导航:首页 > 装置知识 > 填料塔吸收传质系数测定实验装置

填料塔吸收传质系数测定实验装置

发布时间:2023-08-26 05:52:46

Ⅰ 化工原理吸收试验m是什么

一、实验目的
1.了解填料吸收塔的结构和流程;
2.了解吸收剂进口条件的变化对吸收操作结果的影响;
3.掌握吸收总传质系数Kya的测定方法
4. 学会使用GC
二、实验原理
吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净
第 1 页
化与回收双重目的。因而,气体出口浓度y2是度量该吸收塔性能的重要指标,但影响y2的因素很多,因为吸收传质速率NA由吸收速率方程式决定。
(一). 吸收速率方程式:
吸收传质速率由吸收速率方程决定 :

式中: Ky 气相总传系数,mol/m3.s;
A 填料的有效接触面积,m2;
Δym 塔顶、塔底气相平均推动力,
第 2 页
V填 填料层堆积体积,m3;
Kya 气相总容积吸收传质系数,mol/m2.s。
从前所述可知,NA的大小既与设备因素有关,又有操作因素有关。
(二).影响因素:
1.设备因素:
V填与填料层高度H、填料特性及放置方式有关。然而,一旦填料塔制成,V填就为一定值。
2.操作因素:
a.气相总容积吸收传质系数Kya
第 3 页
根据双膜理论,在一定的气温下,吸收总容积吸收传质系数Kya可表示成:
又有文献可知:和,综合可得,显然Kya与气体流量及液体流量均有密切关系。比较a、b大小,可讨论气膜控制或液膜控制。
b.气相平均推动力Δym
将操作线方程为:的吸收操作线和平衡线方程为:y=mx的平衡线在方格纸上作图,从图5-1中可得知:
第 4 页


图5-1 吸收操作线和平衡线
其中 ;,,另外,从图5-1中还可看出,该塔是塔顶接近平衡。
(三). 吸收塔的操作和调节:
第 5 页
吸收操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。在低浓度气体吸收时,回收率η可近似用下式计算:

吸收塔的气体进口条件是由前一工序决定的,控制和调节吸收操作结果的是吸收剂的进口条件:流率L、温度t、浓度x2三个因素。
由吸收分析可知,改变吸收剂用量是对吸收过程进行调节的最常用方法,当气体流率G不变时,增加吸收剂流率,吸收速率NA增加,溶质吸收量L增加,那
第 6 页
么出口气体的组成y2减小,回收率η增大。
当液相阻力较小时,增加液体的流量,传质总系数Kya变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力Δym的增大而引起,即此时吸收过程的调节主要靠传质推动力的变化。
当液相阻力较大时增加液体的流量。传质系数Kya大幅度增加,而平均推动力可能减小,但总的结果使传质速率NA增大,溶质吸收量增大。
吸收剂入口温度对吸收过程影响也甚大,也是控制和调节吸收操作的一个重要因素。降低吸收剂的温度,使气体的
第 7 页
溶解度增大,相平衡常数减小。
对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力将随之减小,结果使吸收效果变好,y2降低,而平均推动力Δym或许会减小。对于气相控制的吸收过程,降低操作温度,过程阻力不变.但平均推动力Δym增大,吸收效果同样将变好。总之,吸收剂温度的降低,改变了相平衡常数,对过程阻力及过程推动力都产生影响,其总的结果使吸收效果变好,吸收过程的回收率增加。
吸收剂进口浓度x2是控制和调节吸收
第 8 页
效果的又一重要因素。吸收剂进口浓度的降低,液相进口处的推动的增大,全塔平均推动力也将随之增大而有利于吸收过程回收率的提高。
应当注意,当气液两相在塔底接近平衡(L/G<m)(见图5-2a)欲降低y2,提高回收率,用增加吸收剂用量的方法更有效。但是当气液两相在塔顶接近平衡时(L/G>m)(见图5-2b)提高吸收剂用量,即增大L/G并不能使y2明显的降低,只有用降低吸收剂入塔浓度x2才是有效的。

