带
V带是断面为梯形的环形传动带的统称,分特种带芯V带和普通V带两大类。与平型传动带相比,具有安装容易、占地面积小、传动效率高和噪音小等优点,在整个传动领域中占有重要地位。主要应用于电动机和内燃机驱动的机械设备的动力传动。
(1)传动装置的带寿命和什么有关扩展阅读
(1)优点:传动平稳、缓冲吸振、结构简单、成本低、使用维护方便、 有良好的挠性和弹性、过载打滑。
(2) 缺点:传动比不准确、带寿命低、轴上载荷较大、传动装置外部尺寸大、效率低。
因此,带传动常适用于大中心距、中小功率、带速v =5~25m/s,i≤7的情况。
㈡ 带传动的主要失效形式有哪些带传动的设计准则是什么
带传动的主要失效形式是带的疲劳损坏和打滑,如脱层、撕裂以及断裂等。
带传动的设计准则是确保带传动在不打滑的前提下,具有一定的疲劳强度和寿命。
带传动的失效原因:
1、输送带卷入滚筒时会弯曲,弯曲次数达到其疲劳极限时,会发生弯曲破坏,初期会出现小裂纹,随着时间的推移,裂纹扩大或撕裂,最终导致输送带断裂,造成带传动的失效。
2、由于滚筒自身加工误差,其表面粘上物料或磨损不均造成直径变化,输送带的牵引力产生向滚筒直径大侧的移动分力,在移动分力的作用下,输送带产生向滚筒直径较大方向的跑偏,输送带会向上部跑偏,造成带传动的失效。
(2)传动装置的带寿命和什么有关扩展阅读
一、带传动的设计要点
1、传动系统应满足机器的功能要求,而且性能优良,传动效率高。
2、结构简单紧凑,占用空间小,便于操作,安全可靠。
3、可制造型好,加工成本,维修便利。
4、不污染环境。
二 、带传动的特点
1、传动准确,工作时无滑动,具有恒定的传动比。
2、传动平稳,具有缓冲、减振能力,噪声低。
3、维护保养方便,不需润滑,维护费用低。
㈢ 齿轮传动的工作原理是什么
齿轮传动的原理:即一对相同模数(齿的形体)的齿轮相来互啮合将动力由甲轴版传送给乙轴,以完成权动力传递。
齿轮传动是指由齿轮副传递运动和动力的装置,它是现代各种设备中应源用最广泛的一种机械传动方式。齿轮传动是靠齿与齿的啮合进行工作的,轮齿是齿轮直接参与工作的部分,所以齿轮的失效主要发生在轮齿上。百主要的失效形式有轮齿折断、齿面点蚀、齿面磨损、齿面胶合以及塑性变形等。
(3)传动装置的带寿命和什么有关扩展阅读
齿轮传动的特点
1、传动精度高。度现代常用的渐开线齿轮的传动比准确、恒定不变。这不但对精密机械与仪器是关键要求,也是高速重载下减轻动载荷、实现平稳传动的重问要条件。
2、适用范围宽。齿轮传动传递的功率范围极宽,可以从0.001W到60000kW;圆周速度可以很低,也可高达150m/s,带传动、链传动均难以比拟。
3、可以实现平行轴、相交轴、交错轴等空间任意两轴间的传动,这也是带传动、链传动做不到的。
4、使用寿命长,传动效率较高。
5、对环境条件要求较严,除少数低速答、低精度的情况以外,一般需要安置在箱罩中防尘防垢,还需要重视润滑。
㈣ 2018-08-24 带传动和链传动
13.1 带传动的类型和应用
13.1.1 带传动的工作原理和特点
带传动由主动轮、从动轮和张紧在两轮上的传动带组成。利用带与带轮之间的摩擦或者啮合实现运动和动力的传递。其特点是具有良好的弹性、传动平滑、噪声小并有吸振和缓冲作用;过载时带与带轮间会出现打滑,可保护其他零件;结构简单,制造、安装及维护都较方便;适用于中心距较大的传动;由于存在相对滑动,不能保证准确的传动比;传动的外廓尺寸大,效率低;有较大的压轴力,寿命短。
13.1.2 传动带的类型和应用
带传动分为摩擦性和啮合型两大类。摩擦性传动带按截面形状分为平带,V带,圆带,多楔带。而同步齿形带属于啮合型传动带。
