A. 溶液聚合的聚合工艺
溶液聚合选用有机溶剂时,引发剂为可溶于有机溶剂的过氧化物或偶氮化合物。根据反应温度和引发剂的半衰期选择适当的引发剂。
用水作为溶剂时,采用水溶性引发剂,如过硫酸盐及其氧化-还原体系。
溶液聚合反应温度在溶剂的回流温度下进行,所以大多选用低沸点溶剂。为了便于控制聚合反应温度,溶液聚合通常在釜式反应器中半连续操作。直接使用的聚合物溶液,在结束反应前应尽量减少单体含量,或采用化学方法或蒸馏方法将残留单体除去。要得到固体物料须经过后处理,即采用蒸发、脱气挤出、干燥等脱除溶剂与未反应单体,制得粉状聚合物。
改变引发剂用量,单体与溶剂的用量比,添加分子量调节剂等方法来控制产物的分子量
聚丙烯酰胺聚合技术
聚丙烯酰胺生产是以丙烯酰胺水溶液为原料,在引发剂的作用下,进行聚合反应,在反应完成后生成的聚丙烯酰胺胶块经切切割、造粒、干燥、粉碎,最终制得聚丙烯酰胺产品。关键工艺是聚合反应,在其后的处理过程中要注意机械降温、热降解和交联,从而保证聚丙烯酰胺的相对分子质量和水溶解性。
丙烯酰胺+水(引发剂/聚合)→聚丙烯酰胺胶块→造粒→干燥→粉碎→聚丙烯酰胺产品
我国聚丙烯酰胺生产技术大概也经历了3个阶段:
第一阶段是最早采用盘式聚合,即将混合好的聚合反应液放在不锈钢盘中,再将这些不锈钢盘推至保温烘房中,聚合数小时后,从烘房中推出,用铡刀把聚丙烯酰胺切成条状,进绞肉机造粒,烘房干燥,粉碎制得成品。这种工艺完全是手工作坊式。
第二阶段是采用捏合机,即将混合好的聚合反应液放在捏合机中加热,聚合开始后,开始捏合机,一边聚合一边捏合,聚合完后,造粒也基本完成,倒出物料经干燥、粉碎得成品。
第三阶段是,20世纪80年代后期,开发了锥形釜聚合工艺,由核工业部五所在江苏江都化工厂试车成功。该工艺在锥形釜下部带有造料旋转刀,聚合物在压出的同时,即成粒状,经转鼓干燥机干燥,粉碎得产品。
为了避免聚丙烯酰胺胶块黏附在聚合釜釜壁上,有的技术采用氟或硅的高分子化合物涂覆在聚合釜的内壁上,但此涂覆层在上产过程中易脱落而污染聚丙烯酰胺产品。
国内外的聚丙烯酰胺生产技术基本上与上述的第三阶段相似,只是在设备上有些不同:聚合釜大小及类型(有固定锥形釜,也有可旋转的锥形釜,聚合反应完成后,聚合釜倒转将聚丙烯酰胺胶块倒出)、造粒方式 (有机械造粒、切割造粒,也有湿式造粒即分散液中造粒)、干燥方式(有采用穿流回转干燥,也有用振动流化床干燥)及粉碎方式。这些不同中有些是设备质量上有差异,有些是采用的具体方式上的油差异,但总的来看,聚合技术趋向于固定锥形釜聚合,振动流化床干燥技术。
聚丙烯酰胺生产技术除了上述的单元操作外,在工艺配方上还有较明显的差别,比如生产超高相对分子质量聚丙烯酰胺的生产工艺,同样是低温引发,就有前加碱共水解工艺和后加碱后水解工艺之分,两种方法各有利弊,前加碱共水解工艺过程简单,但存在水解传热易产生交联和相对分子质量损失大的问题,后加碱后水解虽然工艺过程增加了,但水解均匀不易产生交联,对产品相对分子质量损失也不大。
目前我国聚丙烯酰胺聚合用的引发剂有无机引发剂、有机引发剂和无机—有机混合体系3中类型。 (1)过氧化物
过氧化物大致分为无机过氧化物和有机过氧化物。无机过氧化物如过流酸钾,过硫酸铵、过溴酸钠和过氧化氢等。有机过氧化物如过氧化苯甲酰、过氧化月桂酰和叔丁羟基过氧化物等。它们配用的还原剂有硫酸亚铁、氯化亚铁、偏亚硫酸钠和硫代硫酸钠等。
(2)偶氮化合物类