第 9 页
a b
图5 - 2 L/G大小对操作的影响
三、实验要点
1.单元操作 ----- 吸收单元操作的特点;回收率η的影响因素;
2.实验结果 ----- 双膜理论、分析吸收过程属于气膜控制或液膜控制;
3.实验测量 ----- 气体转子流量计的读数以及校正;
4.实验流程 ----- 液泛现象及预防,液封的作用及控制;
5.实验设备 ----- 填料吸收塔的结构及操
第 10 页
作及填料介绍。
四、实验装置示意图及流程

五、实验步骤
(一).设备:
第 11 页
本实验装置是空气―丙酮混合气―水吸收系统,吸收塔为填料吸收塔,气体是经定值器将压力恒定的室温空气,进入丙酮容器鼓泡而出,得到的丙酮已达饱和的混合气,吸收剂为自来水,用色谱分析的方法,测定混合气进口浓度y1及混合气出口浓度y2。
(二).测试准备:
1.接通气路,打开水流量计开关,再打开定值器开关,将压力恒定在0.02MPa左右,然后,打开气体转子流量计,把水和气的转子流量计调节至测试时的最大值,仔细检查设备是否有漏液、液泛等不正常现象,如果一切正常,即可开始调试。
第 12 页
2.测试:
在上面的步骤完成后,用分别改变水流量、空气流量(均由小至大)、及水温(升高)的方法,测数组数据。每改变一次水流量或空气流量,均需间隔数分钟取样,或出口水温基本恒定。取样时,先取y1再取y2。
3. 注意事项:
气体流量不能超过600 L/h,液体流量不能超过7L/h,否则有可能液泛。液封的液位高低由后面的阀门控制。
六、实验操作原则及内容
(一).实验操作原则:
第 13 页
1.先开水的开关,后开气的开关,并测量空气的温度。?
2.y1每次都要测量,且要先测y2,后测y1,防止影响吸收的平衡。
3.注意控制液封的水位,且要防止液泛。
4.加热温度要小于50℃,。(电压95伏左右)
5.改变控制条件时,要经过10 ~ 15 min时间稳定。
(二).实验内容:
1.在空气流量恒定条件下,改变清水
第 14 页
流量,测定气体进出浓度y1、y2,计算组分回收率η,传质推动力面Δym和传质系数Kya。
2.在清水流量恒定条件下,改变空气流量,测定气体进出口浓度y1、y2,计算组分回收率η,传质推动力面Δym和传质系数Kya。
3.在空气流量和清水流量恒定条件下,改变清水温度,测定气体进出口浓度y1、y2,计算组分回收率η,传质推动力面Δym和传质系数Kya。
七、实验数据记录及数据处理
(一). 设备参数:
第 15 页
填料:瓷质拉西环; 气液接触方式:气 ~ 液逆流;
(二). 操作参数:
定值器压力:0.02-0.04MPa ( 表压 )
(三).原始数据记录:
1.常数:
填料塔直径D:40 mm;填料塔高度H:220 mm;
色谱仪系数:0.18;室温:10℃;气压:101.3KPa
2.实验数据记录:
序号
气体流量
G / (L/h)
水流量
L / (L/h)
气体进口浓度
色谱峰高
气体出口浓度
色谱峰高
水进口
温度/℃
水出口
温度/℃
混合气
温度/℃
1
2
3
4
5
第 16 页
(四)计算结果
序号
气体流量G
Kmol / m2.h
水流量L
Kmol / m2.h
x1
Δym
η
Kya
1
2
3
4
5
八、实验数据处理中注意事项说明:
1.气体流量计在0.02MPa下使用,与气体流量计标定时的状态不同,故需校正:
第 17 页

2.吸收剂的进口温度由半导体温度计测得,需计算全塔平均温度,来查得各组的m值。全塔平均温度为:

