相同…………(2分)(填“一致”或“平行”同样给分)检偏器
B. 偏振光图示法怎么理解
偏振光图示法理解:箭头方向表示光波振动的方向,就像是正弦波振动一样。例如,上下的箭头表示光波上下振动,水平的箭头表示光波水平振动,利用偏振片可以滤除与偏振片方向垂直振动的光波。
偏振片通俗点说就是涂碘的聚乙烯拉伸,形成一个栅栏,左右扭的带鱼能游过去,上下扭的海豚会被扣押。A鱼塘经过横向的起偏栅栏放出一群鱼,游过去的都是海豚;B鱼塘经过竖向的起偏栅栏放鱼,游过的都是带鱼。

检测
光的偏振现象可以借助于实验装置进行检测,P1、P2是两块同样的偏振片。通过一片偏振片p1直接观察自然光(如灯光或阳光),透过偏振片的光虽然变成了偏振光,但由于人的眼睛没有辨别偏振光的能力,故无法察觉。如果我们把偏振片P1的方位固定,而把偏振片P2缓慢地转动,就可发现透射光的强度随着P2转动而出现周期性的变化。
C. 大物实验偏振光实验思考题:怎样用偏振原理设计一套连续调节光强的实验系统实在不会,望好心人解决谢谢
三棱镜是光学上横截面为三角形的透明体。它是由透明材料作成的截面呈三角形的光学仪器,属于色散棱镜的一种,能够使复色光在通过棱镜时发生色散。
D. 那位高手能给我提供一些物理实验《光的偏振》的相关资料,如其发展,背景谢谢
光波是电磁波。在电磁波中起光作用的主要是电场矢量,所以电场矢量又叫光矢量。由于电磁波是横波,所以光波中光矢量的振动方向总和光的传播方向相垂直。在垂直于光传播方向的平面内,光矢量可能有各种不同的振动状态,这种振动状态通常称为光的偏振态。光波传播的这种特性在工业、科技和各种高新技术领域具有广泛的应用,例如化学、制药等工业中利用物质的旋光性测浓度,液晶显示技术中双折射现象的应用等。
【实验目的】
1. 通过光的偏振实验,了解光的偏振特性。
2. 找出穿过两个偏振器的透射光强度与两个偏振器轴的夹角φ之间的关系。
3. 对在物理量的测量中如何使用计算机控制实时测量系统有初步的掌握。
【实验原理】
在本实验中利用一种叫偏振器的光学元件,其原理如图22-1所示。一个偏振器只允许在一特定平面内振动的光通过,这个平面就形成所谓的偏振轴。自然光在垂直于传播方面的所有平面内振动。若自然光入射到理想偏振器,则只有一半的光能通过它。而实际上,通过实际的偏振器的光
E. 为什么我们看到的光绝大部分是偏振光
偏振光
偏振光(Polarization)
光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光。通常光源发出的光,它的振动面不只限于一个固定方向而是在各个方向上均匀分布的。这种光叫做自然光。光的偏振性是光的横波性的最直接,最有力的证据,光的偏振现象可以借助于实验装置进行观察,P1、P2是两块同样的偏振片。通过一片偏振片p1直接观察自然光(如灯光或阳光),透过偏振片的光虽然变成了偏振光,但由于人的眼睛没有辨别偏振光的能力,故无法察觉。如果我们把偏振片P1的方位固定,而把偏振片P2缓慢地转动,就可发现透射光的强度随着P2转动而出现周期性的变化,而且每转过90°就会重复出现发光强度从最大逐渐减弱到最暗;继续转动P2则光强又从接近于零逐渐增强到最大。由此可知,通过P1的透射光与原来的入射光性质是有所不同的,这说明经P1的透射光的振动对传播方向不具有对称性。自然光经过偏振片后,改变成为具有一定振动方向的光。这是由于偏振片中存在着某种特征性的方向,叫做偏振化方向,偏振片只允许平行于偏振化方向的振动通过,同时吸收垂直于该方向振动的光。通过偏振片的透射光,它的振动限制在某一振动方向上,我们把第一个偏振片P1叫做“起偏器”,它的作用是把自然光变成偏振光,但是人的眼睛不能辨别偏振光。必须依靠第二片偏振片P2去检查。旋转P2,当它的偏振化方向与偏振光的偏振面平行时,偏振光可顺利通过,这时在P2的后面有较亮的光。当P2的偏振方向与偏振光的偏振面垂直时,偏振光不能通过,在P2后面也变暗。第二个偏振片帮助我们辨别出偏振光,因此它也称为“检偏器”。