平带的工作表面是内周表面,V带是两侧面,在压紧力Q相同的情况下,平带与V带传动能力不同。对于平带,带与轮缘表面间的摩擦力Ff = fN = fQ;而对于V带,其摩擦力为 Ff = 2fN = fQ/sin (φ/2) = f'Q 。其中,φ为V带轮槽的槽角;f为带与带轮间的摩擦系数;f' = f/sin(φ/2)是当量摩擦系数。显然,f' > f,故在相同条件下,V带能传递较大的功率,在传递相同功率时,V带传动的结构较紧凑。圆带的牵引力小,常用于仪器和家用机械中。多楔带是平带和V带的组合结构,其楔形部分嵌入带轮上的楔形槽内,靠楔面之间产生的摩擦力工作。兼有平带和V带的优点,柔性好,摩擦力大,常用于结构要求紧凑、传递功率大的场合。
同步带传动是通过带齿与轮齿的啮合传递运动和动力,带与轮齿间无相对滑动,能保证准确的传动比;传动效率高;带薄而轻,强力层强度高,结构紧凑,可在恶劣条件下工作。缺点是对制造安装精度要求高,带和带轮的制造工艺复杂,中心距的要求较为严格。
目前应用最广泛的是V带传动。带速v为5~25m/s,传动比i ≤ 7(不超过10),传动效率η≈0.94~0.97。
13.1.3 V带的规格
V带由外包层、顶胶层、抗拉层和底胶层构成,其界面呈梯形结构,外包层由涂胶布制成,顶胶层和底胶层由橡胶制成。抗拉层是V带的骨架层,分为帘布结构和线绳结构。帘布结构抗拉强度高,制造方便;线绳结构柔韧性好、抗弯强度高、寿命长,可用在转速高、直径小的传动中。V带已标准化。普通V带应用最广泛,分为Y,Z,A,B,C,D,E七种型号。
V带受弯时,长度保持不变的周线称为节线,由节线组成的面称为节面。带的节面宽度称为节宽bp,在V带轮上,与节宽bp相对应的带轮直径称为基准直径d,V带的节线长度称为基准长度Ld。
13.2 带传动的基本理论
13.2.1 尺寸计算
小带轮的包角 α₁=180°-[(d₂-d₁)/a]·57.3° 。其中,d₁,d₂是小带轮、大带轮的基准直径,a是中心距。
带的基准长度 Ld=2a+(d₂+d₁)·Π/2+(d₂-d₁)²/4a 。
已知带长时,中心距 a≈(2Ld-Π(d₂+d₁)+{[2Ld-Π(d₂+d₁)]²-8(d₂-d₁)²}½)/8 。
13.2.2 受力分析
F₁ = Feⁿ/(eⁿ-1)
F₂ = F/(eⁿ-1)
F = F₁-F₂ = F₁(1-1/eⁿ)
其中,n=fα;e是自然对数的底(e=2.718...);f是带与轮面间的摩擦系数(V带用当量摩擦系数f');α是带轮的包角;F₁是带在即将打滑时紧边拉力;F₂是带在即将打滑时的松边拉力;F是作用在微带上的有效拉力。
由此可知,增大包角、摩擦系数和初拉力,都可提高带传动所能传递的有效圆周力。
13.2.3 应力分析
传动时,带中应力由三部分组成。
拉力产生的拉应力。紧边拉应力,σ₁ = F₁/A MPa;送边拉应力, σ₂ = F₂/A MPa 。A是带的横截面积,单位为mm²。
离心力产生的拉应力。带做圆周运动时,产生的离心力使带受到拉力的大小为Fc = qv²,则 σc = qv²/A 。其中,q是每米带长的质量,v是带速。
弯曲应力。带绕过带轮时,因弯曲而产生弯曲应力,弯曲应力应为σb≈Eh/d。其中,E是带材料的弹性模量;h是带的高度;d是带轮的基准直径。
在运转过程中,带受交变应力的作用。最大应力发生在紧边进入小带轮处,其值为 σmax = σ₁+σb₁+σc 。
13.2.4 运动分析
弹性滑动。弹性滑动会引起从动轮的圆周速率下降,传动比不准确,降低传动效率和增加带的磨损。将从动轮圆周速度的相对降低率称为滑动率: ε=(v₁-v₂)/v₁=(Πd₁n₁-Πd₂n₂)/Πd₁n₁ ,得传动比i=n₁/n₂=d₂/(1-ε)。一般滑动率ε为1%~2%,在一般工业传动中可略去不计。
