A. 化学实验仪器有哪些
化学实验室中常用的仪器有:
1、托盘天平:是用来粗略称量物质质量的一种仪器,每架天平都成套配备法码一盒。中学实验室常用载重100 g(感量为0.1 g)和200 g(感量为0.2 g)2种。
2、漏斗:是一个筒型物体,被用作把液体及幼粉状物体注入入口较细小的容器。在漏斗咀部较细小的管状部份可以有不同长度。漏斗通常以不锈钢或塑胶制造,但纸制漏斗亦有时被使用于难以彻底清洗的物质,例如引擎机油。
3、广口瓶是用于盛放固体试剂的玻璃容器,有透明和棕色两种,棕色瓶用于盛放需避光保存的试剂(例如硝酸银)。广口瓶一般用于存放试剂,瓶口内部磨砂,用于与瓶塞配合使用。
4、石棉网是用于加热液体时架在酒精灯上的三脚架上的铁丝网。它是由两片铁丝网夹着一张石棉水浸泡后晾干的棉布做的。
5、铁架台:用于固定和支持各种仪器,铁环可代替漏斗架使用。一般常用于过滤、加热、滴定等实验操作。是物理、化学实验中使用最广泛的仪器之一,常与酒精灯配合使用。
B. 微管反应器原理
微化工系统是以带有微结构元件的化工装备为核心的化工系统,它的突出特点是在微时空尺度上控制流动、传递和反应过程,为实现高效、安全的物质转化提供了基础。微化工系统相关研究起源于20世纪90年代[1],多年来的研究结果表明:微化工设备内流动状态高度可控,液滴和气泡的分散尺度一般在数微米至数百微米之间;具有丰富的多相流型,一些流型中的液滴和气泡结构与尺寸高度均一;由于微尺度下传递距离短、浓度/温度梯度高以及体系巨大的比表面积,微反应器内传热/传质系数较传统化工设备大1-3个数量级[2]。
国内开展微反应器研究已经有十余年时间,在微反应器的设计制造、微混合原理的探索、气相反应、液相反应、纳米颗粒制备等领域得到迅速发展,取得了显著成果[3]。目前从事微反应器相关研究的主要有中国科学院大连物理化学研究所、清华大学、华东理工大学和山东豪迈化工技术有限公司等科研院校和科研单位。
聚合反应对反应器的传热和混合有很高的要求,传统的釜式反应器在这方面的缺陷成为获得高性能聚合产物的瓶颈之一。近年来,微反应器已能够成功应用于多种机理的聚合反应并表现出对传统釜式反应器的显著优势。从当前的发展趋势来看,微反应器在聚合反应中的应用将成为化工和高分子领域的研究热点之一。本文综述了微反应器在不同的聚合反应体系中的应用。
1
自由基聚合
聚合温度对自由基聚合所得产物的分子量和分子量分布有很大影响。因此,对反应体系温度的控制是控制产品质量的关键因素。大部分自由基聚合是较强的放热反应,且反应速度较快。在传统的釜式反应器中,反应器传热和传质能力的不足往往导致反应体系内温度分布不均,从而影响产物的分子量分布。在放热较强的自由基聚合中,使用传热能力强的微反应器可以显著改善反应结果。
Iwasaki等[4]用T形微混合器和内径分别为250μm和500μm的微管式反应器组成微反应器系统(图一),进行了一系列丙烯酸酯单体的自由基聚合。釜式反应器中丙烯酸丁酯的聚合反应产物分子量分布指数(PDI)高达10以上,而相同的反应时间和产率下微混合器中反应产物的PDI可控制在3.5以下,证明微反应器可以有效地控制自由基聚合产物的分子量分布。
图一 丙烯酸酯自由基聚合微反应器装置图
Okubo等[5]在微反应器中进行了苯乙烯的悬浮聚合,反应物和水通过K-M型微混合器形成悬浮液,再经过管式反应器进行聚合[图2(a)]。经过降温可直接在管内得到聚合物颗粒,通过改变流量可以调节聚合物颗粒大小。
微通道中的液滴聚合是一种新兴的聚合方式,其基本原理为在管内利用不良溶剂将反应体系分隔成小液滴,每个小液滴均可看做一个微型反应器。在较小的微通道尺寸下,液滴聚合的混沌混合特性进一步强化了传质效果。Okubo等利用液滴聚合合成了聚苯乙烯和聚甲基丙烯酸甲酯,反应装置见图二(b)。通过调节停留时问和控制两相间溶剂扩散的方法可以实现对聚合产物分子量的控制;与釜式反应器相比,得到的聚苯乙烯和聚甲基丙烯酸甲酯的分子量分布较窄,经过微反应器沉淀得到的聚合物粒子分布也较均一。
图二 苯乙烯自由基聚合实验装置示意图