n 前言
干涉和衍射—光的波动性
偏振—光是横波
光的偏振现象
偏振元件
应用
n 光的矢量性 —光是横波
K为波面的法线方向,S为光波的能量传播方向。
在各向同性的介质中S与K同向。在各向异性的介质中S与K不同向。
自然光 线偏振光
部分偏振光 圆偏振光 椭圆偏振光
部分偏振度定义
椭圆偏振光的形成(两个互相垂直的振动的合成)
椭圆方程式
改变光的偏振态的方法
1、利用偏振片
2、利用反射现象
3、利用双折射晶体
n 光的散射
利用偏振片产生偏振光
马吕斯定律(1809年)和消光现象
菲涅耳公式
布鲁斯特角:
利用布儒斯特角产生偏振光
全反射时光的偏振态的改变
反射波的振幅比可以改写为:
当入射角大于或等于临界角sin-1(n)时
全反射时的相位改变
菲涅耳棱体
n 晶体光学
晶体光学元件
1、偏振器件
尼科耳棱镜
格兰棱镜
2 波晶片
构造:单轴晶体使其光轴与表面平行
入射光 1/4波片
检验偏振光的光路
n 偏振光的检验
借助检偏器和1/4波晶片检验光的5种偏振态
1.只用检偏器(转动):
对于线偏光可以出现极大和消光现象。
对于椭圆偏光和部分偏光可以出现极大和极小现象。
对于圆偏光和非偏光各方向光强不变。
2.用1/4波晶片和检偏器(转动):
对于非偏光(自然光)各方向光强不变。
对于圆偏光出现消光现象(原因)。
对于部分偏光仍出现极大和极小现象。
对于椭圆偏光,当把1/4波晶片的快慢轴放在光强极大位置时出现消光现象(原因)。
平行偏光干涉的装置
(干涉的三条件:频率、振动方向、初位相—相同)
装置:自然光+起偏器P1+波晶片+检偏器P2
偏振光的干涉的结果
n 现象
单色光照明厚度变化的波晶片P1 ^ P2,P1 II P2,亮暗纹互补
白光照明厚度变化的波晶片P1 ^ P2,P1 II P2,彩色互补(如红色与青色,绿色和紫色,黄色和蓝色等)显色偏振
其他产生双折射的机理和应用
光测弹性(由于材料的内、外应力造成双折射现象)
检查玻璃、塑料等的内应力
桥梁、矿井、水坝和机械工件等的应力分布的监测和模拟。
地震预报。
克尔效应和普克尔效应(由于电场造成双折射现象)—高速光开关。
n 旋光现象的观察和测量
1811年由阿喇果和毕奥发现
石英、松节油、糖溶液中有旋光现象
左旋和右旋—与旋光物质的结构有关(1822年赫谢尔发现)
旋光计—测量糖溶液的浓度
会聚偏光的干涉
n 椭圆偏振光法测定介质薄膜的厚度和折射率
在现代科学技术中,薄膜有着广泛的应用。因此测量薄膜的技术也有了很大的发展,椭偏法就是70年代以来随着电子计算机的广泛应用而发展起来的目前已有的测量薄膜的最精确的方法之一。椭偏法测量具有如下特点:
能测量很薄的膜(1nm),且精度很高,比干涉法高1-2个数量级。
是一种无损测量,不必特别制备样品,也不损坏样品,比其它精密方法:如称重法、定量化学分析法简便。
可同时测量膜的厚度、折射率以及吸收系数。因此可以作为分析工具使用。
对一些表面结构、表面过程和表面反应相当敏感。是研究表面物理的一种方法
椭偏仪的光路图
椭偏仪的基本原理
入射光的P分量
入射光的S分量
反射光的P分量和S分量的比值—椭圆参量
r=RP/Rs=tanyexp(iD)=f(n1, n2, n3,f1,d,l)
n 总结
光是横波具有五种偏振态
光与物质相互作用时会发生偏振态的改变
偏振元件:偏振片、偏振棱镜、波片