3.色谱仪上读得的峰面积正比于取样气相浓度,进出口峰面积之比,等于气体进出口浓度y1, y2之比。
4. 丙酮的安托因方程系数
P:mmHg
第 18 页
A:6.75.30
B:1030.96
C:209.83
t:℃ (5~45℃)
九、实验数据处理结果的讨论及要求
1.在空气流量恒定条件下,改变清水流量,讨论组分回收率η,传质推动力面Δym和传质系数Kya的变化规律。
2.在清水流量恒定条件下,改变空气流量,讨论组分回收率η,传质推动力面Δym和传质系数Kya的变化规律。
3.从实验数据分析水吸收丙酮是气膜
第 19 页
控制还是液膜控制,还是两者兼而有之。
十、思考题
1.从传质推动力和传质阻力两方面分析吸收剂流量和吸收温度对吸收过程的影响?
2.从实验数据分析水吸收丙酮是气膜控制还是液膜控制,还是两者兼而有之?
3.填料吸收塔塔底为什么必须有液封装置,液封装置是如何设计的。
4.将液体丙酮混入空气中,除实验装置鼓泡器中用到的方法外

Ⅱ 如何通过实验来确定本实验装置的最佳吸附时间

实验六 吸收实验 (一)丙酮填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1、了解填料吸收塔的结构和流程; 2、了解吸收剂进口条件的变化对吸收操作结果的影响; 3、掌握吸收总传质系数Kya的测定方法。

Ⅲ 填料吸收塔传值系数测定实验中塔底为什么要液封

你的问题不是很清楚,我擅自回答一下。
一般液封装置都是用来保护填回料塔安全的。举个例子答:假设填料塔内部是气液传质,且气体是由鼓风机产生的负压牵引,如果突然供气不足,可能导致填料塔内部被吸真空,外界空气压力将填料塔压瘪;有了液封装置,可以避免塔内部压力过小,从而保护填料塔不受损害。另外,液封高度的设计和风机产生的负压、液封介质及当地大气压有关。
此外,有些液封装置在塔设备中起密封作用。

Ⅳ 化工原理实验中哪些用到了风机工作

化工原理实验中哪些用到了风机工作:
化工原理实验装置系列一、雷诺实验装置 JGKY-LN实验目的:1、观察流体在管内流动的两种不同型态。2、观察滞流状态下管路中流体速度分布状态。3、测定流动形态与雷诺数Re之间的关系及临界雷诺数值。主要配置:有机玻璃水槽、示踪剂盒、示踪剂流出管、细孔喷嘴、玻璃观察管、计量水箱、不锈钢框架。技术参数:1、有机玻璃水槽:大于30L。2、玻璃观察管:Φ20mm。3、计量水箱:容积大于8L。4、指示液为红墨水或其它颜色鲜艳的液体。5、框架为不锈钢,结构紧凑,外形美观,流程简单,操作方便。6、外形尺寸:1200×450×1300mm。二、柏努利实验装置 JGKY-BNL实验目的:1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。2、观察各项能量(或压头)随流速的变化规律。主要配置:蓄水箱、水泵、有机玻璃实验水箱、有机玻璃计量水箱、测压管、阀门、不锈钢框架。技术参数:1、水泵为微型增压泵,功率:90W。2、计量水箱:容积大于8L。3、实验管道:Φ20与Φ40mm。4、测压管 Φ8有机玻璃管 指示液为水,无毒、使操作更为安全。5、实验水箱: 400×250×450 mm(透明有机玻璃水箱)。蓄水箱: 600×400×400 mm(PVC或不锈钢水箱)。6、实验所用的流体--水为全循环设计。7、框架为不锈钢,结构紧凑,外形美观,流程简单,操作方便。8、外形尺寸:1800×500×1500mm。三、离心泵特性曲线测定实验装置 JGKY-LXB实验目的:1、了解离心泵的结构和特性,熟悉离心泵的操作。2、测量一定转速下的离心泵特性曲线。3、了解并熟悉离心泵的工作原理。主要配置:蓄水箱、离心泵、压力表、真空表、功率表、涡轮流量计、实验管路、不锈钢框架、控制屏。技术参数:1、卧式离心泵流量6
m^{3}
m
3

