导航:首页 > 装置知识 > 断续表面自动测量装置

断续表面自动测量装置

发布时间:2022-09-17 03:06:43

『壹』 硅钢片磁性能测量检测设备

硅钢片磁性能测量检测设备有FE-30SST硅钢片铁损测量仪和FE-2100M硅钢材料测量装置。下面分别列出两款的详细参数等。希望能够帮到您!
FE-2100M硅钢材料测量装置适用于测量各种热轧、冷轧取向和无取向的硅钢材料,以及成型的硅钢变压器铁芯的测量。能准确测量工频条件下硅钢材料的磁感应强度Bm、比总损耗Ps和磁滞回线、交流磁化曲线。符合GB/T3655-2000、GB/T13789-92以及IEC 60404-6的规定。
FE-30SST硅钢片铁损测量仪FE-30SST LOSSMETER采用小型磁导计设计(30SST)和参考国际通用的磁导计测试标准,通过对方圈样品溯源的量值传递,确定有效磁路长度,并进行完全的空气磁通补偿,满足直接对单片样品的测量,测试非常方便,并较准确。FE-30SST LOSSMETER与目前市场上同类产品有较大区别,单机配置了经过校准的磁导计满足取向和无取向单片硅钢的测量。
FE-2100M硅钢材料自动测量装置硬件特点

● 采用32位ARM嵌入式高速处理器,具有强大的数据处理能力;
● 同步采样技术,确保了采样的准确性和重复性;
● 可独立进行单点或多点测试(无需电脑),并采用320×240大屏幕液晶显示,可显示各种波形、曲线及测量结果,适合工厂企业现场测试的需要;
● 单点平均测试时间约3秒,40-1000Hz可直接采用在面板上操作测试完成;
● 能进行最大基波幅度10%谐波最大次数64的谐波测试和分析功能。
FE-2100M 硅钢材料自动测量装置软件特点

● 可直接单机在线测量,液晶屏显示所有参数和曲线;
● 与微机连接可进行自动控制,并对测试数据进行保存;
● 对重要参数提供分选功能(Br、Bm、Hc、Hm、Ps、ua);
● 准确测量:频率f 、初级电流峰值、次级电压峰值、有功功率和视在功率;
● 准确测量:磁感强度Bm、励磁磁场强度Hm、幅值磁导率ua 、损耗角δ和比总损耗Ps;
● 准确换算:弹性磁导率u’、黏性磁导率u”、电感磁导率uL、电阻磁导率uR、Q值和电感常数AL;
● 提供测试波形I-V-B、B-H磁滞回线(簇)、交流u&B-H磁导率曲线和磁化曲线和Ps-B比总损耗曲线报告。
● 有锁定B、锁定H和锁定频率f 测试功能;
● 有叠加谐波测试分析功能,包含选择谐波次数;
● 谐波幅度等人为干预进行叠加,并进行谐波损耗的准确测量;
● 测试后自动完成数据计算,有自动校正量程系数功能。
● 文件系统采用数据库格式,可直接打印或输出测试结果到 Excel表格中。
● 文件管理功能强大,包含自动保存数据,删除数据,清除全部数据等功能。
● 数据文件中包含完整的采样数据、样品参数和仪器参数,可输入其它软件。

FE-30SST硅钢片铁损测量仪FE-30SST LOSSMETER采用小型磁导计设计(30SST)和参考国际通用的磁导计测试标准,通过对方圈样品溯源的量值传递,确定有效磁路长度,并进行完全的空气磁通补偿,满足直接对单片样品的测量,测试非常方便,并较准确。
FE-30SST硅钢片铁损测量仪FE-30SST LOSSMETER与目前市场上同类产品有较大区别,单机配置了经过校准的磁导计满足取向和无取向单片硅钢的测量,满足较准确测量矽钢片的质量比总损耗Ps和磁感Bm。可配上位机软件,可以进行B-H磁滞回线、u-H磁导率曲线和Ps-B损耗曲线的测量,在一定情况下,满足了替代方圈标准测试硅钢条样的全性能参数,是中小型硅钢片使用企业或高校样品来源少,但需要对样片检验情况下方便和经济的小型测试设备。
FE-30SST硅钢片铁损测量仪仪器特点
● 面板直接操作,单机可以完成设定点的测试
● 开路磁导计对单片定子片P1.5/50的损耗比对测量
● 闭路测量可以锁定磁感Bm测试比总损耗
● 闭路测量可以锁定励磁磁强Hm测试磁感
● 闭路磁导计真正做到了零磁通的补偿
● 闭路磁导计对取向、无取向硅钢的准确测量
● 连接计算机可以完成各种曲线的测试