应用:光测弹性、旋光计、椭偏仪、电光调制
F. 帮忙高手给我写下偏振现象实验的原理和步骤,谢谢了
光的干涉和衍射现象表明了光的波动本性,而光的偏振现象则进一步揭示了光的横波性质。光波是电磁波,电磁波中起光的作用的是电场矢量,所以电矢量又叫光矢量。由于电磁波是横波,所以光波中光矢量的振动方向总和光的传播方向垂直。在垂直于光传播方向内,光矢量可能有不同的振动状态,这种振动状态通常称为光的偏振态。本实验通过观察光的偏振现象,加深对光的偏振的基本规律的认识。通过本实验可以熟悉常用的起偏振和检偏振的方法,同时了解椭圆偏振光、圆偏振光的产生方法和波片的作用原理。
光波电矢量振动的空间分布对于光的传播方向失去对称性的现象。只有横波才能产生偏振现象,故光的偏振是光的波动性的又一例证。在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。凡其振动失去这种对称性的光统称偏振光。
[编辑本段]偏振光
①线偏振光:在光的传播过程中,只包含一种振动,其振动方向始终保持在同一平面内,这种光称为线偏振光(或平面偏振光)。你可以通过一个实验想象这是一种什么景象:你把一根绳子的一头拴在邻居院子里的树上,另一头拿在你手里。再假定绳子是从篱笆的两根竹子的正当中穿过去的。如果你现在拿绳子上下振动,绳子产生的波就会从两根竹子之间通过,并从你的手传到那棵树上。这时,那座篱笆对你的波来说是"透明的"。但是,要是你让绳子左右波动,绳子就会撞在两根竹子上,波就不会通过篱笆了,这时这座篱笆就相当于一个起偏振器件。
②部分偏振光:光波包含一切可能方向的横振动,但不同方向上的振幅不等,在两个互相垂直的方向上振幅具有最大值和最小值,这种光称为部分偏振光。自然光和部分偏振光实际上是由许多振动方向不同的线偏振光组成。
当光线从空气(严格地说应该是真空)射入介质时,布儒斯特角的正切值等于介质的折射率n。由于介质的折射率是与光波长有关的,对同样的介质,布儒斯特角的大小也是与光波长有关的。以光学玻璃折射率1.4-1.9计算,布儒斯特角大约为54-62度左右。当入射角偏离布儒斯特角时,反射光将是部分偏振光。
③椭圆偏振光:在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,且电矢量端点描出一个椭圆轨迹,这种光称为椭圆偏振光。迎着光线方向看,凡电矢量顺时针旋转的称右旋椭圆偏振光,凡逆时针旋转的称左旋椭圆偏振光。椭圆偏振光中的旋转电矢量是由两个频率相同、振动方向互相垂直、有固定相位差的电矢量振动合成的结果(见波片)。
④圆偏振光:旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。在我们的观察时间段中平均后,园偏振光看上去是与自然光一样的。但是园偏振光的偏振方向是按一定规律变化的,而自然光的偏振方向变化是随机的,没有规律的。
[编辑本段]偏振现象的发现
1809年,马吕斯在试验中发现了光的偏振现象。在进一步研究光的简单折射中的偏振时,他发现光在折射时是部分偏振的。因为惠更斯曾提出过光是一种纵波,而纵波不可能发生这样的偏振,这一发现成为了反对波动说的有利证据。
参见马吕斯定律
1811年,布吕斯特在研究光的偏振现象时发现了光的偏振现象的经验定律。
光的偏振度
在部分偏振光的总强度中,完全偏振光所占的成分叫做偏振度。
偏振度的数值愈接近1,光线的偏振化程度就愈纯粹,一般偏振度都小于1。
[编辑本段]产生偏振光的方法
从自然光获得线偏振光的方法有以下四种:利用反射和折射、利用二向色性、利用晶体的双折射、利用散射。
另外,线偏振光可以经过波晶片产生圆偏振光和椭圆偏振光。