打滑现象。当带传动的载荷增大时,有效圆周力F也相应增大,当F超过极限摩擦力时,带与带轮间发生全面滑动,这种现象称为打滑。因带在小带轮上的包角小,故打滑多发生在小带轮上。打滑会造成带的严重磨损并使从动轮转速急剧下降,致使传动失效,因此应避免打滑。
13.3 普通V带传动的设计
13.3.1带传动的失效形式和设计准则
带传动的主要失效形式是打滑和带的疲劳破坏。因此,设计准则是在保证不打滑的前提下,具有一定的疲劳强度和寿命。
疲劳强度条件。 σmax = σ₁ + σc + σb₁ ≤ [σ] 。
不打滑条件。 F ≤ F₁(1-1/eⁿ) = σ₁A(1-1/eⁿ) 。
由以上两式,可得同时满足两个条件时单根普通V带能传递的额定功率P,即 P = Fv/1000 = ([σ]-σb₁-σc)(1-1/eⁿ)(Av/1000) kw 。其中,n = f'α。
若实际工作条件与上述特定工作条件不同时,应对P值修正。经修正的单根普通V带的许用功率为 [P] = (P+∆P)KαKl kw 。其中,∆P是单根普通V带额定功率的增表,Kα是包角系数,Kl是带长系数。
13.3.2 设计计算步骤和参数选择
设计V带传动的依据是传动用途、工作情况、带轮转速(或传动比)、传递的功率、外廓尺寸和空间位置条件等。需要确定的是V带的型号、长度和根数、中心距、带轮结构尺寸及压轴力等。
确定计算功率Pc。 Pc = KaP 。其中,P是传递的额定功率;Ka是工况系数。
选择带型。根据计算功率和小带轮转速n₁,选带的型号。
选取带轮基准直径d₁和d₂,验算带速v。小带轮基准直径小,则带传动外廓尺寸小,但如果过小,弯曲应力会过大,所以要限制小带轮基准直径,大于最小值。略去弹性滑动的影响,大带轮基准直径 d₂ = n₁d₁(1-ε)/n₂ ,取ε=0.015。带速高,则离心力大,从而降低传动能力,带速底,要求有效圆周力大,使带的根数过多。一般v应在5~25m/s范围内,否则应重新选取d₁。有 v=Πd₁n₁/60x1000 。
确定中心距a和V带的基准长度L0。先按 0.7(d₁+d₂)≤a0≤2(d₁+d₂) ,初定中心距a0,然后计算基准长度L0, L0 = 2a0 + (d₁+d₂)Π/2 + (d₂-d₁)²/4a0 。选取接近的标准长度L0,最后按下式近似确定中心距。 a≈a0+(Ld-L0)/2 。
验算小带轮包角α₁。为了保证传动能力,一般应使α₁≥ 120°。 α₁ = 180°-[(d₂-d₁)/a]x57.3° 。
确定V带的根数z。V带根数按下式计算, z=Pc/[P0]=KaP/(P0+∆P0)KαKl 。z值应取整数,为使各带受力均匀,通常V带的根数z<10。
确定初拉力F0。初拉力是保证传动正常工作的重要条件。初拉力不足,会出现打滑,初拉力过大,又使带的寿命降低,轴和轴承所受的压力增大。单根普通V带合适的初拉力可按下式计算: F0 = (500Pc/vz)(2.5/Kα-1) + qv² ,式中各符号意义同前。
计算压轴力Fq。为计算轴和轴承,必须确定作用在轴上的压力Fq,若忽略了两边的拉力差,可近似的按下式计算,即 Fq = 2zF0·sinα₂/2 。
13.3.3 带轮设计
带轮通常由三部分组成,即轮缘(安装传动带)、轮毂(与轴连接部分)、轮辐(中间部分)。带轮的材料主要用铸铁HT150或HT200。
v > 25m/s时,宜采用铸钢;小功率时,可采用铸铝或塑料。带轮的结构形式有实心式,用于尺寸较小的齿轮,腹板式,用于中等尺寸的齿轮;轮辐式,用于尺寸较大的齿轮。