『贰』 目前金属表面检测的主要方法有哪些

主流金属制品表面缺陷在线检测方法。
一、漏磁检测
漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。在材料内部的磁力线遇到由缺陷产生的铁磁体间断时,磁力线将会发生聚焦或畸变,这一畸变扩散到材料本身之外,即形成可检测的磁场信号。采用磁敏元件检测漏磁场便可得到有关缺陷信息。因此,漏磁检测以磁敏电子装置与磁化设备组成检测传感器,将漏磁场转变为电信号提供给二次仪表。
漏磁检测技术的整个过程为:激磁-缺陷产生漏磁场-传感器获取信号-信号处理-分析判断。在磁性无损检测中,磁化时实现检测的第一步,它决定着被测量对象(如裂纹)能不能产出足够的可测量和可分辨的磁场信号,同时也影响着检测信号的性能,故要求增强被测磁化缺陷的漏磁信号。被测构件的磁化由磁化器来实现,主要包括磁场源和磁回路等部分。因此,针对被测构件特点和测量目的,选择合适的磁源和设计磁回路是磁化器优化的关键。
漏磁检测金属表面缺陷的物理基础使带有缺陷的铁磁件在磁场中被磁化后,在缺陷处会产生漏磁场,通过检测漏磁场来辩识有无缺陷。因此,研究缺陷漏磁场的特点,确定缺陷的特征,就成为漏磁检测理论和技术的关键。要测量漏磁场,测量装置须具有较高的灵敏度,特别是能测空间点磁场,还应有较大的测量范围和频带;测量装置须具有二维及三维的精确步进或调整能力,以确定传感器的空间位置;同时,应用先进的信号处理技术去除噪声,确定实际的漏磁场量。Foerster,Athertion 已成功应用霍尔器件检测缺陷,霍尔器件可在z—Y二维空间步进的最小间隔分别为2μm和0.1μm。
漏磁检测不仅能检测表面缺陷,且能检测内部微小缺陷;可检测到5X10mm。的微小缺陷;造价较低廉。其缺点是,只能用于金属材料的检测,无法识别缺陷种类。目前,漏磁检测在低温金属材料缺陷检测方面已进入实用阶段。如日本川崎公司千叶厂于1993年开发出在线非金属夹杂物检测装置;日本NKK公司福冈厂于同年研制出一种超高灵敏度的磁敏传感器,用于检测钢板表面缺陷。
二、红外线检测与技术
红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1 mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。该升温取决于缺陷的平均深度、线圈工作频率、特定输入电能,以及被检钢坯电性能、热性能、感应线圈宽度和钢运动速度等因素。当其它各种因素在一定范围内保持恒定时,就可通过检测局部温升值来计算缺陷深度,而局部温升值可通过红外线检测技术加以检定。利用该技术,挪威Elkem公司于1990年研制出Ther—mOMatic连铸钢坯自动检测系统,日本茨城大学工学部的冈本芳三等在检测板坯试件表面裂纹和微小针孔的实验研究中也利用此法得到较满意的结果。
三、超声波探伤技术
超声波检测是利用声脉在缺陷处发生特性变化的原理来检测。接触法是探头与工件表面之间经一层薄的起传递超声波能量作用的耦合剂直接接触。为避免空气层产生强烈反射,在探测时须将接触层间的空气排除干净,使声波入射工件,操作方便,但其对被测工件的表面光洁度要求较高。液浸法是将探头与工件全部浸入于液体或探头与工件之间,局部以充液体进行探伤的方法。脉冲反射法是当脉冲超声波入射至被测工件后,声波在工件内的反射状况就会显示在荧光屏上,根据反射波的时间及形状来判断工件内部缺陷及材料性质的方法。目前,超声波探伤技术已成功应用于金属管道内部的缺陷检测。
四、光学检测法
机器视觉是以图像处理理论为核心,属于人工智能范畴的一个领域,它是以数字图像处理、模式识别、计算机技术为基础的信息处理科学的重要分支,广泛应用于各种无损检测技术中。基于机器视觉的连铸板坯表面缺陷检测方法的基本原理是:一定的光源照在待测金属表面上,利用高速CCD摄像机获得连铸板坯表面图像,通过图像处理提取图像特征向量,通过分类器对表面缺陷进行检测与分类。20世纪70年代中期,El本Jil崎公司就开始研制镀锡板在线机器视觉检测装置 。1988年,美国Sick光电子公司也成功地研制出平行激光扫描检测装置,用以在线检测金属表面缺陷。基于机器视觉的表面在线检测与分类器设计的研究工作目前在国内尚处于起步阶段。1990年,华中理工大学采用激光扫描方法测量冷轧钢板宽度和检测孔洞缺陷,并开发了相应的信号处理电路;1995年又研制出冷轧连铸板坯表面轧洞、重皮和边裂等缺陷检测和最小带宽测量的实验系统。1996年,宝钢与原航天部二院联合研制出冷轧连铸板坯表面缺陷的在线检测系统,并进行了大量的在线试验研究。近年来,北京科技大学、华中科技大学等也研制出较为实用化的在线检测系统。
从检测技术的观点来看,基于机器视觉的钢表面缺陷检测系统面临困境:①要求检测到的缺陷的几何尺寸越来越小,有的甚至小于0.1 mm;② 检测对象可能处于运动状态,导致采集的图像抖动较大;③现场环境较恶劣,往往受烟尘、油污、温度高等因素的影响,引起缺陷图像信噪比下降;④表面缺陷的多样性(如冷轧连铸板坯表面可达100多种),不同缺陷之间的光学特性、电磁特性不同;有的缺陷之间的差异不明显。因此,基于机器视觉的连铸板坯表面缺陷分类器要求具有收敛速度快、鲁棒性好、自学习功能等特点。

