① 急需自动控制原理课程设计
“自控原理课程设计”参考设计流程
一、理论分析设计
1、确定原系统数学模型;
当开关S断开时,求原模拟电路的开环传递函数个G(s)。
2、绘制原系统对数频率特性,确定原系统性能:c、(c);
3、确定校正装置传递函数Gc(s),并验算设计结果;
设超前校正装置传递函数为:
,rd>1
若校正后系统的截止频率c=m,原系统在c处的对数幅值为L(c),则:
由此得:
由 ,得时间常数T为:
4、在同一坐标系里,绘制校正前、后、校正装置对数频率特性;
二、Matlab仿真设计(串联超前校正仿真设计过程)
注意:下述仿真设计过程仅供参考,本设计与此有所不同。
利用Matlab进行仿真设计(校正),就是借助Matlab相关语句进行上述运算,完成以下任务:①确定校正装置;②绘制校正前、后、校正装置对数频率特性;③确定校正后性能指标。从而达到利用Matlab辅助分析设计的目的。
例:已知单位反馈线性系统开环传递函数为:
要求系统在单位斜坡输入信号作用时,开环截止频率c≥7.5弧度/秒,相位裕量≥450,幅值裕量h≥10dB,利用Matlab进行串联超前校正。
1、绘制原系统对数频率特性,并求原系统幅值穿越频率wc、相位穿越频率wj、相位裕量Pm[即(c)]、幅值裕量Gm
num=[20];
den=[1,1,0];
G=tf(num,den); %求原系统传递函数
bode(G); %绘制原系统对数频率特性
margin(G); %求原系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(G);
grid; %绘制网格线(该条指令可有可无)
原系统伯德图如图1所示,其截止频率、相位裕量、幅值裕量从图中可见。另外,在MATLAB Workspace下,也可得到此值。由于截止频率和相位裕量都小于要求值,故采用串联超前校正较为合适。
图1 校正前系统伯德图
2、求校正装置Gc(s)(即Gc)传递函数
L=20*log10(20/(7.5*sqrt(7.5^2+1))); %求原系统在c=7.5处的对数幅值L
rd=10^(-L/10); %求校正装置参数rd
wc=7.5;
T= sqrt(rd)/wc; %求校正装置参数T
numc=[T,1];
denc=[T/ rd,1];
Gc=tf(numc,denc); %求校正装置传递函数Gc
3、求校正后系统传递函数G(s)(即Ga)
numa=conv(num,numc);
dena=conv(den,denc);
Ga=tf(numa,dena); %求校正后系统传递函数Ga
4、绘制校正后系统对数频率特性,并与原系统及校正装置频率特性进行比较;
求校正后幅值穿越频率wc、相位穿越频率wj、相位裕量Pm、幅值裕量Gm。
bode(Ga); %绘制校正后系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(G,':'); %绘制原系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(Gc,'-.'); %绘制校正装置对数频率特性
margin(Ga); %求校正后系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(Ga);
grid; %绘制网格线(该条指令可有可无)
校正前、后及校正装置伯德图如图2所示,从图中可见其:截止频率wc=7.5;
相位裕量Pm=58.80;幅值裕量Gm=inf dB(即),校正后各项性能指标均达到要求。
从MATLAB Workspace空间可知校正装置参数:rd=8.0508,T=0.37832,校正装置传递函数为 。
图2 校正前、后、校正装置伯德图
三、Simulink仿真分析(求校正前、后系统单位阶跃响应)
注意:下述仿真过程仅供参考,本设计与此有所不同。
线性控制系统校正过程不仅可以利用Matlab语句编程实现,而且也可以利用Matlab-Simulink工具箱构建仿真模型,分析系统校正前、后单位阶跃响应特性。
1、原系统单位阶跃响应
原系统仿真模型如图3所示。
图3 原系统仿真模型
系统运行后,其输出阶跃响应如图4所示。
图4 原系统阶跃向应曲线
2、校正后系统单位阶跃响应
校正后系统仿真模型如图5所示。
图5 校正后系统仿真模型
系统运行后,其输出阶跃响应如图6所示。
图6 校正后系统阶跃向应曲线
3、校正前、后系统单位阶跃响应比较
仿真模型如图7所示。
图7 校正前、后系统仿真模型
系统运行后,其输出阶跃响应如图8所示。
图8 校正前、后系统阶跃响应曲线
四、确定有源超前校正网络参数R、C值
有源超前校正装置如图9所示。
图9 有源超前校正网络
当放大器的放大倍数很大时,该网络传递函数为:
(1)
其中 , , ,“-”号表示反向输入端。
该网络具有相位超前特性,当Kc=1时,其对数频率特性近似于无源超前校正网络的对数频率特性。
根据前述计算的校正装置传递函数Gc(s),与(1)式比较,即可确定R4、C值,即设计任务书中要求的R、C值。
注意:下述计算仅供参考,本设计与此计算结果不同。