Wu等[6}在自制的双输入微通道(500μm*600μm)反应器中进行了甲基丙烯酸羟丙酯(HPMA)的ATRP聚合。单体和催化剂从一个通道进入,引发剂从另一入口通入,通过对流量调节可以实现对产物分子量和分子量分布的调控。Wu等[7}随后又设计了结构相似的三输入微反应器,实现了环氧乙烷与HPMA的ATRP共聚合。通过调节反应时间和引发剂相对浓度两种方法均可实现对聚合产物中HPMA含量的调节。Chastek等[8]在微反应器中进行了苯乙烯和一系列丙烯酸酯的ATRP共聚合,通过特定溶剂使产物胶束化,并用动态光散射法对胶束进行了测定,反应装置见图三。
图三 ATRP共聚、胶束化和DLS检测集成装置示意图
2
阴离子聚合
Honda等[9}在由微混合器和微管反应器(内径250μm)组成的微反应器装置中进行了氨基酸-N-羧基-环内酸酐的阴离子聚合。所得产物的分子量分布窄于釜式反应器的聚合产物,并可以通过调节流速来控制产物分子量和分子量分布。如图四所示,流速降低时,反应物停留时问增长,反应程度提高,产物的分子量变大,分子量分布变窄。
图四 不同流速下的GPC流出曲线
3
阳离子聚合
Nagaki等[10]将微反应器与“阳离子池”引发技术结合,进行了一系列乙烯基醚单体的阳离子聚合(图五)。阳离子池的高效引发结合微反应器的快速混合使反应在0.5 s内即可完成,并能很好地控制产物的分子量分布,产物的PDI从釜式反应器的2.25降至1.14。
C. 请问实验室废水处理装置主要有几部分组成
化验室的废水处理,不需要什么特殊装置,就几只大塑料桶即可(根据废液性质分类),处理时,也在塑料桶内反应。
(一般情况下,化验室产生的废水量很少,不比生产环节,若产生的常见废酸液和废碱液,可大致中和一下,加水稀释排放即可)。
详细介绍以下两大类,一类是无机废水,一类是有机废水,
1 有毒有害无机废水处理
1.1 六价铬
六价铬废水一般存在于皮革揉制、电镀、铬黄染料废水及冷却水(阻蚀剂)中,是一种致癌物质,化验室的含六价铬废水水量小、铬浓度低(<20mg/I),在这种情况下,可先将六价铬还原为,三价铬后再用碱(氢氧化钠)进行沉淀,如选用硫酸亚铁作还原剂,废水PH控制在8__9范围,选用亚硫酸钠作还原剂,废水pH控制在2—3范围,其他还原剂还有二氧化硫、亚硫酸氢钠、连二亚硫酸钠等,化验员可根据情况选用。
1.2 铅
铅是工业上使用最广泛的有色金属之一,常作为一种工业原料应用于蓄电池的极板、颜料、香橡胶、农药、涂料等制造业。废水中可溶性铅一般先使之形成铅沉淀物,再去除,所使用的沉淀剂有石灰、苛性碱、苏打及磷酸盐等,如使用石灰,PH控制在7.5~9.0范围;使用苛性碱PH控制在lO以上。
1.3 镉
90%镉的应用于电镀、颜料、合金及电池等,对环境监测站化验室含镉废水实用的方法有沉淀法,吸附法。使用沉淀法,沉淀剂有氢氧化物、硫化物、聚合硫酸铁,使用氢氧化物,pH控制在lO以上,可达满意效果;使用硫化物PH控制在9以上;使用聚合硫酸铁pH控制在8.5~9.5范围。吸附法,可使用活性炭、风化煤、磺化煤作吸附剂。
1.4 汞
汞广泛应用在氯碱、制浆造纸、农药、电子、仪表等行业中,对于汞的去处,经典方法是硫化物沉淀法,pH控制在中性范围,化验员在使用此方法时要注意不要使硫化物过量,避免残余硫产生的污染问题。
1.5 砷
无机砷主要以亚砷酸离子和砷酸离子的形式存在于水中,存在于冶金、皮革加工、硫酸、染料、农药生产中。砷的常规处理方法包括石灰或硫化物沉淀,或者用铁或铝的氢氧化物沉淀,再加上混凝剂絮凝吸附。使用石灰,pH控制在11.5以上,使用硫化物pH控制在7左右。
1.6 氰化物
氰化物是剧毒物质,主要存在于电镀、煤气厂、染料厂等废水中,对于此类废水,化验员可直接投加次氯酸钠,搅拌即可。
2 有毒有害有机废水处理
2.1 酚
随着石油化工、塑料、合成纤维、焦化等工业的迅速发展,各种含酚废水也相应增多,酚的毒性较高,使用活性炭作吸附剂是一种可行的方法。对于其他有毒有害有机废水,化验员也可用此方法。
3 小结
对于化验室常见的几种有毒有害的有机、无机废水,以上方法均为操作简单,实用的方法,化验员需要注意的是对于沉淀物的处理,不能随便丢弃,应集中收集后,送有毒有害废弃物处理中心进一步处理。
D. 什么是微化工技术
微化工过程是以微结构元件为核心,在微米或亚毫米(0.1-1mm)的受限空间内进行的化工过程。针对微反应器,通常要求其特征长度小于0.5mm。在微化工过程中,微小的分散尺度强化了混合与传递过程,从而提高了过程的可控性和效率。当将其应用于工业生产过程的时候,通常依照并联的数量放大的基本原则,来实现大规模的生产。