『叁』 测量长度常见的的工具有哪些

测量工具通常按用途分为通用测量工具、专类测量工具和专用测量工具3类。

1、通用测量工具

可以测量多种类型工件的长度或角度的测量工具。这类测量工具的品种规格最多,使用也最广泛,有量块、角度量块、多面棱体、正弦规、卡尺、千分尺、百分表(见百分表和千分表)、多齿分度台、比较仪、激光测长仪、工具显微镜、三坐标测量机等。

2、专类测量工具

用于测量某一类几何参数、形状和位置误差(见形位公差)等的测量工具。它可分为:

①直线度和平面度测量工具,常见的有直尺、平尺、平晶、水平仪、自准直仪等。

②表面粗糙度测量工具,常见的有表面粗糙度样块、光切显微镜、干涉显微镜和表面粗糙度测量仪等(见表面粗糙度测量)。

③圆度和圆柱度测量工具,有圆度仪、圆柱度测量仪等(见圆度测量)。

④齿轮测量工具,常见的有齿轮综合检查仪、渐开线测量仪、周节测量仪、导程仪等(见齿轮测量)。

⑤螺纹测量工具(见螺纹测量)等。

3、专用测量工具

仅适用于测量某特定工件的尺寸、表面粗糙度、形状和位置误差等的测量工具。常见的有自动检验机、自动分选机、单尺寸和多尺寸检验装置(见自动测量)等。

(3)断续表面自动测量装置扩展阅读

主要是评定测量工具在规定条件下的测量精确度。常见的评定方法有检定法、比对法和误差分离法。

1、检定法

测量工具按检定规程检定合格后,方能使用。一般是利用长度标准器检定,例如:用量块检定千分尺和卡尺;用标准线纹尺检定比长仪和测长机等。

2、比对法

利用两台以上相同精度等级的测量工具相互对比,以确定其精确度。这种方法适用于评定一些精度等级很高的测量工具,例如激光干涉仪、激光干涉比长仪等,因为对于这类高精度的测量工具,没有合适精度的长度标准器可供检定之用。

3、误差分离法

适用于一些高精度(形状误差小)和具有封闭圆周角的测量工具。例如检定1级平晶,如待检的三块平晶1、2、3的平面度误差分别为x、y、z,则把它们按1与2,2与3,3与1组合起来互检平面度。得出的量值分别为a、b、c。列出方程式x+y=a,y+z=b,x+z=c。解方程式后即可求出x、y、z的量值。

『肆』 全自动表面张力仪有哪些测试方法

全自动表面张力仪(也称为表面张力测试仪)具有模切功能。例如,它们是一个按钮的操作,可以跟踪表面张力随时间的变化,提供接触接触角的指示等等。


杜努伊环法和威廉平板法


杜努伊环法基于杜努伊所开发的技术,并在1925年发表的论文中得到普及。在该技术中,铂环首先浸入液体表面以下。然后使环穿过表面。测量这样做并破坏在流体表面形成的弯液面所需的力。该力转化为表面张力,通常为每厘米达因。


杜努伊环法已被用于测量宽范围的产品。它可以用于非常低的表面张力,以及任何高达90达因/厘米的表面张力。由于其固有的精度和稳定性,传统的扭力平衡张力计仍在广泛使用。


威廉平板法是基于在由液体施加到拉浸没在液体中的材料的力。表面张力越高,作用力越大。威廉平板法非常适合于高表面张力的液体,可用于测量表面张力随时间的变化。基于电子天平的张力计通常用于威廉平板法应用。这些通常提供数字读数,但基于时间的表面张力分析能力有限。



指出需要全自动表面张力仪的要求


如果您需要测量随时间变化的表面张力,例如测量表面活性剂的反应时间,则全自动表面张力仪是一个很好的解决方案。


全自动表面张力仪具有确定拉米拉长度的 独特功能,拉米拉长度是最大力的产生与杜努伊环法的总释放之间的液体拉伸量。


自动化技术可以增强不同基材表观表面张力或润湿性变化的测量。


大多数全自动表面张力仪都有附件,可以控制样品的温度。


大多数全自动表面张力仪还执行常规的杜努伊环法和威廉平板法测试。这些仪器还记录历史结果,对多个测试进行统计分析,并绘制测试读数。


您何时需要自动解决方案?


许多测试要求明确指出需要使用全自动表面张力仪。


•基于时间的表面张力测试


•薄片长度的测量


•润湿性分析(接触角)