/h,扬程15m,功率370W。
2、流量测量采用涡轮流量计,流量约0.5~8 m3/h。3、压力表:Y-100型,0~0.6Mpa,真空表-0.1~0Mpa。4、功率测量:数字型功率表,精度1.0级。5、蓄水箱由PVC或不锈制成,容积约80L。6、实验所用的流体--水为全循环设计。7、控制屏面板及框架为不锈钢,结构紧凑,外形美观,流程简单,操作方便。8、外形尺寸:1600×500×1500mm。数据采集型(JGKY-LXB/Ⅱ):配计算机、微机接口和数据处理软件、涡轮流量计及流量积算仪、变频器、压力传感器。能在线监测流量、压力等实验数据。四、恒压过滤实验装置 JGKY-GL/HY实验目的:1、掌握过滤的基本方法。2、掌握在恒压下过滤常数K、当量滤液体积qe的求取。3、观察过滤终了速率与洗涤速率的关系。主要配置:板框过滤机、空压机、压力容器、计量槽、盛渣槽、搅拌电机、控制阀、不锈钢框架。技术参数:1、板框过滤机的过滤面积:0.084m2,过滤介质:帆布。2、空压机排气量:0.036m3/h,压力:0.7MPa,功率:750KW。3、压力容器:容积约35L,上装压力表(0-0.6Mpa)、空压 机入口给混合液加压、视镜可方便观察容器内的液位。4、盛渣槽:过滤时会有一定泄漏现象,为保证实验室的卫生用来盛泄漏的混合液。5、计量槽由有机玻璃制成,容积:约14L。6、搅拌器转速:0-200转/min。7、框架为不锈钢,结构紧凑,外形美观,流程简单,操作方便。8、外形尺寸:1700×600×1600mm。数据采集型(JGKY-HY GL/Ⅱ):配计算机、微机接口和数据处理软件、重量传感器、压力传感器。能在线监测虑液量、压力等实验数据。五、流量计校核实验装置 JGKY-LX实验目的:1、熟悉节流式流量计的构造及应用。2、掌握流量计的流量校正方法。3、通过对流量计量系数的测定,了解流量系数的变化规律。
主要配置:水泵、孔板流量计、文丘里流量计、计量水槽、秒表、U型压差计、蓄水箱、不锈钢框架及管路、控制屏。技术参数:1、水泵:最大流量30L/min、最高扬程16m、功率370W、工作电压220V、转速2850r/min2、孔板孔口径:dO=8mm,不锈钢材质。3、文丘里管喉径:dV=8mm,不锈钢材质。4、计量槽容积:15L,蓄水箱容积:20L。5、实验所用的流体--水为全循环设计。7、框架为不锈钢,结构紧凑,外形美观,操作方便。8、外形尺寸:1500×500×1500mm。数据采集型(JGKY-LX /Ⅱ):配计算机、微机接口和数据处理软件、压差传感器、涡轮流量计及流量积算仪。能在线监测压差、流量等实验数据。六、流体流动阻力实验装置 JGKY-ZL实验目的:1、掌握流体流经直管和阀门时的阻力损失和测定方法,通过实验了解流体流动中能量损失的变化规律。2、测定流体流经阀门时的局部阻力系数ζ。3、测定直管摩擦系数λ与雷诺数Re之间的关系。主要配置:水泵、蓄水箱、沿程阻力光滑管、沿程阻力粗糙管、局部阻力管、压差计、流量计、阀门、实验台架及电控箱。技术参数:1、粗糙管段:不锈钢管,管径25mm、管长1.6m,内装不锈钢螺旋丝或工业镀锌管。2、光滑管段:不锈钢光滑管,管径25mm、管长1.5m。3、局部阻力段:管径25mm,测量阀门局部阻力。4、水泵:流量5m3/h、扬程20m、电机功率:550W。5、流量计:采用转子流量计或涡轮流量计,(涡轮流量计:LWCY-15,0.6-6 m3/h,LED背光液晶显示)。6、蓄水箱为不锈钢材质,容积约40L。7、阀门及三通等管件均为304不锈钢材质。8、操作台架及电控箱为不锈钢材质,结构紧凑,外形美观,流程简单,操作方便。9、尺寸:2000×600×1800mm。数据采集型(JGKY-ZL/Ⅱ):配计算机、微机接口和数据处理软件、压差传感器、涡轮流量计及流量积算仪。能在线监测压差、流量等实验数据。