微化工技术通常包括,微换热、微反应、微分离和微分析等系统,其中前两者是较为主要的。
E. (2014天津) Na2S2O3是重要的化工原料,易溶于水,在中性或碱性环境中稳定.Ⅰ.制备Na2S2O35H2O反应
(1)硫粉难溶于水微溶于乙醇,所以硫粉在反应前用乙醇湿润是使硫粉易于分散到溶液中,
故答案为:使硫粉易于分散到溶液中;
(2)根据题中图示装置图可知,仪器a为冷凝管,该实验中冷凝管具有冷凝回流的作用,
故答案为:冷凝管;冷凝回流;
(3)S2O32?具有还原性,能够被氧气氧化成硫酸根离子,所以可能存在的杂质是硫酸钠;检验硫酸钠的方法为:取少量产品溶于过量稀盐酸,过滤,向滤液中加BaCl2溶液,若有白色沉淀,则产品中含有Na2SO4,
故答案为:Na2SO4;取少量产品溶于过量稀盐酸,过滤,向滤液中加BaCl2溶液,若有白色沉淀,则产品中含有Na2SO4;
(4)S2O32?与氢离子发生氧化还原反应生成淡黄色硫单质,反应的离子方程式为:S2O32?+2H+=S↓+SO2↑+H2O,
故答案为:S2O32?+2H+=S↓+SO2↑+H2O;
(5)滴定结束后,碘单质使淀粉变蓝,所以滴定终点时溶液颜色变化为:由无色变为蓝色,
故答案为:由无色变为蓝色;
(6)根据图示的滴定管中液面可知,滴定管中初始读数为0,滴定终点液面读数为18.10mL,所以消耗碘的标准溶液体积为18.10mL;
根据反应2S2O32-+I2═S4O62-+2I-可知,n(S2O32-)=2n(I2),所以W g产品中含有Na2S2O3?5H2O质量为:0.1000 mol?L-1×18.10×10-3L×2×M=3.620×10-3Mg,则产品的纯度为:
3.620×10?3Mg |
Wg |
3.620×10?3M |
W |
3.620×10?3M |
W |
F. 高中化学实验
1氯气
制取原理——强氧化剂氧化含氧化合物
制取方程式——MnO2+4HCl(浓)MnCl2+Cl2↑+2H2O
装置——分液漏斗,圆底烧瓶,加热
检验——能使湿润的蓝色石蕊试纸先变红后褪色;
除杂质——先通入饱和食盐水(除HCl),再通入浓H2SO4(除水蒸气)
收集——排饱和食盐水法或向上排气法
尾气回收——Cl2+2NaOH=== NaCl+NaClO+H2O
2氨气
①制取原理——固体铵盐与固体强碱的复分解
②制取方程式——Ca(OH)2+2NH4ClCaCl2+NH3↑+2H2O
③装置——略微向下倾斜的大试管,加热
④检验——湿润的红色石蕊试纸,变蓝
⑤除杂质——通入碱石灰(除水蒸气)
收集——向下排气法
3苏打
苏打是Soda的音译,化学式为Na2CO3。它的名字颇多,学名叫碳酸钠,俗名除叫苏打外,又称纯碱或苏打粉。带有结晶水的叫水合碳酸钠,有一水碳酸钠(Na2CO3·H2O)、七水碳酸钠(Na2CO3·7H2O)和十水碳酸钠(Na2CO3·10H2O)三种。十水碳酸钠又叫洗濯苏打、洗濯碱或晶碱。
无水碳酸钠是白色粉末或细粒,易溶于水,水溶液呈碱性。它有很强的吸湿性,在空气中能吸收水分而结成硬块。十水碳酸钠是无色晶体,室温下放置空气中,会失去结晶水而成为一水碳酸钠。无论十水碳酸钠还是一水碳酸钠,加热都会变成无水碳酸钠。碳酸钠很稳定,受热不易分解。遇酸能放出二氧化碳:
Na2CO3+2HCl====2NaCl+H2O+CO2↑�
碳酸钠溶液还能吸收二氧化碳而成碳酸氢钠:
Na2CO3+H2O+CO2====2NaHCO3
在三种苏打中,碳酸钠的用途最广。它是一种十分重要的化工产品,是玻璃、肥皂、纺织、造纸、制革等工业的重要原料。冶金工业以及净化水也都用到它。它还可用于其他钠化合物的制造。早在十八世纪,它就和硫酸、盐酸、硝酸、烧碱并列为基础化工原料--三酸两碱之一。在日常生活中,苏打也有很多用途,比如它可以直接作为洗涤剂使用,在蒸馒头时加一些苏打,可以中和发酵过程中产生的酸性物质。
4 亚硝酸钠
分子式:NaNO2
分子量:69.00
性质和用途:白色或微黄色斜方晶体,易溶于水和液氨中,微溶于甲醇、乙醇、乙醚,吸湿性强,用于织物染色的媒染剂;丝绸、
亚麻的漂白剂,金属热处理剂;钢材缓蚀剂;氰化物中毒的解毒剂,实验室分析试剂,在肉类制品加工中用作发色剂、防微生物
剂,防腐剂。密度2.168g/cm3,熔点271℃,于320℃分解。吸湿,易溶于水,水溶液稳定,表现碱性反应,可从空气中吸收氧