•温控样品


•连续记录,绘制和保留所有测试结果


•粉末接触角

回复者:华天电力

『伍』 表面粗糙度测量方法

表面粗糙度测量方法:
1、比较法
比较法测量简便,使用于车间现场测量,常用于中等或较粗糙表面的测量。方法是将被测量表面与标有一定数值的粗糙度样板比较来确定被测表面粗糙度数值的方法。比较时可以采用的方法:Ra>1.6μm时用目测,Ra1.6~Ra0.4μm时用放大镜,Ra<0.4μm时用比较显微镜。
比较时要求样板的加工方法,加工纹理,加工方向,材料与被测零件表面相同。
2、触针法
利用针尖曲率半径为2微米左右的金刚石触针沿被测表面缓慢滑行,金刚石触针的上下位移量由电学式长度传感器转换为电信号,经放大、滤波、计算后由显示仪表指示出表面粗糙度数值,也可用记录器记录被测截面轮廓曲线。一般将仅能显示表面粗糙度数值的测量工具称为表面粗糙度测量仪,同时能记录表面轮廓曲线的称为表面粗糙度轮廓仪。这两种测量工具都有电子计算电路或电子计算机,它能自动计算出轮廓算术平均偏差Ra,微观不平度十点高度Rz,轮廓最大高度Ry和其他多种评定参数,测量效率高,适用于测量Ra为0.025~6.3微米的表面粗糙度。
3、光切法
双管显微镜测量表面粗糙度,可用作Ry与Rz参数评定,测量范围0.5~50。
4、干涉法
利用光波干涉原理(见平晶、激光测长技术)将被测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高(可达500倍)的显微镜将这些干涉条纹的微观部分放大后进行测量,以得出被测表面粗糙度。应用此法的表面粗糙度测量工具称为干涉显微镜。这种方法适用于测量Rz和Ry为0.025~0.8微米的表面粗糙度。
表面粗糙度(surfaceroughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。

『陆』 复杂表面物体体积的非接触光学测量

你是参加光电设计竞赛的吧?

『柒』 船用计程仪是什么

计量船舶航程的航海仪器,也是推算航迹的基本工具之一。 航海计程古代用流木法3世纪中国三国时代东吴万震的《南州异物志》记载:在船头把木块投入海中,然后向船尾跑去,其速度要与木块同时从船头到达船尾,以测算航速和航程。16世纪初荷兰的流木法是用计量流木通过一个船长的时间来核算航速和航程。稍后,在一个较长的时期内使用沙漏计程法。此法是利用一个14秒或28秒的沙漏计计时,另以木板一块连接绳索一根,在绳索上等距打结,两结之间称为一节。如用14秒沙漏计,两结之间距离为23英尺7.5英寸。观测每14秒内放出的节数,即表示船舶每小时航行的海里数(1海里约等于6076英尺)。因此,至今船舶航速单位仍称为节(1节=1海里/小时)。 19世纪出现近代计程仪。后来得到广泛使用的有梅西式和沃克式拖曳计程仪。20世纪30年代出现萨尔式水压计程仪和契尔尼克夫式转轮计程仪。50年代出现电磁计程仪。以上各种计程仪均系测量船舶相对于水的航速和航程,只有根据水的流速和流向加以修正,方能求得船舶相对于水底的航速和航程。 50年代出现的多普勒计程仪和70年代制成的声相关计程仪,在一定水深内可以直接测量船舶相对于水底的航速和航程,使计程仪发展到一个新的水平。 近代计程仪主要由测速部分和指示部分组成。测速部分用以检测和放大船舶航速信号或航程信号;指示部分用机械或电气形式显示船舶航速或航程,再通过积分或微分方法显示航程或速度。不同类型的计程仪的工作原理和性能如下所述。 ①拖曳计程仪。利用相对于船舶航行的水流,使船尾拖带的转子作旋转运动,通过计程仪绳、联接锤、平衡轮,在指示器上显示船舶累计航程。这种计程仪线性差,高速误差大,受风流影响大,操作不便,但性能可靠,有的船舶作为备用计程仪。 ②转轮计程仪。利用相对于船舶航行的水流,推动转轮旋转,产生电脉冲或机械断续信号,经电子线路处理后,由指示器给出航速和航程。这种计程仪线性好,低速灵敏度较高,但机械部分容易磨损。除小船应用外,已逐渐被淘汰。 ③水压计程仪。利用相对于船舶航行水流的动压力,作用于压力传导室的隔膜上,转换为机械力,借助于补偿测量装置,将机械力转换为速度量,再通过速度解算装置给出航程。这种计程仪工作性能较可靠,但线性差,低速误差大,不能测后退速度,机械结构复杂,使用不便,渐被淘汰。 ④电磁计程仪。通过水流(导体)切割装在船底的电磁传感器的磁场,将船舶航行相对于水的运动速度转换为感应电势,再转换为航速和航程。其优点是线性好,灵敏度较高,可测后退速度,目前使用最广。 ⑤多普勒计程仪。利用发射的声波和接收的水底反射波之间的多普勒频移测量船舶相对于水底的航速和累计航程。这种计程仪准确性好,灵敏度高,可测纵向和横向速度,但价格昂贵。主要用于巨型船舶在狭水道航行、进出港、靠离码头时提供船舶纵向和横向运动的精确数据。多普勒计程仪受作用深度限制,超过数百米时,只能利用水层中的水团质点作反射层,变成对水计程仪。 ⑥声相关计程仪。应用声相关原理测量来自水底同一散射源的回声信息到达两接收器的时移,以解算得相对于水底的航速和航程。这种计程仪可测后退速度,兼用于测深。水深超过数百米时也变成相对于水的计程仪,尚在改进中