七、流化床干燥实验装置 JGKY-GZ/LHC实验目的:1、了解流化床干燥装置的结构、流程及操作方法。2、学习测定物料在恒定干燥条件下干燥特性的实验方法,研究干燥条件对干燥过程特性的影响。3、掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。主要配置:空气旋涡泵、电加热箱、流化床体、集尘器、加料斗、旋风分离器、U型压差计、孔板流量计(或毕托管流量计)、不锈钢实验台架及电控箱。技术参数:1、空气旋涡泵:风量450 m3/h,风压120mmH2O,效率66%,轴功率0.75KW。2、电加热箱:功率2KW,不锈钢材质。3、U型压差计:测量流化床总塔压差及进风流量。4、电控箱:在电控箱上装有智能温控仪表,测量干燥室的进出口温度;电源开关、风机开关,按下开关旋钮对应的工作开始进行。5、实验台架及控制屏均为不锈钢材质,结构紧凑、外形美观、流程简单、操作方便。6、外形尺寸:1500×600×2000mm。数据采集型(JGKY-GZLHCⅡ):配计算机、微机接口和数据处理软件、温度传感器、压差传感器、涡轮流量计及流量积算仪。能在线监测压差、温度、流量等实验数据。八、传热实验装置 JGKY-CR实验目的:1、熟悉传热实验的实验方案设计及流程设计。2、了解换热器的基本构造与操作原理。3、掌握热量衡算与传热系数K及对流传热膜系数α的测定方法。4、了解强化传热的途径及影响传热系数的因素。主要配置:套管换热器、蒸汽发生器、气泵、热电偶、数显仪表、压力表、热球风速仪或转子流量计、实验管道、阀门、不锈钢框架、控制屏。技术参数:1、套管换热器:内管ф22X1.5mm,外管ф52X1.5mm,换热段长度:1.0m。2、蒸汽发生器:不锈钢制作,加热功率:2KW,操作电压220V。3、气泵:离心式中压吹风机,功率:250W,转速:2800/min,风压:1300Pa,风量:8m3/min。
4、压力测量:测量范围:0-2.5MPa,精度0.5级;温度测量:测量范围:-50 - 150℃,精度0.5级。5、热球风速仪:测量风速:0.05-10m/s;转子流量计:测量范围:4-40 m3/h。6、实验管道、阀门为不锈钢和铜结构。7、框架为不锈钢,结构紧凑,外形美观,流程简单,操作方便。8、外形尺寸:1500×550×1700mm。数据采集型(JGKY-CR/Ⅱ):配计算机、微机接口和数据处理软件、温度传感器、压力传感器、涡轮流量计及流量积算仪。能在线监测压力、温度、流量等实验数据。九、填料吸收实验装置 JGKY-XS/TL实验目的:1、了解填料吸收塔的结构、流程及操作方法。2、观察填料吸收塔的流体力学行为并测定在干、湿填料状态下填料层压降与空塔气速的关系。3、测定总传质系数Kya,并了解其影响因素。主要配置:吸收塔、风机、混合稳压罐、流量计、U型压差计、蓄水箱、水泵、压力仪表、温度仪表、不锈钢框架、控制屏。技术参数:1、吸收塔采用填料塔,尺寸:φ100×800mm,塔体为透明有机玻璃,便于学生观察相关实验现象2、填料:φ10×10×1mm瓷拉西环,吸收介质:二氧化碳气体,吸收剂:水。3、风机:风压≥0.04Mpa,排气量≥85 L/min。4、流量计流量:气体转子流量计两个,大流量液体转子流量计一个5、压差计:U型压差计,观察上下塔压降变化。6、压力仪表:测量范围0-2.5MPa,精度0.5级;温度仪表:测量范围-50 – 150℃,精度0.5级。7、混合稳压罐:不锈钢制作,对空气和二氧化碳气体充分混合、稳压后输出。8、框架为不锈钢,结构紧凑,外形美观,流程简单,操作方便。9、外形尺寸:2000×600×1700mm。数据采集型(JGKY-XCTL/Ⅱ):配计算机、微机接口和数据处理软件、温度传感器、压差传感器、涡轮流量计及流量积算仪。能在线监测压差、温度、流量等实验数据。
十、精馏实验装置 JGKY-JL实验目的:1、熟悉精馏单元操作过程的设备与流程。2、了解板式塔结构与流体力学性能。3、掌握精馏塔的操作方法与原理。4、学习精馏塔效率的测定方法。主要配置:精馏塔、冷凝器、再沸器、温控系统、加料系统、回流系统、产品贮槽、配料槽及测量仪表、不锈钢框架、控制屏。技术参数:1、精馏塔体和塔板均采用不锈钢制作,精馏塔容积:8L;塔径:φ50mm,塔板数:13块,板间距:100mm,孔径:φ2mm,开孔率:6%。2、冷凝器换热管管径:φ12mm,壁厚:1mm,换热面积:0.0568m2。3、再沸器采用不锈钢制作,内置电加热管加热,总加热功率为2000W,分两组,各1000W。4、温控系统采用自动无级控温承担精馏塔的温度控制调节。5、加料系统:料液泵流量:0.4m3/hr,扬程:8m,功率:120W。6、塔顶馏出液的组成:90-95%,进料组成:15-35%。7、装置产量:约4L/H。8、回流系统:由两支LZB-6的液体流量计控制回流比。9、各项操作及温度、压力、流量的显示、调节、控制全在控制屏板面进行。10、框架为不锈钢,结构紧凑,外形美观,流程简单,操作方便操作方便,操作方便。