气,并形成硝酸钠。亚硝酸钠有毒,并且是致癌物质,在亚硝酸钠分子中,氮的氧化数是+3。是一种中间氧化态,既有还原性
又有氧化性,例如在酸性溶液中能将KI氧化成单质碘:
这个反应可以定量地进行,可用于测定亚硝酸盐。亚硝酸钠大量用在染料工业和有机合成中,常用于制备偶氮染料、氧化氮、
药物、防锈剂以及印染、漂白、腌肉等方面,因为它有毒,使用时必须注意。亚硝酸钠的热稳定性高,可用高温热还原法备:
Pb(粉)+NaNO3=PbO+NaNO2
产物PbO不溶于水,将反应后混合物溶于热水中,过滤、重结晶,得到白色晶状的亚硝酸钠。
氧化还原性
(NO2)-中的N为+3价,所以既有氧化性,又有还原性。
在酸性介质中:HNO2/NO=0.99V,有较强的氧化能力。
(NO2)-+2I-+4H+==2NO+I2+2H2O
因在酸中有NO+存在,易得电子成NO,故很容易将I-氧化。这是亚硝酸和稀硝酸的区别反应。硝酸盐的酸性溶液,不能将I-氧化,是由于上述动力学原因所至。遇强氧化剂时,也有还原性。
5(NO2)-+2(MnO4)-+6H+====5(NO3)-+(Mn)2++3H2O
在无氧化剂和还原剂时,易歧化。
亚硝酸钠SodiumNitrite也作为食品的增色剂,用于肉类食品。但是由于其致癌性,不允许超标
亚硝酸钠
5硫化氢
①制取原理——强酸与强碱的复分解反应
②制取方程式——FeS+2HCl=== FeCl2+H2S↑
③装置——启普发生器
④检验——能使湿润的醋酸铅试纸变黑
⑤除杂质——先通入饱和NaHS溶液(除HCl),再通入固体CaCl2(或P2O5)(除水蒸气)
⑥收集——向上排气法
6二氧化硫
①制取原理——稳定性强酸与不稳定性弱酸盐的复分解
②制取方程式——Na2SO3+H2SO4=== Na2SO4+SO2↑+H2O
③装置——分液漏斗,圆底烧瓶
④检验——先通入品红试液,褪色,后加热又恢复原红色;
⑤除杂质——通入浓H2SO4(除水蒸气)
⑥收集——向上排气法
7氯化氢
①制取原理——高沸点酸与金属氯化物的复分解
②制取方程式——NaCl+H2SO4Na2SO4+2HCl↑
③装置——分液漏斗,圆底烧瓶,加热
④检验——通入AgNO3溶液,产生白色沉淀,再加稀HNO3沉淀不溶
⑤除杂质——通入浓硫酸(除水蒸气)
⑥收集——向上排气法
8二氧化氮
①制取原理——不活泼金属与浓硝酸的氧化—还原;
②制取方程式——Cu+4HNO3===Cu(NO3)2+2NO2↑+2H2O
③装置——分液漏斗,圆底烧瓶(或用大试管,锥形瓶)
④检验——红棕色气体,通入AgNO3溶液颜色变浅,但无沉淀生成
⑤收集——向上排气法
⑥尾气处理——3NO2+H2O===2HNO3+NO
NO+NO2+2NaOH===2NaNO2+H2O
9一氧化碳
①制取原理——浓硫酸对有机物的脱水作用
②制取方程式——HCOOHCO↑+H2O
③装置——分液漏斗,圆底烧瓶
④检验——燃烧,蓝色火焰,无水珠,产生气体能使澄清石灰水变浑浊
⑤除杂质——通入浓硫酸(除水蒸气)
⑥收集——排水法
10甲烷
①制取方程式——CH3COONa+NaOH CH4↑+Na2CO3
②装置——略微向下倾斜的大试管,加热
③收集——排水法或向下排空气法
11乙烯
①制取原理——浓硫酸对有机物的脱水作用
②制取方程式——CH3CH2OH CH2=CH2↑+H2O
③装置——分液漏斗,圆底烧瓶,加热
④除杂质——通入NaOH溶液(除SO2,CO2),通入浓硫酸(除水蒸气)
收集——排水法
12乙炔
①制取原理——电石强烈吸水作用
②制取方程式——CaC2+2H2OCa(OH)2+CH CH↑
③装置——分液漏斗,圆底烧瓶(或用大试管,锥形瓶)
④检验——无色气体,能燃烧,产生明亮的火焰,并冒出浓的黑烟
⑤除杂质——通入硫酸铜溶液(除H2S,PH3),通入浓硫酸(除水蒸气)
收集——排水法或向下排气法
G. 溴苯是一种化工原料,实验室合成溴苯的装置示意图如图及有关数据如下:按下列合成步骤回答问题:
(1)铁和溴反应生成三溴化铁,三溴化铁与苯作用,生成溴苯,同时有溴化氢生成,2Fe+3Br2=2FeBr3,C6H6+Br2
FeBr3 |
FeBr3 |
H. 微化工技术的应用前景如何
先上结论,微化工的风口已经若隐若现,尤其是今年4月山东豪迈推出了12万元的微反装置后大大降低了微化工的工艺研究门槛,导致更多的生产单位愿意投资进行微化工的研究。