如:由设计任务书得知:R1=100K,R2=R3=50K,显然
令
T=R4C 解得R4=3.5K,C=13.3F
② 常用的电气校正装置
控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统, 而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统 的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可 以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特 性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标 形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程), 也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、 带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。 在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类 校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来 表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制 系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中, 串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例 -积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。 自动控制原理课程设计 第一章 课程设计的目的及题目 -2- 一、课程设计的目的及题目 1.1 课程设计的目的 1)掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补 偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分 析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的 指标。 2)学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。 1.2 课程设计的题目 已知单位负反馈系统的开环传递函数 0 K ( ) ( 1 0 ) ( 6 0 ) G S S S S ,试用频率法 设计串联超前——滞后校正装置,使(1)输入速度为 1 r ad s 时,稳态误差不大 于 1 126 rad 。(2)相位裕度 0 3 0 ,截止频率为 20 rad s 。(3)放大器的增益不 变。 自动控制原理课程设计 第二章 课程设计的任务及要求 -3- 二、课程设计的任务及要求 2.1 课程设计的任务 设计报告中,根据给定的性能指标选择合适的校正方式对原系统进行校正 (须写清楚校正过程),使其满足工作要求。然后利用MATLAB 对未校正系统和 校正后系统的性能进行比较分析,针对每一问题分析时应写出程序,输出结果图 和结论。最后还应写出心得体会与参考文献等。 2.2 课程设计的要求 1)首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使 其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环 传递函数,校正装置的参数T, 等的值。 2)利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是 否稳定,为什么? 3)利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃 响应曲线,单位斜坡响应曲线,分析这三种曲线的关系。求出系统校正前与校正 后的动态性能指标σ%、tr、tp、ts 以及稳态误差的值,并分析其有何变化。 4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴 交点的坐标和相应点的增益 K 值,得出系统稳定时增益 K 的变化范围。绘制系 统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由。 5)绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量, 幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由。 自动控制原理课程设计
③ 自动控制原理课程设计
“自控原理课程设计”参考设计流程
一、理论分析设计
1、确定原系统数学模型;
当开关S断开时,求原模拟电路的开环传递函数个G(s)。