『捌』 用于检测金属表面是否干净的哪种类型的仪器比较好

主流金属制品表面缺陷在线检测方法。
一、漏磁检测
漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。在材料内部的磁力线遇到由缺陷产生的铁磁体间断时,磁力线将会发生聚焦或畸变,这一畸变扩散到材料本身之外,即形成可检测的磁场信号。采用磁敏元件检测漏磁场便可得到有关缺陷信息。因此,漏磁检测以磁敏电子装置与磁化设备组成检测传感器,将漏磁场转变为电信号提供给二次仪表。
漏磁检测技术的整个过程为:激磁-缺陷产生漏磁场-传感器获取信号-信号处理-分析判断。在磁性无损检测中,磁化时实现检测的第一步,它决定着被测量对象(如裂纹)能不能产出足够的可测量和可分辨的磁场信号,同时也影响着检测信号的性能,故要求增强被测磁化缺陷的漏磁信号。被测构件的磁化由磁化器来实现,主要包括磁场源和磁回路等部分。因此,针对被测构件特点和测量目的,选择合适的磁源和设计磁回路是磁化器优化的关键。
漏磁检测金属表面缺陷的物理基础使带有缺陷的铁磁件在磁场中被磁化后,在缺陷处会产生漏磁场,通过检测漏磁场来辩识有无缺陷。因此,研究缺陷漏磁场的特点,确定缺陷的特征,就成为漏磁检测理论和技术的关键。要测量漏磁场,测量装置须具有较高的灵敏度,特别是能测空间点磁场,还应有较大的测量范围和频带;测量装置须具有二维及三维的精确步进或调整能力,以确定传感器的空间位置;同时,应用先进的信号处理技术去除噪声,确定实际的漏磁场量。Foerster,Athertion 已成功应用霍尔器件检测缺陷,霍尔器件可在z—Y二维空间步进的最小间隔分别为2μm和0.1μm。
漏磁检测不仅能检测表面缺陷,且能检测内部微小缺陷;可检测到5X10mm。的微小缺陷;造价较低廉。其缺点是,只能用于金属材料的检测,无法识别缺陷种类。目前,漏磁检测在低温金属材料缺陷检测方面已进入实用阶段。如日本川崎公司千叶厂于1993年开发出在线非金属夹杂物检测装置;日本NKK公司福冈厂于同年研制出一种超高灵敏度的磁敏传感器,用于检测钢板表面缺陷。
二、红外线检测与技术
红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1 mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。该升温取决于缺陷的平均深度、线圈工作频率、特定输入电能,以及被检钢坯电性能、热性能、感应线圈宽度和钢运动速度等因素。当其它各种因素在一定范围内保持恒定时,就可通过检测局部温升值来计算缺陷深度,而局部温升值可通过红外线检测技术加以检定。利用该技术,挪威Elkem公司于1990年研制出Ther—mOMatic连铸钢坯自动检测系统,日本茨城大学工学部的冈本芳三等在检测板坯试件表面裂纹和微小针孔的实验研究中也利用此法得到较满意的结果。
三、超声波探伤技术
超声波检测是利用声脉在缺陷处发生特性变化的原理来检测。接触法是探头与工件表面之间经一层薄的起传递超声波能量作用的耦合剂直接接触。为避免空气层产生强烈反射,在探测时须将接触层间的空气排除干净,使声波入射工件,操作方便,但其对被测工件的表面光洁度要求较高。液浸法是将探头与工件全部浸入于液体或探头与工件之间,局部以充液体进行探伤的方法。脉冲反射法是当脉冲超声波入射至被测工件后,声波在工件内的反射状况就会显示在荧光屏上,根据反射波的时间及形状来判断工件内部缺陷及材料性质的方法。目前,超声波探伤技术已成功应用于金属管道内部的缺陷检测。
四、光学检测法
机器视觉是以图像处理理论为核心,属于人工智能范畴的一个领域,它是以数字图像处理、模式识别、计算机技术为基础的信息处理科学的重要分支,广泛应用于各种无损检测技术中。基于机器视觉的连铸板坯表面缺陷检测方法的基本原理是:一定的光源照在待测金属表面上,利用高速CCD摄像机获得连铸板坯表面图像,通过图像处理提取图像特征向量,通过分类器对表面缺陷进行检测与分类。20世纪70年代中期,El本Jil崎公司就开始研制镀锡板在线机器视觉检测装置 。1988年,美国Sick光电子公司也成功地研制出平行激光扫描检测装置,用以在线检测金属表面缺陷。基于机器视觉的表面在线检测与分类器设计的研究工作目前在国内尚处于起步阶段。1990年,华中理工大学采用激光扫描方法测量冷轧钢板宽度和检测孔洞缺陷,并开发了相应的信号处理电路;1995年又研制出冷轧连铸板坯表面轧洞、重皮和边裂等缺陷检测和最小带宽测量的实验系统。1996年,宝钢与原航天部二院联合研制出冷轧连铸板坯表面缺陷的在线检测系统,并进行了大量的在线试验研究。近年来,北京科技大学、华中科技大学等也研制出较为实用化的在线检测系统。
从检测技术的观点来看,基于机器视觉的钢表面缺陷检测系统面临困境:①要求检测到的缺陷的几何尺寸越来越小,有的甚至小于0.1 mm;② 检测对象可能处于运动状态,导致采集的图像抖动较大;③现场环境较恶劣,往往受烟尘、油污、温度高等因素的影响,引起缺陷图像信噪比下降;④表面缺陷的多样性(如冷轧连铸板坯表面可达100多种),不同缺陷之间的光学特性、电磁特性不同;有的缺陷之间的差异不明显。因此,基于机器视觉的连铸板坯表面缺陷分类器要求具有收敛速度快、鲁棒性好、自学习功能等特点。