在讲这个问题前现回顾一下微化工的历史和技术特点。
微化工的概念最早在上个世纪七十年代被一个德国人提出,名字我忘了,现在应该还活着。其主要的原理就是当流体通道减小之后可以产生一系列过程强化效应。
首先是传递效果的增强
任何化工的传递过程都要经过所谓的边界层进行传递,传递过程的快慢可以近似认为和边界层厚度呈反比。边界层的厚度目前是一个很难说清楚的概念,很难进行计算和模拟,但是有一个定性的结论就是边界层厚度绝对不可能大于流道尺寸,因此流道越小,边界层厚度越薄,传递过程越快。所以减小流道尺寸对所有传递过程,比如说传热(换热),液液传质(萃取),气液传质(气体吸收)等都有传质强化作用。这也就是微反应器中常常能比常规反应器中的反应速率明显加快的原因。
其次是微流道导致的传热界面增大
任何一个设备都有所谓比表面积的概念,尤其是涉及到传热过程。比如说在一个设备内反应放出多少热量,这与反应器内部装填了多少物料有关,反应放热同反应器的体积成正比。但是这些热量的移除却是与反应器面积相关的,因为热量传递依赖的是热交换表面进行的,换热面积越大传递的热量越多。为了维持一个反应器内部的温度恒定,反应放热与热量移除必须守恒。比表面积越大,反应器的散热能力越好,反应器温度越能维持稳定。如果我们假设反应器是圆柱体的话,反应器的比表面积与直径是成反比的。常规的反应釜,一般直径在1000mm左右,实验用的反应瓶直径80-100mm,而微反应器直径最大不超过1-3mm也就是说,微反应器的移热能力是常规反应釜的1000倍。一些反应在反应釜力升温很快,是非常危险的反应,但是在微反应器总却可以成功进行。
第三是平推流动
常规的搅拌釜里的流动状态是全混流动,按照反应工程的角度来看这是一种低效的流动形式。为什么呢,因为绝大多数反应,反应底物浓度越高,反应越快速。全混状态下,反应器内的底物浓度永远等于出口浓度,而对于一般工艺要求,反应器出口浓度都是很低的,导致反应器整体在低浓度下运行,反应效率很低。而在管式反应器与微反应器总,流体在反应器内部近似呈平推流动,也就是说,反应器内浓度沿反应器轴向存在分布,进口高出口低,而出口浓度为反应工艺要求,这样的话反应器内的平均浓度式高于搅拌反应器的,这进一步提高了反应效率。
最后是可以进行数量放大
就是在微反应器的研发过程中可以通过数量放大实现工业化生产,这样工业生产条件和实验条件几乎完全相同,避免了在放大过程中产生的各种放大效应,整体的研发流程变短。
从上面这些有点来看,微反应器主要用于某些剧烈地化学反应,因为剧烈的化学反应放热都很明显,因此需要快速移除反应热,同时剧烈化学反应一般都容易生成副产物而在平推流状态下能够最大程度地抑制副反应的发生。 此外对于非均相的气液,液液,液固过程,由于其过程强化作用都能够有效地提高反应效率。
当然作为微通道反应器也有许多不足的地方,主要体现在以下几点。
1.不能使用固体,这个很好理解,无论是催化剂颗粒还是反应产生的固体,都会堵塞孔道。目前一般认为,微通道内颗粒大小几十微米就是上限。
2.压降大,液体通过微通道压降很大。当然这几乎是不可避免的,因为任何传质强化过程都是利用能量换效率的。
3.设备大型化困难。现在的微反应器如果采用康宁路线单板通量应该在千吨/年左右,还是难以满足大宗产品的生产要求,微反应器目前的应用还是局限在高附加值的产品上。
再来说说微反应器目前的推广趋势。
按照技术特点来分析,我倾向于把微反应器分成两类:
1.康宁路线:通过在板材上蚀刻或采用机械加工出超细小的通道作为微反应器,康宁公司原来也就是康宁玻璃厂,所做的工作就是在板材上雕刻出各种形状的微通道并且测试这些通道对反应的适应性。康宁路线主要的问题在于设备通量小,连康宁公司自己对设备的工业化都没有信心,在市场方向方面,他们将自己的反应器定义与适用于实验室工艺筛选的设备。至于工业化生产,据我所知单板的康宁路线反应器生产能力也就是在千吨/年左右。而要实现大规模生产,只能卖上几百套反应器并联起来。一套反应器系统的价格现在来看都属于天价,一般工厂是难以负担的。
2.拜耳路线:拜耳路线是一种与康宁反应器截然不同的微反应器路线,其凸出的特点就在于,通量可以做的很大,是有希望达到工业级别产量的。但拜耳路线的微反应器结构有一个重大缺陷:换热能力不足,由于结构问题,拜耳微反应器换热效率约为康宁路线的1/10,当然在很多条件下也够用了。但是一旦出现强放热反应,就必须做成多段绝热式反应系统,对工艺研究要求非常高。