Ⅳ 填料塔吸收传质系数的测定实验的用处

填料塔吸收传质系数的测定实验的用处?
1.了解吸收过程的流程、设备结构,并掌握吸收操作方法.
2.在不同空塔气速下,观察填料塔中流体力学状态。测定气体通过填料层的压降与气速的关系曲线.
3.本实验采用水吸收二氧化碳,测定填料塔的液侧传质膜系数、总传质系数。
4.通过实验了解 ΔP—u曲线和传质系数对工程设计的重要意义。

Ⅵ 吸收实验中气相二氧化碳用什么方法测定吸收操作及分析操作需要注意什么

一、实验目的

1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容

1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:

气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降与气速的关系如图一所示: 图一 填料层的~关系

当液体喷淋量时,干填料的~的关系是直线,如图中的直线0。当有一定的喷淋量时,~的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将~关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验

根据双膜模型的基本假设,气侧和液侧的吸收质A的传质速率方程可分别表达为

气膜 (1)

液膜 (2)

式中:—A组分的传质速率,;

—两相接触面积,m2;

—气侧A组分的平均分压,Pa;

—相界面上A组分的平均分压,Pa;

—液侧A 组分的平均浓度, —相界面上A组分的浓度

阅读全文

与填料塔吸收传质系数测定实验装置相关的资料

热点内容
旋转接头轴承处漏气怎么能解决 浏览:43
机械加压要装什么阀门 浏览:148
转炉氧枪提升装置设计 浏览:943
机械硬盘如何转固态硬盘 浏览:377
西安进口品牌轴承需要多少钱 浏览:781
设计串联校正装置的工程方法 浏览:901
垫圈内径检测装置b方便 浏览:267
设计一个楼梯灯控制装置用一个按钮 浏览:380
设备转让如何做会计处理 浏览:954
液压仪表车油缸怎么会越来越慢 浏览:968
牵引传动装置有哪几种方式 浏览:152
炉石机械卡开什么包 浏览:675
gps工具箱导入坐标 浏览:474
华瑞制冷设备有限公司有什么品牌 浏览:533
冰箱单制冷双循环是什么意思 浏览:27
网上从哪里买照相器材 浏览:753
自动切换装置切换时间 浏览:835
数控机床位置检测装置要求 浏览:153
42x17x12轴承是什么型号 浏览:248
冰柜冷藏放什么不制冷 浏览:93