2、绘制原系统对数频率特性,确定原系统性能:c、(c);
3、确定校正装置传递函数Gc(s),并验算设计结果;
设超前校正装置传递函数为:
,rd>1
若校正后系统的截止频率c=m,原系统在c处的对数幅值为L(c),则:
由此得:
由 ,得时间常数T为:
4、在同一坐标系里,绘制校正前、后、校正装置对数频率特性;
二、Matlab仿真设计(串联超前校正仿真设计过程)
注意:下述仿真设计过程仅供参考,本设计与此有所不同。
利用Matlab进行仿真设计(校正),就是借助Matlab相关语句进行上述运算,完成以下任务:①确定校正装置;②绘制校正前、后、校正装置对数频率特性;③确定校正后性能指标。从而达到利用Matlab辅助分析设计的目的。
例:已知单位反馈线性系统开环传递函数为:
要求系统在单位斜坡输入信号作用时,开环截止频率c≥7.5弧度/秒,相位裕量≥450,幅值裕量h≥10dB,利用Matlab进行串联超前校正。
1、绘制原系统对数频率特性,并求原系统幅值穿越频率wc、相位穿越频率wj、相位裕量Pm[即(c)]、幅值裕量Gm
num=[20];
den=[1,1,0];
G=tf(num,den); %求原系统传递函数
bode(G); %绘制原系统对数频率特性
margin(G); %求原系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(G);
grid; %绘制网格线(该条指令可有可无)
原系统伯德图如图1所示,其截止频率、相位裕量、幅值裕量从图中可见。另外,在MATLAB Workspace下,也可得到此值。由于截止频率和相位裕量都小于要求值,故采用串联超前校正较为合适。
图1 校正前系统伯德图
2、求校正装置Gc(s)(即Gc)传递函数
L=20*log10(20/(7.5*sqrt(7.5^2+1))); %求原系统在c=7.5处的对数幅值L
rd=10^(-L/10); %求校正装置参数rd
wc=7.5;
T= sqrt(rd)/wc; %求校正装置参数T
numc=[T,1];
denc=[T/ rd,1];
Gc=tf(numc,denc); %求校正装置传递函数Gc
3、求校正后系统传递函数G(s)(即Ga)
numa=conv(num,numc);
dena=conv(den,denc);
Ga=tf(numa,dena); %求校正后系统传递函数Ga
4、绘制校正后系统对数频率特性,并与原系统及校正装置频率特性进行比较;
求校正后幅值穿越频率wc、相位穿越频率wj、相位裕量Pm、幅值裕量Gm。
bode(Ga); %绘制校正后系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(G,':'); %绘制原系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(Gc,'-.'); %绘制校正装置对数频率特性
margin(Ga); %求校正后系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(Ga);
grid; %绘制网格线(该条指令可有可无)
校正前、后及校正装置伯德图如图2所示,从图中可见其:截止频率wc=7.5;
相位裕量Pm=58.80;幅值裕量Gm=inf dB(即),校正后各项性能指标均达到要求。
从MATLAB Workspace空间可知校正装置参数:rd=8.0508,T=0.37832,校正装置传递函数为 。
图2 校正前、后、校正装置伯德图
三、Simulink仿真分析(求校正前、后系统单位阶跃响应)
注意:下述仿真过程仅供参考,本设计与此有所不同。
线性控制系统校正过程不仅可以利用Matlab语句编程实现,而且也可以利用Matlab-Simulink工具箱构建仿真模型,分析系统校正前、后单位阶跃响应特性。
1、原系统单位阶跃响应
原系统仿真模型如图3所示。
图3 原系统仿真模型
系统运行后,其输出阶跃响应如图4所示。
图4 原系统阶跃向应曲线
2、校正后系统单位阶跃响应
校正后系统仿真模型如图5所示。
图5 校正后系统仿真模型
系统运行后,其输出阶跃响应如图6所示。
图6 校正后系统阶跃向应曲线
3、校正前、后系统单位阶跃响应比较
仿真模型如图7所示。
图7 校正前、后系统仿真模型
系统运行后,其输出阶跃响应如图8所示。
图8 校正前、后系统阶跃响应曲线
四、确定有源超前校正网络参数R、C值
有源超前校正装置如图9所示。
图9 有源超前校正网络
当放大器的放大倍数很大时,该网络传递函数为:
(1)
其中 , , ,“-”号表示反向输入端。
该网络具有相位超前特性,当Kc=1时,其对数频率特性近似于无源超前校正网络的对数频率特性。
根据前述计算的校正装置传递函数Gc(s),与(1)式比较,即可确定R4、C值,即设计任务书中要求的R、C值。
注意:下述计算仅供参考,本设计与此计算结果不同。
如:由设计任务书得知:R1=100K,R2=R3=50K,显然
令
T=R4C 解得R4=3.5K,C=13.3F
请采纳答案,支持我一下。