从国内微反应器的推广来看,目前已经有几家企业在开始这方面的工作。从我同他们的交流来看,走康宁路线的有:豪迈,沈氏,大连微凯等。这几家单位中,豪迈和沈氏的加工能力完全没有问题。大连微凯设备加工能力最差,核心实验设备是买西门子的。豪迈在微反方面起步较早,基本上做到了设备和工艺齐头并进,宣传上也做的很好,最近推出了12万的微反小试装置很有可能大幅降低研发设备投入,产生一系列的新工艺。沈氏方面起步较晚,设备加工没有问题,但是工艺方面没有跟上。至于拜耳路线,我比较推崇清华大学,在这方面做得工作很多,已经有工业化的纳米碳酸钙生产案例。
最后再来说说微反应器的发展趋势,总结起来可以概括为以下几点:
1.需求是肯定存在的
实际上目前已经有很多生产单位意思到了微反应器的价值,甚至在国内加工企业起步之前就花费巨资购买国外的小试设备。但是直到现在我没有看到有企业基于此类小试设备自主研发出工业化生产工艺的案例,国内仅有的几个工业化微反案例都是同清华大学甚至拜耳合作产生的。剩下的企业花了钱买了设备,发现做不下去了,设备就在厂房里一扔成了废铁。
2.设备是可以加工的
初步接触微结构的人都会认为,微结构的加工对国内企业来说是一件非常困难的事情,长期以来在各种宣传中都认为目前国内的机械加工能力远远落后于欧美。但是实际上目前无论是康宁路线还是拜耳路线。就设备加工来看,国内的加工能力都是可以做到的,很多号称在做微反的企业确实可以进行设备加工,这个没有问题。
3.工艺是有问题的
但是现在关键的问题还在工艺研发上,目前能做微反的企业充其量就是设备厂,不具备将工艺与设备结合的能力。即使对于康宁流派的微反应器,如何由现有工艺包过度到微反应器条件下的工艺包对于目前的微反研发企业来说都是一件困难的事情,更不要说工艺研发难度更大的拜耳微反应器。而拜耳微反应器才是可能进行工业化的正确路线。现在我们的问题就在于:工艺包有,设备也有,但是工艺与设备的结合做不到。工艺在生产企业手中,设备在微反加工单位手里,出于技术垄断和商业方面的考虑,这两方不会进行充分的技术交流。
4.前景是光明的
当然随着技术的发展,这些都不是问题,从现在来看现状确实有渐渐打破的趋势,现在一套微反小试装置的成本已经降低到几十万,一般的生产机构都有能力负担,将会有越来越多的企业具备微反应器研究能力,结合他们的工艺能力,即使只有很少一部分工艺包适宜采用微反应器,应当很快就会有可工艺生产的项目出现。此外微反应器生产商在工艺研发的人员投入上也在加大。这两方只要有一边打破平衡,微反应器的风口就会出现。
写到这里其实我还想说明一个问题,就是微通道反应器的必要性,微通道反应器众多优点,将反应,放热都得到了强化。但实际上这些优点普通的管式反应器也具备,当然效果不如微反应器明显。比如说,一台DN15的反应管道,其传热效果就会比搅拌釜好几十倍,同时具有平推流的特点,反应器压降还远小于微反。这些优点足以在产品的更新换代中被很多企业接受。实际上我认为如果要给反应器像武器一样划分代差的化。普通搅拌釜算一代,管式反应器等其他传统强化设备算第二代,微反应器算第三代。实际上第二代反应器就比第一代反应器具备很多明显优势,但实际上我国的大多数化工生产还停留在第一代的水平上。现阶段工艺技改,只要用二代反应器替代一代反应器就能见效益。但是偏偏这一步我们都没有做出来,我一直说我们的生产工艺与设备的结合能力差。比如说某氨解反应,易燃易爆,德国人40年代就用管式反应器做,效果很好,但是我们直到现在还在釜里搅来搅去,几乎每个做这个产品的厂都炸过。说道底,反应工程能力不过关。从第一代反应器到第二代反应器,如何进行工艺与设备的结合,这门课我们是一定要补的。当然微反应器有可能给了我们一个跨越式发展的计划,我们可以迈过管式反应器等其他反应设备,直接接轨国际最先进的反应器,这确实是一个好时机。
先上结论,微化工的风口已经若隐若现,尤其是今年4月山东豪迈推出了12万元的微反装置后大大降低了微化工的工艺研究门槛,导致更多的生产单位愿意投资进行微化工的研究。
在讲这个问题前现回顾一下微化工的历史和技术特点。
微化工的概念最早在上个世纪七十年代被一个德国人提出,名字我忘了,现在应该还活着。其主要的原理就是当流体通道减小之后可以产生一系列过程强化效应。
首先是传递效果的增强
