Ⅰ 关于电导法测定乙酸乙酯皂化反应的速率常数的实验的问题
1.预先恒温,可以减少混合时温度的波动,减少试验误差,因为它们一混合,反应版就 进行,所以先恒温,权再混合,可以减少误差。
2.浓度相同可以比较好计算反应速率,因为最后反应物没有剩余。至于不同的浓度,你可以去看书本介绍的内容计算,我太久没做试验了。。。
3.二级反应,你可以设计相同温度下,不同浓度的乙酸乙酯与不同浓度的氢氧化钠反应,但是测量反应时间时候要改用其他的方法,如用滴定的方法测氢氧化钠的浓度来表示。
Ⅱ 乙酸乙酯皂化反应速率常数测定实验数据处理
用origin做个图,斜率乘以浓度的倒数就是反应速率常数
Ⅲ 乙酸乙酯皂化反应速率常数的测定思考题答案
二级反应有反应物浓度相同和不同两种反应形式,由于两种反应物 浓度相同时,反应速率常数回k的表达式较简单,简答化计算减小实验难度,所以本实验反应物浓度相等。若反应物浓度不相等,设起始反应物浓度分别为a,b,其动力学方程为{1/(a-b)}ln[{b(a-x)}/{a(b-x)}]=kt,其中x为t时刻的产物浓度,x可用电导仪测的G0,Gt求得
Ⅳ 乙酸乙酯皂化反应速率常数K测定实验
乙酸乙酯也叫醋酸乙酯
Ⅳ 乙酸乙酯皂化反应速率常数是多少
乙酸乙酯皂化反应速率常数是:
(5)乙酸乙酯皂化反应速率常数实验装置图扩展阅读:
如果使用氢氧化钾水解,得到的肥皂是软的。向溶液中加入氯化钠可以减小脂肪酸盐的溶解度从而分离出脂肪酸盐,这一过程叫盐析。高级脂肪酸盐是肥皂的主要成分,经填充剂处理可得块状肥皂。
肥皂分子有一端由许多碳和氢所组成的长链,另一端则为亲水性的原子团。使用肥皂时,油污被亲油端吸附着,再由亲水端牵入水中,达到洗净效果。
乙醇的质量分数要高,如能用无水乙醇代替质量分数为95%的乙醇效果会更好。催化作用使用的浓硫酸量很少,一般只要使硫酸的质量达到乙醇质量的3%就可完成催化作用,但为了能除去反应中生成的水,应使浓硫酸的用量再稍多一些。
制备乙酸乙酯时反应温度不宜过高,在保持在60℃~70℃之间,温度过高时会产生乙醚和亚硫酸或乙烯等杂质。液体加热至沸腾后,应改用小火加热。事先可在试管中加入几片碎瓷片,以防止液体暴沸。
Ⅵ 乙酸乙酯皂化反应速率常数做lnc-t的图有可能是负不
乙酸乙酯的皂化反应是一个典型的二级反应:
ch3cooc2h5+oh-→ch3coo-+c2h5oh
设反应物乙酸乙酯与碱的起始浓度相同,则反应速率方程为:
r
=
=kc2
积分后可得反应速率系数表达式:
(推导)
式中:为反应物的起始浓度;c为反应进行中任一时刻反应物的浓度。为求得某温度下的k值,需知该温度下反应过程中任一时刻t的浓度c。测定这一浓度的方法很多,本实验采用电导法。
用电导法测定浓度的依据是:
(1)
溶液中乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不致影响电导的数值。同时反应过程中na+的浓度始终不变,它对溶液的电导有固定的贡献,而与电导的变化无关。因此参与导电且反应过程中浓度改变的离子只有oh-和ch3coo-。
(2)
由于oh-的导电能力比ch3coo-大得多,随着反应的进行,oh-逐渐减少而ch3coo-逐渐增加,因此溶液的电导随逐渐下降。
(3)
在稀溶液中,每种强电解质的电导与其浓度成正比,而且溶液的总电导等于溶液中各离子电导之和。
设反应体系在时间t=0,t=t
和t=∞时的电导可分别以g0、gt
和g∞来表示。实质上g0是
naoh溶液浓度为时的电导,gt是
naoh溶液浓度为c时的电导与ch3coona溶液浓度为-
c时的电导之和,而g∞则是产物ch3coona溶液浓度为
时的电导。即:
g0=k反c0
g∞=k产c0
gt=k反c+k产(c0-
c)
式中k反,k产是与温度,溶剂和电解质性质有关的比例系数。
处理上面三式,可得
g0-
gt=(k反-
k产)(c0-
c)
gt-
g∞=(k反-
k产)c
以上两式相除,得
代入上面的反应速率系数表达式,得
k=
上式可改写为如下形式:
gt=
+
g∞
以gt对作图,可得一直线,直线的斜率为,由此可求得反应速率系数k,由截距可求得g∞。
二级反应的半衰期t1/2
为:
t1/2=
可见,二级反应的半衰期t1/2
与起始浓度成反比。由上式可知,此处t1/2
即是上述作图所得直线之斜率。
若由实验求得两个不同温度下的速率系数k,则可利用阿累尼乌斯(arrhenius)公式:
ln=()
计算出反应的活化能ea。
你恐怕要自己代入数值计算才可以得到