『玖』 转速器盘零件的机械加工工艺以及2 Φ9 工序工装钻床夹具设计

典型零件加工工艺
生产实际中,零件的结构千差万别,但其基本几何构成不外是外圆、内孔、平面、螺纹、齿面、曲面等。很少有零件是由单一典型表面所构成,往往是由一些典型表面复合而成,其加工方法较单一典型表面加工复杂,是典型表面加工方法的综合应用。下面介绍轴类零件、箱体类和齿轮零件的典型加工工艺。
第一节 轴类零件的加工
一 轴类零件的分类、技术要求
轴是机械加工中常见的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等如图6-1,其中阶梯传动轴应用较广,其加工工艺能较全面地反映轴类零件的加工规律和共性。
根据轴类零件的功用和工作条件,其技术要求主要在以下方面:
⑴ 尺寸精度 轴类零件的主要表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6~IT9。
⑵ 几何形状精度 主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。
⑶ 相互位置精度 包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。
⑷ 表面粗糙度 轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为0.2~1.6μm,传动件配合轴颈为0.4~3.2μm。
⑸ 其他 热处理、倒角、倒棱及外观修饰等要求。
二、轴类零件的材料、毛坯及热处理
1.轴类零件的材料
⑴ 轴类零件材料 常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMnTi、20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。
⑵ 轴类毛坯 常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。
2.轴类零件的热处理
锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。
调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。
表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。
精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。
三、轴类零件的安装方式
轴类零件的安装方式主要有以下三种。
1.采用两中心孔定位装夹
一般以重要的外圆面作为粗基准定位,加工出中心孔,再以轴两端的中心孔为定位精基准;尽可能做到基准统一、基准重合、互为基准,并实现一次安装加工多个表面。中心孔是工件加工统一的定位基准和检验基准,它自身质量非常重要,其准备工作也相对复杂,常常以支承轴颈定位,车(钻)中心锥孔;再以中心孔定位,精车外圆;以外圆定位,粗磨锥孔;以中心孔定位,精磨外圆;最后以支承轴颈外圆定位,精磨(刮研或研磨)锥孔,使锥孔的各项精度达到要求。
2.用外圆表面定位装夹
对于空心轴或短小轴等不可能用中心孔定位的情况,可用轴的外圆面定位、夹紧并传递扭矩。一般采用三爪卡盘、四爪卡盘等通用夹具,或各种高精度的自动定心专用夹具,如液性塑料薄壁定心夹具、膜片卡盘等。
3.用各种堵头或拉杆心轴定位装夹
加工空心轴的外圆表面时,常用带中心孔的各种堵头或拉杆心轴来安装工件。小锥孔时常用堵头;大锥孔时常用带堵头的拉杆心轴,如图6-2。

四、轴类零件工艺过程示例
1.CA6140车床主轴技术要求及功用
图6-3为CA6140车床主轴零件简图。由零件简图可知,该主轴呈阶梯状,其上有安装支承轴承、传动件的圆柱、圆锥面,安装滑动齿轮的花键,安装卡盘及顶尖的内外圆锥面,联接紧固螺母的螺旋面,通过棒料的深孔等。下面分别介绍主轴各主要部分的作用及技术要求:
⑴ 支承轴颈 m;支承轴颈尺寸精度为IT5。因为主轴支承轴颈是用来安装支承轴承,是主轴部件的装配基准面,所以它的制造精度直接影响到主轴部件的回转精度。主轴二个支承轴颈A、B圆度公差为0.005mm,径向跳动公差为0.005mm;而支承轴颈1∶12锥面的接触率≥70%;表面粗糙度Ra为0.4
⑵ 端部锥孔 主轴端部内锥孔(莫氏6号)对支承轴颈A、B的跳动在轴端面处公差为0.005mm,离轴端面300mm处公差为0.01 m;硬度要求45~50HRC。该锥孔是用来安装顶尖或工具锥柄的,其轴心线必须与两个支承轴颈的轴心线严格同轴,否则会使工件(或工具)产生同轴度误差。mm;锥面接触率≥70%;表面粗糙度Ra为0.4
⑶ 端部短锥和端面 头部短锥C和端面D对主轴二m。它是安装卡盘的定位面。为保证卡盘的定心精度,该圆锥面必须与支承轴颈同轴,而端面必须与主轴的回转中心垂直。 个支承轴颈A、B的径向圆跳动公差为0.008mm;表面粗糙度Ra为0.8
⑷ 空套齿轮轴颈 空套齿轮轴颈对支承轴颈A、B的径向圆跳动公差为0.015 mm。由于该轴颈是与齿轮孔相配合的表面,对支承轴颈应有一定的同轴度要求,否则引起主轴传动啮合不良,当主轴转速很高时,还会影响齿轮传动平稳性并产生噪声。
⑸ 螺纹 主轴上螺旋面的误差是造成压紧螺母端面跳动的原因之一,所以应控制螺纹的加工精度。当主轴上压紧螺母的端面跳动过大时,会使被压紧的滚动轴承内环的轴心线产生倾斜,从而引起主轴的径向圆跳动。
2.主轴加工的要点与措施
主轴加工的主要问题是如何保证主轴支承轴颈的尺寸、形状、位置精度和表面粗糙度,主轴前端内、外锥面的形状精度、表面粗糙度以及它们对支承轴颈的位置精度。
主轴支承轴颈的尺寸精度、形状精度以及表面粗糙度要求,可以采用精密磨削方法保证。磨削前应提高精基准的精度。
保证主轴前端内、外锥面的形状精度、表面粗糙度同样应采用精密磨削的方法。为了保证外锥面相对支承轴颈的位置精度,以及支承轴颈之间的位置精度,通常采用组合磨削法,在一次装夹中加工这些表面,如图6-4所示。机床上有两个独立的砂轮架,精磨在两个工位上进行,工位Ⅰ精磨前、后轴颈锥面,工位Ⅱ用角度成形砂轮,磨削主轴前端支承面和短锥面。
主轴锥孔相对于支承轴颈的位置精度是靠采用支承轴颈A、B作为定位基准,而让被加工主轴装夹在磨床工作台上加工来保证。以支承轴颈作为定位基准加工内锥面,符合基准重合原则。在精磨前端锥孔之前,应使作为定位基准的支承轴颈A、B达到一定的精度。主轴锥孔的磨削一般采用专用夹具,如图6-5所示。夹具由底座1、支架2及浮动夹头3三部分组成,两个支架固定在底座上,作为工件定位基准面的两段轴颈放在支架的两个V形块上,V形块镶有硬质合金,以提高耐磨性,并减少对工件轴颈的划痕,工件的中心高应正好等于磨头砂轮轴的中心高,否则将会使锥孔母线呈双曲线,影响内锥孔的接触精度。后端的浮动卡头用锥柄装在磨床主轴的锥孔内,工件尾端插于弹性套内,用弹簧将浮动卡头外壳连同工件向左拉,通过钢球压向镶有硬质合金的锥柄端面,限制工件的轴向窜动。采用这种联接方式,可以保证工件支承轴颈的定位精度不受内圆磨床主轴回转误差的影响,也可减少机床本身振动对加工质量的影响。