任何化工的传递过程都要经过所谓的边界层进行传递,传递过程的快慢可以近似认为和边界层厚度呈反比。边界层的厚度目前是一个很难说清楚的概念,很难进行计算和模拟,但是有一个定性的结论就是边界层厚度绝对不可能大于流道尺寸,因此流道越小,边界层厚度越薄,传递过程越快。所以减小流道尺寸对所有传递过程,比如说传热(换热),液液传质(萃取),气液传质(气体吸收)等都有传质强化作用。这也就是微反应器中常常能比常规反应器中的反应速率明显加快的原因。
其次是微流道导致的传热界面增大
任何一个设备都有所谓比表面积的概念,尤其是涉及到传热过程。比如说在一个设备内反应放出多少热量,这与反应器内部装填了多少物料有关,反应放热同反应器的体积成正比。但是这些热量的移除却是与反应器面积相关的,因为热量传递依赖的是热交换表面进行的,换热面积越大传递的热量越多。为了维持一个反应器内部的温度恒定,反应放热与热量移除必须守恒。比表面积越大,反应器的散热能力越好,反应器温度越能维持稳定。如果我们假设反应器是圆柱体的话,反应器的比表面积与直径是成反比的。常规的反应釜,一般直径在1000mm左右,实验用的反应瓶直径80-100mm,而微反应器直径最大不超过1-3mm也就是说,微反应器的移热能力是常规反应釜的1000倍。一些反应在反应釜力升温很快,是非常危险的反应,但是在微反应器总却可以成功进行。
第三是平推流动
常规的搅拌釜里的流动状态是全混流动,按照反应工程的角度来看这是一种低效的流动形式。为什么呢,因为绝大多数反应,反应底物浓度越高,反应越快速。全混状态下,反应器内的底物浓度永远等于出口浓度,而对于一般工艺要求,反应器出口浓度都是很低的,导致反应器整体在低浓度下运行,反应效率很低。而在管式反应器与微反应器总,流体在反应器内部近似呈平推流动,也就是说,反应器内浓度沿反应器轴向存在分布,进口高出口低,而出口浓度为反应工艺要求,这样的话反应器内的平均浓度式高于搅拌反应器的,这进一步提高了反应效率。
最后是可以进行数量放大
就是在微反应器的研发过程中可以通过数量放大实现工业化生产,这样工业生产条件和实验条件几乎完全相同,避免了在放大过程中产生的各种放大效应,整体的研发流程变短。
从上面这些有点来看,微反应器主要用于某些剧烈地化学反应,因为剧烈的化学反应放热都很明显,因此需要快速移除反应热,同时剧烈化学反应一般都容易生成副产物而在平推流状态下能够最大程度地抑制副反应的发生。 此外对于非均相的气液,液液,液固过程,由于其过程强化作用都能够有效地提高反应效率。
当然作为微通道反应器也有许多不足的地方,主要体现在以下几点。
1.不能使用固体,这个很好理解,无论是催化剂颗粒还是反应产生的固体,都会堵塞孔道。目前一般认为,微通道内颗粒大小几十微米就是上限。
2.压降大,液体通过微通道压降很大。当然这几乎是不可避免的,因为任何传质强化过程都是利用能量换效率的。
3.设备大型化困难。现在的微反应器如果采用康宁路线单板通量应该在千吨/年左右,还是难以满足大宗产品的生产要求,微反应器目前的应用还是局限在高附加值的产品上。
再来说说微反应器目前的推广趋势。
按照技术特点来分析,我倾向于把微反应器分成两类:
1.康宁路线:通过在板材上蚀刻或采用机械加工出超细小的通道作为微反应器,康宁公司原来也就是康宁玻璃厂,所做的工作就是在板材上雕刻出各种形状的微通道并且测试这些通道对反应的适应性。康宁路线主要的问题在于设备通量小,连康宁公司自己对设备的工业化都没有信心,在市场方向方面,他们将自己的反应器定义与适用于实验室工艺筛选的设备。至于工业化生产,据我所知单板的康宁路线反应器生产能力也就是在千吨/年左右。而要实现大规模生产,只能卖上几百套反应器并联起来。一套反应器系统的价格现在来看都属于天价,一般工厂是难以负担的。
2.拜耳路线:拜耳路线是一种与康宁反应器截然不同的微反应器路线,其凸出的特点就在于,通量可以做的很大,是有希望达到工业级别产量的。但拜耳路线的微反应器结构有一个重大缺陷:换热能力不足,由于结构问题,拜耳微反应器换热效率约为康宁路线的1/10,当然在很多条件下也够用了。但是一旦出现强放热反应,就必须做成多段绝热式反应系统,对工艺研究要求非常高。