普通V带楔角为40°,但轮槽角小于40°,其原因是绕过带轮时产生横向变形,使楔角变小,且带轮直径越小,楔角越小。为使带的侧面与轮槽侧面接触良好,轮槽角总是小于V带楔角。
13.3.4 V带传动的张紧装置
因传动带的材料不是完全的弹性体,因此常在工作一段时间后会伸长而松弛,使初拉力下降,为保证正常工作,应设置张紧装置。常见的张紧装置有以下几种。
定期张紧装置。它是利用定期改变中心距的方法来调节带的初拉力,使其重新张紧。在水平或倾斜不大的传动中,可采用滑道式机构。电动机装在滑轨上,通过旋转调节螺钉改变电动机位置。在垂直或接近垂直的传动中,可采用摆架式结构,电动机固定在摇摆架上,旋动螺钉使机座绕固定轴旋转。
张紧轮张紧装置。当中心距不能调节时,可采用张紧轮把带张紧。张紧轮一般应放在松边内侧,尽量靠近大带轮,以减少对包角的影响。
13.4 链传动概述
13.4.1 链传动的特点、类型及应用
链传动由装在平行轴上的链轮1、链轮2和链条3组成,链条为中间挠性件,通过链节与链轮齿的啮合传递运动和动力。
与带传动相比,链传动的优点是没有弹性滑动和打滑,能保持准确的传动比;传动比效率为0.95~0.98,高于带传动,压轴力较小,传递功率大,可在、低速、重载、恶劣环境和较高温度下工作。与齿轮传动相比,链传动的优点是制造和安装精度较低,中心距较大时其传动结构简单,过载能力强。缺点是瞬时链速和瞬时传动比不是常数,工作中有一定动载荷和冲击,噪声较大,不能用于高速。
按用途不同,链可分为传动链、输送链和起重链。传动链主要用于传递运动和动力,应用很广,工作速度v≤15m/s,传递功率P≤100kw,最大速比i≤8。起重链和输送链用于起重机械和运输机械中。
13.4.2 传动链和链轮
传动链。传动链按结构不同分为滚子链和齿形链。
滚子链由滚子、套筒、销轴、内链板和外链板组成,其中内链板与套筒、外链板与销轴分别用过盈配合固联在一起,销轴和套筒之间为间隙配合,构成铰链,套筒与滚子之间也为间隙配合。当传递较大动力时,可采用多排链,承载能力大,但较难保证链的制造和装配精度,容易受载不均。滚子链已标准化,分为A,B两种系列,其中A系列常用。相邻两滚子中心的距离p称为节距,它是链的主要参数。当链节数为偶数时,接头处用开口销或弹簧夹锁紧,当链节数为奇数时,可用过渡链节,过渡链节的链板受拉时将受到附加弯曲应力,其强度较低,故最好取为偶数。
齿形链由两组外形相同的链板交错排列,用铰链连接而成,链板两侧工作面为直边,夹角为60°、铰链可做成滑动回转副或滚动回转副。由于齿形链的齿形特点,使传动较平稳,冲击小,噪声低(又称无声链),主要用于高速链传动(链速可达40m/s)或对运动精度要求较高的传动。但齿形结构较复杂,价格较贵,目前应用较少。
链轮。小直径链轮可做成整体式;中等尺寸的链轮可做成孔板式;尺寸较大的链轮可采用装配式,齿圈与轮毂可用焊接或螺栓连接。链轮轮毂的部分尺寸可参考带轮。链轮轮齿的齿形应保证链节能自由的进入和退出啮合,啮合时应保证接触良好,且齿形要便于加工。链轮上被链条节距等分的圆称为分度圆,其直径用d表示。已知节距p和齿数z,链轮主要尺寸的计算公式为 分度圆直径 d = p/sin (180°/z) ,齿顶圆直径 dzmax = d+1.25p-d₁,dzmax = d+(1-1.6/z)p-d₁ ,齿根圆直径 df = d-d₁ (d₁为滚子直径)。da的值应在damax与damin之间,如选用“三圆弧一直线”齿形,则 da = p[0.54+cot(180°/z)] 。
13.5 链传动的运动特性和受力分析
13.5.1 链传动的运动特性