主轴外圆表面的加工,应该以顶尖孔作为统一的定位基准。但在主轴的加工过程中,随着通孔的加工,作为定位基准面的中心孔消失,工艺上常采用带有中心孔的锥堵塞到主轴两端孔中,如图6-2所示,让锥堵的顶尖孔起附加定位基准的作用。
3.CA6140车床主轴加工定位基准的选择
主轴加工中,为了保证各主要表面的相互位置精度,选择定位基准时,应遵循基准重合、基准统一和互为基准等重要原则,并能在一次装夹中尽可能加工出较多的表面。
由于主轴外圆表面的设计基准是主轴轴心线,根据基准重合的原则考虑应选择主轴两端的顶尖孔作为精基准面。用顶尖孔定位,还能在一次装夹中将许多外圆表面及其端面加工出来,有利于保证加工面间的位置精度。所以主轴在粗车之前应先加工顶尖孔。
为了保证支承轴颈与主轴内锥面的同轴度要求,宜按互为基准的原则选择基准面。如车小端1∶20锥孔和大端莫氏6号内锥孔时, 以与前支承轴颈相邻而它们又是用同一基准加工出来的外圆柱面为定位基准面(因支承轴颈系外锥面不便装夹);在精车各外圆(包括两个支承轴颈)时,以前、后锥孔内所配锥堵的顶尖孔为定位基面;在粗磨莫氏6号内锥孔时,又以两圆柱面为定位基准面;粗、精磨两个支承轴颈的1∶12锥面时,再次用锥堵顶尖孔定位;最后精磨莫氏6号锥孔时,直接以精磨后的前支承轴颈和另一圆柱面定位。定位基准每转换一次,都使主轴的加工精度提高一步。
4.CA6140车床主轴主要加工表面加工工序安排
m。105h5轴颈,两支承轴颈及大头锥孔。它们加工的尺寸精度在IT5~IT6之间,表面粗糙度Ra为0.4~0.890g5、80h5、75h5、CA6140车床主轴主要加工表面是
主轴加工工艺过程可划分为三个加工阶段,即粗加工阶段(包括铣端面、加工顶尖孔、粗车外圆等);半精加工阶段(半精车外圆,钻通孔,车锥面、锥孔,钻大头端面各孔,精车外圆等);精加工阶段(包括精铣键槽,粗、精磨外圆、锥面、锥孔等)。
在机械加工工序中间尚需插入必要的热处理工序,这就决定了主轴加工各主要表面总是循着以下顺序的进行,即粗车→调质(预备热处理)→半精车→精车→淬火-回火(最终热处理)→粗磨→精磨。
综上所述,主轴主要表面的加工顺序安排如下:
外圆表面粗加工(以顶尖孔定位)→外圆表面半精加工(以顶尖孔定位)→钻通孔(以半精加工过的外圆表面定位)→锥孔粗加工(以半精加工过的外圆表面定位,加工后配锥堵)→外圆表面精加工(以锥堵顶尖孔定位)→锥孔精加工(以精加工外圆面定位)。
当主要表面加工顺序确定后,就要合理地插入非主要表面加工工序。对主轴来说非主要表面指的是螺孔、键槽、螺纹等。这些表面加工一般不易出现废品,所以尽量安排在后面工序进行,主要表面加工一旦出了废品,非主要表面就不需加工了,这样可以避免浪费工时。但这些表面也不能放在主要表面精加工后,以防在加工非主要表面过程中损伤已精加工过的主要表面。
对凡是需要在淬硬表面上加工的螺孔、键槽等,都应安排在淬火前加工。非淬硬表面上螺孔、键槽等一般在外圆精车之后,精磨之前进行加工。主轴螺纹,因它与主轴支承轴颈之间有一定的同轴度要求,所以螺纹安排在以非淬火-回火为最终热处理工序之后的精加工阶段进行,这样半精加工后残余应力所引起的变形和热处理后的变形,就不会影响螺纹的加工精度。
5.CA6140车床主轴加工工艺过程
表6-1列出了CA6140车床主轴的加工工艺过程。
生产类型:大批生产;材料牌号:45号钢;毛坯种类:模锻件
表6-1 大批生产CA6140车床主轴工艺过程
序号 工序名称 工序内容 定位基准 设备