从国内微反应器的推广来看,目前已经有几家企业在开始这方面的工作。从我同他们的交流来看,走康宁路线的有:豪迈,沈氏,大连微凯等。这几家单位中,豪迈和沈氏的加工能力完全没有问题。大连微凯设备加工能力最差,核心实验设备是买西门子的。豪迈在微反方面起步较早,基本上做到了设备和工艺齐头并进,宣传上也做的很好,最近推出了12万的微反小试装置很有可能大幅降低研发设备投入,产生一系列的新工艺。沈氏方面起步较晚,设备加工没有问题,但是工艺方面没有跟上。至于拜耳路线,我比较推崇清华大学,在这方面做得工作很多,已经有工业化的纳米碳酸钙生产案例。
最后再来说说微反应器的发展趋势,总结起来可以概括为以下几点:
1.需求是肯定存在的
实际上目前已经有很多生产单位意思到了微反应器的价值,甚至在国内加工企业起步之前就花费巨资购买国外的小试设备。但是直到现在我没有看到有企业基于此类小试设备自主研发出工业化生产工艺的案例,国内仅有的几个工业化微反案例都是同清华大学甚至拜耳合作产生的。剩下的企业花了钱买了设备,发现做不下去了,设备就在厂房里一扔成了废铁。
2.设备是可以加工的
初步接触微结构的人都会认为,微结构的加工对国内企业来说是一件非常困难的事情,长期以来在各种宣传中都认为目前国内的机械加工能力远远落后于欧美。但是实际上目前无论是康宁路线还是拜耳路线。就设备加工来看,国内的加工能力都是可以做到的,很多号称在做微反的企业确实可以进行设备加工,这个没有问题。
3.工艺是有问题的
但是现在关键的问题还在工艺研发上,目前能做微反的企业充其量就是设备厂,不具备将工艺与设备结合的能力。即使对于康宁流派的微反应器,如何由现有工艺包过度到微反应器条件下的工艺包对于目前的微反研发企业来说都是一件困难的事情,更不要说工艺研发难度更大的拜耳微反应器。而拜耳微反应器才是可能进行工业化的正确路线。现在我们的问题就在于:工艺包有,设备也有,但是工艺与设备的结合做不到。工艺在生产企业手中,设备在微反加工单位手里,出于技术垄断和商业方面的考虑,这两方不会进行充分的技术交流。
4.前景是光明的
当然随着技术的发展,这些都不是问题,从现在来看现状确实有渐渐打破的趋势,现在一套微反小试装置的成本已经降低到几十万,一般的生产机构都有能力负担,将会有越来越多的企业具备微反应器研究能力,结合他们的工艺能力,即使只有很少一部分工艺包适宜采用微反应器,应当很快就会有可工艺生产的项目出现。此外微反应器生产商在工艺研发的人员投入上也在加大。这两方只要有一边打破平衡,微反应器的风口就会出现。
写到这里其实我还想说明一个问题,就是微通道反应器的必要性,微通道反应器众多优点,将反应,放热都得到了强化。但实际上这些优点普通的管式反应器也具备,当然效果不如微反应器明显。比如说,一台DN15的反应管道,其传热效果就会比搅拌釜好几十倍,同时具有平推流的特点,反应器压降还远小于微反。这些优点足以在产品的更新换代中被很多企业接受。实际上我认为如果要给反应器像武器一样划分代差的化。普通搅拌釜算一代,管式反应器等其他传统强化设备算第二代,微反应器算第三代。实际上第二代反应器就比第一代反应器具备很多明显优势,但实际上我国的大多数化工生产还停留在第一代的水平上。现阶段工艺技改,只要用二代反应器替代一代反应器就能见效益。但是偏偏这一步我们都没有做出来,我一直说我们的生产工艺与设备的结合能力差。比如说某氨解反应,易燃易爆,德国人40年代就用管式反应器做,效果很好,但是我们直到现在还在釜里搅来搅去,几乎每个做这个产品的厂都炸过。说道底,反应工程能力不过关。从第一代反应器到第二代反应器,如何进行工艺与设备的结合,这门课我们是一定要补的。当然微反应器有可能给了我们一个跨越式发展的计划,我们可以迈过管式反应器等其他反应设备,直接接轨国际最先进的反应器,这确实是一个好时机。
最后夹带一点私货,不要认为微反应器很难加工,把微反应器想的很遥远,下面这张图就是我自己做的微反应器冷模装置,已经具备了拜耳微反应器的特征,孔道直径已经到了0.2mm,通量已经达到1400吨/年。当然因为加工能力的限制,压降比一般微反应器大,材质问题只能做萃取。全套设备加工没用什么高端设备,一套下来2000以内搞定。所以微反应器真的就在我们身边。
最后夹带一点私货,不要认为微反应器很难加工,把微反应器想的很遥远,下面这张图就是我自己做的微反应器冷模装置,已经具备了拜耳微反应器的特征,孔道直径已经到了0.2mm,通量已经达到1400吨/年。当然因为加工能力的限制,压降比一般微反应器大,材质问题只能做萃取。全套设备加工没用什么高端设备,一套下来2000以内搞定。所以微反应器真的就在我们身边。