链由很多刚性链节组成,链条绕上链轮后呈多边形状。传动时,链轮每回转一周,将带动链条移动正多边形周长zp的距离,故链的平均速度及平均传动比为 v=n₁z₁p/60x1000 = n₂z₂p/60x1000,i = n₁/n₂ = z₂/z₁ 。式中,p是链节距;z₁,z₂是主、从动轮的齿数;n₁,n₂是主、从动轮的转速。实际上,瞬时链速和瞬时传动比都不是定值。主动轮以ω₁等角速度转动时,分度圆周速度为 v₁ = R₁ω₁ ,则链条的前进速度为 vx = v₁cos β = R₁ωcos β 。β是圆周速度与水平线的夹角,其变化范围在±φ₁/2之间,φ₁=360°/z₁。当β=±φ₁/2时,链速最小,v=R₁ω₁cos φ₁/2,当β = 0时,链速最大,v=R₁ω₁。同样,设从动链轮的角速度为ω₂,圆周速度为v₂, v₂=v₁cos β/cos γ=R₂ω₂ ,则瞬时传动比为 i' = ω₁/ω₂ = R₂cos γ/R₁ cos β 。由于β、γ随链轮转动而变化,虽然ω₁是定值,ω₂却随β和γ的变化而变化,瞬时传动比随之变化,同时链在垂直方向的分速度Vy也在做周期性变化。
13.5.2 链传动的受力分析
安装链传动时,只需不大的紧张力,主要是使链松边的垂度不致过大,否则会产生显著振动、跳齿和脱链。若不考虑传动中的动载荷,链的紧边拉力为F₁=F+Fv+Fy,松边拉力为F₂ = Fc+Fy。其中,Fc是离心拉力,Fy是悬垂拉力,F是有效拉力。围绕在链轮上的链节运动中产生的离心拉力为 Fc = qv² 。其中,q是链的单位长度质量;v是链速。悬垂拉力可利用求悬索拉力的方法近似求得。 Fy = Ky·qga ,其中,a是链传动的中心距;g是重力加速度;Ky是下垂量y=0.02a时的垂度洗漱,其值与中心连线和水平线的夹角β有关。垂直布置时,Ky=1,水平时,Ky=6,倾斜布置时,Ky = 1.2(β=75°),2.8(β=60°),5(β=30°)。链作用在链轮轴上的压力Fq可近似取为Fq = (1.2~1.3)F。
13.6 链传动的设计
13.6.1 链传动的主要失效形式
铰链磨损。链条在工作中,销轴与套筒间由相对滑动,使铰链产生磨损,从而使链节变长,链与链轮的啮合点外移,这将引起跳齿和脱链,从而使传动失效。是开式链传动的主要失效形式。
链的疲劳破坏。链在运动过程中所受的载荷不断变化,因而链在变应力状态下工作,经过一定的循环次数后,链板会产生疲劳断裂,或者套筒、滚子表面产生冲击疲劳破坏。在润滑条件良好和设计安装正确的情况下,疲劳强度是决定链传动工作能力的主要因素。
胶合。当转速很高或润滑不良时,润滑油膜难以形成,使销轴和套筒的工作表面在很高的温度和压力下直接接触,从而导致胶合。胶合限制了链传动的极限转速。
过载拉断。在低速、重载的传动中或者尖峰载荷过大时,链会被拉断,其承载能力受到链元件静拉力强度的限制。
13.6.2 功率曲线图
实验条件:小链轮齿数z₁=19,链长L=100p,单排链,载荷平稳,工作寿命为15000h,链条因磨损而引起的相对伸长量不超过3%。链传动计算功率 Pc = KaP ≤ KzKlKpP0 。式中,Ka是工况系数;Kz,Kl,Kp是小链轮齿数z₁、链长L和链的排数不符合实验条件时的修正系数;P是传递的功率。
若润滑不良,P0值应降低。当链速v≤1.5m/s时,降到50%;当1.5m/s≤v≤7m/s时,降到25%;当v>7m/s时,链传动必须采用充分良好的润滑。
当v< 0.6m/s时,链传动可能因强度不足而拉断,需进行静强度校核 S=Q/KaF₁≥4~8 ,式中,Q是链的极限拉伸载荷;F₁是链的紧边拉力;Ka是工况系数。
13.6.3 主要参数的选择