1 备料
2 锻造 模锻 立式精锻机
3 热处理 正火
4 锯头
5 铣端面钻中心孔 毛坯外圆 中心孔机床
6 粗车外圆 顶尖孔 多刀半自动车床
7 热处理 调质
8 车大端各部 车大端外圆、短锥、端面及台阶 顶尖孔 卧式车床
9 车小端各部 仿形车小端各部外圆 顶尖孔 仿形车床
48mm通孔 两端支承轴颈 深孔钻床10 钻深孔 钻
11 车小端锥孔 车小端锥孔(配1∶20锥堵,涂色法检查接触率≥50%) 两端支承轴颈 卧式车床
12 车大端锥孔 车大端锥孔(配莫氏6号锥堵,涂色法检查接触率≥30%)、外短锥及端面 两端支承轴颈 卧式车床
13 钻孔 钻大头端面各孔 大端内锥孔 摇臂钻床
90g5、短锥及莫氏6号锥孔) 高频淬火设备14 热处理 局部高频淬火(
15 精车外圆 精车各外圆并切槽、倒角 锥堵顶尖孔 数控车床
105h5外圆 90g5、75h5、16 粗磨外圆 粗磨 锥堵顶尖孔 组合外圆磨床
17 粗磨大端锥孔 粗磨大端内锥孔(重配莫氏6号锥堵,涂色法检查接触率≥40%) 75h5外圆 内圆磨床前支承轴颈及
89f6花键 锥堵顶尖孔 花键铣床18 铣花键 铣
19 铣键槽 80h5及M115mm外圆 立式铣床铣12f9键槽
20 车螺纹 车三处螺纹(与螺母配车) 锥堵顶尖孔 卧式车床
21 精磨外圆 精磨各外圆及E、F两端面 锥堵顶尖孔 外圆磨床
22 粗磨外锥面 粗磨两处1∶12外锥面 锥堵顶尖孔 专用组合磨床
23 精磨外锥面 精磨两处两处1∶12外锥面、D端面及短锥面 锥堵顶尖孔 专用组合磨床
75h5外圆 24 精磨大端锥孔 精磨大端莫氏6号内锥孔(卸堵,涂色法检查接触率≥70%) 前支承轴颈及 专用主轴锥孔磨床
25 钳工 端面孔去锐边倒角,去毛刺
26 检验 按图样要求全部检验 75h5外圆 前支承轴颈及 专用检具
五、轴类零件的检验
1.加工中的检验
自动测量装置,作为辅助装置安装在机床上。这种检验方式能在不影响加工的情况下,根据测量结果,主动地控制机床的工作过程,如改变进给量,自动补偿刀具磨损,自动退刀、停车等,使之适应加工条件的变化,防止产生废品,故又称为主动检验。主动检验属在线检测,即在设备运行,生产不停顿的情况下,根据信号处理的基本原理,掌握设备运行状况,对生产过程进行预测预报及必要调整。在线检测在机械制造中的应用越来越广。
2.加工后的检验
单件小批生产中,尺寸精度一般用外径千分尺检验;大批大量生产时,常采用光滑极限量规检验,长度大而精度高的工件可用比较仪检验。表面粗糙度可用粗糙

阅读全文

与断续表面自动测量装置相关的资料

热点内容
重力工具箱部分 浏览:554
深圳健身器材在哪里 浏览:34
阀门用于工程什么部位 浏览:801
直埋暖气管阀门滤网检修吗 浏览:571
制冷配件什么牌子好 浏览:109
实验室加热制取氧气的装置 浏览:430
自动反吹装置 浏览:103
运动仪表盘靠什么运转的 浏览:966
家庭水电解实验装置图 浏览:610
郑州有哪些食品包装机械市场 浏览:319
化学实验蒸馏装置如何安装 浏览:873
机械加工要求符号有哪些 浏览:381
泰安市江山重工机械有限公司怎么样 浏览:327
钢筋机械连接头个数怎么计算 浏览:730
自动供水装置设计图 浏览:785
机械手的论文提纲怎么写 浏览:970
水管阀门漏水是什么原因 浏览:96
轴承蜕皮怎么 浏览:326
x5排气阀门 浏览:491
铁桶改成工具箱 浏览:855