[编辑本段]光的偏振的应用
1. 在摄影镜头前加上偏振镜消除反光
在拍摄表面光滑的物体,如玻璃器皿、水面、陈列橱柜、油漆表面、塑料表面等,常常会出现耀斑或反光,这是由于光线的偏振而引起的。在拍摄时加用偏振镜,并适当地旋转偏振镜面,能够阻挡这些偏振光,借以消除或减弱这些光滑物体表面的反光或亮斑。要通过取景器一边观察一边转动镜面,以便观察消除偏振光的效果。当观察到被摄物体的反光消失时,既可以停止转动镜面。
2. 摄影时控制天空亮度,使蓝天变暗。
由于蓝天中存在大量的偏振光,所以用偏振镜能够调节天空的亮度,加用偏振镜以后,蓝天变的很暗,突出了蓝天中的白云。偏振镜是灰色的,所以在黑白和彩色摄影中均可以使用。
3. 使用偏振镜看立体电影
在观看立体电影时,观众要戴上一副特制的眼镜,这副眼镜就是一对透振方向互相垂直的偏振片。
立体电影是用两个镜头如人眼那样从两个不同方向同时拍摄下景物的像,制成电影胶片.在放映时,通过两个放映机,把用两个摄影机拍下的两组胶片同步放映,使这略有差别的两幅图像重叠在银幕上.这时如果用眼睛直接观看,看到的画面是模糊不清的,要看到立体电影,就要在每架电影机前装一块偏振片,它的作用相当于起偏器.从两架放映机射出的光,通过偏振片后,就成了偏振光.左右两架放映机前的偏振片的偏振化方向互相垂直,因而产生的两束偏振光的偏振方向也互相垂直.这两束偏振光投射到银幕上再反射到观众处,偏振光方向不改变.观众用上述的偏振眼镜观看,每只眼睛只看到相应的偏振光图象,即左眼只能看到左机映出的画面,右眼只能看到右机映出的画面,这样就会像直接观看那样产生立体感觉.这就是立体电影的原理.
当然,实际放映立体电影是用一个镜头,两套图象交替地印在同一电影胶片上,还需要一套复杂的装置.
光在晶体中的传播与偏振现象密切相关,利用偏振现象可了解晶体的光学特性,制造用于测量的光学器件,以及提供诸如岩矿鉴定、光测弹性及激光调制等技术手段。
G. 光的偏振实验原理
偏振光,光学名词。光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光。
偏振原理
通常光源发出的光,它的振动面不只限于一个固定方向而是在各个方向上均匀分布的。这种光叫做自然光。
光的偏振性是光的横波性的最直接,最有力的证据,光的偏振现象可以借助于实验装置进行观察,P1、P2是两块同样的偏振片。通过一片偏振片p1直接观察自然光(如灯光或阳光),透过偏振片的光虽然变成了偏振光,但由于人的眼睛没有辨别偏振光的能力,故无法察觉。如果我们把偏振片P1的方位固定,而把偏振片P2缓慢地转动,就可发现透射光的强度随着P2转动而出现周期性的变化,而且每转过90°就会重复出现发光强度从最大逐渐减弱到最暗;继续转动P2则光强又从接近于零逐渐增强到最大。由此可知,通过P1的透射光与原来的入射光性质是有所不同的,这说明经P1的透射光的振动对传播方向不具有对称性。自然光经过偏振片后,改变成为具有一定振动方向的光。这是由于偏振片中存在着某种特征性的方向,叫做偏振化方向,偏振片只允许平行于偏振化方向的振动通过,同时吸收垂直于该方向振动的光。
H. 怎么作偏振光实验的极坐标图
首先,只有横波才有偏振,这个偏振适用角动量表示的,角动量的表示方法是把一个平面的旋转角动量转化为垂直于这个平面的矢量。对于光来说,这个矢量又称为自旋,自旋固定,为二分之一。光是电磁波,电磁波在无限空间中的传播是横波,合适的作图方法是用笛卡尔直角坐标系。至于电磁波在有限空间中的传播,一般在研究生之前是不会怎么遇到的,所以非专业条件下不用其他坐标系。假如在有限空间,那也可以把电磁波分解为横电场和横磁场,然后继续用笛卡尔坐标系。