链轮齿数。小链轮齿数不宜过少或过多,过少会使运动不匀性加剧,过多则会因磨损引起的节距增长而发生跳齿和脱链,缩短链的使用寿命。大链轮齿数 z₂=iz₁ 。
若链条的铰链发生磨损,将使链条节距变长、链轮节圆d'向齿顶移动。节距增长量∆p与节圆外移量∆d'的关系,可由式导出 ∆d'=∆p/sin(180°/z) 。由此可知,∆p一定时,齿数越多节圆外移量越大,越容易发生跳齿和脱链现象。所以大链轮齿数不宜过大,一般应使z₂≤120。一般链条节数为偶数,而链轮齿数最好为奇数,这样可使磨损较均匀。
链节距。链的节距越大,其承载能力越高。但是当链接以一定的相对速度与链轮齿啮合的瞬间,将产生冲击和动载荷。节距越大,链轮转速越高,冲击越大。因此,设计时尽可能选用小节距链,高速重载时可选用小节距多排链。
中心距和链节数。链传动中心距过小,则小链轮上的包角也小,同时啮合的齿轮数减少,中心距过大,则易使链条抖动。一般取中心距 a=(30~50)p ,最大中心距amax≤80p。链条长度用链节数Lp表示,可由带传动中带长的计算公式导出 Lp=2q/p+(z₁+z₂)/2+p/a·[(z₂-z₁)/2Π]² 。计算出的链节数须圆整为整数,最好取为偶数。利用上式,可解出中心距a, a=p/4·([Lp-(z₁+z₂)/2]+{[Lp-(z₁+z₂)/2]²-8[(z₂-z₁)/2Π]²}½) 。为使松边有合适的垂度,实际中心距应比计算出的中心距小∆a,∆a=(0.002~0.004)a,中心距可调时取大值。
13.6.4 链传动的布置和润滑
链传动的布置应遵守以下原则:两链轮的回转平面应在同一铅垂平面内,尽量采用水平或接近水平的布置,尽量使紧边在上。
润滑对链传动的工作能力和使用寿命有很大影响。良好的润滑剂有利于减少磨损、降低摩擦损失、缓和冲击。设计时应注意润滑剂和
润滑方式的选择。
㈤ 带传动有什么特点
(1)优点:
①具有良好的弹性,能起吸振缓冲作用,因而传动平稳,噪声小,无专需润滑;
②过载时,带与带轮会出现属打滑,可防止其他零件损坏;
③结构简单,成本低,加工和维护方便;
④适用于两轴中心距较大的传动
(2)缺点:
①外廓尺寸较大,结构不够紧凑;
②由于带的弹性滑动,不能保证准确的传动比;
③带的使用寿命较短,一般为2000~3000h;
④摩擦损失较大,传动效率较低
带传动根据其传动原理分为摩擦型和啮合型两大类,在汽车上被广泛应用
图3-13a)所示为摩擦型带传动其工作原理是:传动带紧套在两个带轮上,带与带轮之间存在正压力,当主动轮旋转时,靠摩擦力使带运行,从动轮也受到带的摩擦力的作用该摩擦力使从动轮绕轮心转动
图3-13b)所示为啮合型带传动,其工作原理是:通过齿形传动带将主动轮的转动传递给从动轮,具有传动比准确的优点,故也称为同步齿形带,常用于轿车发动机正时传动机构
图3-13
㈥ 皮带传动的皮带使用寿命与哪些相关
不正确的设备保养维护:40%
没有再次进行张紧力调整
没有及时更换磨损的带轮
没有干净整洁的防护装置
缺乏牢固的支架和坚固的传动部件
没有检查对齐
环境因素:20%
灰尘
碎片
水、潮湿环境
油及油脂
高温、低温环境
生锈
不正确的带轮及皮带安装:20%
翻转及撬动皮带
未对齐
不正确的张紧力
错误的皮带配组和带及带轮匹配
惰轮提供张紧力的方式不正确
防护装置的干涉
不当的传动系统设计:10%
低于最小带轮要求标准
低于系统设计要求的实际驱动
超出系统设计要求的实际驱动
皮带线速度过快
不正确的皮带选型
不当的皮带储存和操作:5%
温度
高湿度
储存时间过长
太靠近臭氧发生装置
阳光照射
驱动部件的缺陷:5%
带轮的磨损
支架本身的刚性不足、有裂纹
支架的安装紧固牢靠
皮带本身的质量缺陷
惰轮的运转不良
防护装置的问题