如偶氮二异丁腈、偶氮双二甲基戊腈、偶氮双氰基戊酸钠和20世纪80年代开发的偶氮脒盐系列,如偶氮N-取代脒丙烷盐酸盐是一类竞相开发的产品,它们的加入浓度为万分之0.005-1,催化效率很高,有助于生产相对分子质量高的产品,且溶于水,便于使用。
B. 溶液聚合的特点及影响因素有哪些
溶液聚合的特点是:有溶剂为传热介质,聚合强度容易控制;休系中聚合物浓度较低,能消除自动加速现象;聚合物分子量比较均—;不易进行链自由基向大分子转移而生成支化或交联的产物,反应后的物料也可直接使用。但是由于单体浓度小,聚合速率低,设备利用率低单体浓度低和向溶剂链转移结果,致使聚合物分子量不高,聚合物中夹带微量溶剂;溶解回收麻烦而且多为易染、易爆的有毒物。这些缺点使得溶液聚合在工业上应用不如悬浮聚合和乳液聚合多。
C. 比较四种自由基聚合方法以及聚合场所。举例
四种自由基聚合方法分别是本体聚合、溶液聚合、悬浮聚合、乳液聚合。
本体聚合是不加任何其他介质,只有单体在引发剂、热、光、辐射等引发下进行的聚合。气态、液态、固态单体均可进行本体聚合,液态单体的本体聚合最重要。
溶液聚合单体和引发剂溶于适当溶剂中进行的聚合方法称作溶液聚合法。溶液聚合过程中使用溶剂,使体系粘度降低,因此混合和传热较易,温度容易控制,较少凝胶效应,可以避免局部过热。
溶有引发剂的单体以液滴状悬浮于水中进行自由基聚合为悬浮聚合法。整体看水为连续相,单体为分散相。浮聚合体系一般有单体、引发剂、水,分散剂四个基本组分组成。不溶于水的单体在强力搅拌作用下,被粉碎分散成小液滴,随着反应的进行,分散的液滴又可能凝结成块,体系中必须加入分散剂。
乳液聚合是可用于某些自由基聚合反应的一种独特的方法,它涉及以乳液形式进行的单体的聚合反应。乳液聚合体系的组成比较复杂,一般是由单体、分散介质、引发剂、乳化剂四组分组成。经典乳液聚合的单体是油溶性,分散介质通常是水,选用水溶性引发剂。
(3)溶液聚合装置设计扩展阅读
本体聚合法聚合热难以散发的问题,工业生产上多采用两段聚合工艺。第一阶段为预聚合,可在较低温度下进行,转化率控制在10%~30%,一般在自加速以前,这时体系粘度较低,散热容易,聚合可以在较大的釜内进行。
第二阶段继续进行聚合,在薄层或板状反应器中进行,或者采用分段聚合,逐步升温,提高转化率。由于本体聚合过程反应温度难以控制恒定,所以产品的分子量分布比较宽。
本体聚合的后处理主要是排除残存在聚合物中的单体。常采用的方法是将熔融的聚合物在真空中脱除单体和易挥发物, 所用设备为螺杆或真空脱气机。也有用泡沫脱气法,将聚合物在压力下加热使之熔融,然后突然减压使聚合物呈泡沫状,有利于单体的逸出。
溶液聚合过程中使用溶剂,体系单体浓度低,聚合速率较慢,设备生产能力与利用率下降。如生产固体产品,则须进行后处理,溶剂的回收费用高,增加生产成本。因此工业上溶液聚合多用于聚合物溶液直接使用的场合,如涂料、胶粘剂、浸渍剂、分散剂、增稠剂等。
D. 异相溶液聚合有什么特点
乳液聚合?
沉淀聚合?
您问的是什么?
E. 哪些化学产品可以采用溶液聚合的方法制备
单体和引发剂溶于适当的溶剂中的聚合称作溶液聚合,以水为溶剂时,则称为水溶液聚合。 聚丙烯氰 聚醋酸乙烯酯 丙烯酸酯 等 溶液聚合因为单体浓度较低,反应速率慢,生产能力低,而且溶剂回收费用高等缺点,工业上的应用不多
F. 乳液聚合、悬浮聚合、本体聚合、溶液聚合,哪种聚合方法的纯度最高
乳液聚合 优点:散热容易,可连续化 缺点:产品中留有部分乳化剂和其他助剂,纯度不高
溶液聚合 优点:散热容易,可连续化 缺点:不宜制成干燥粉状或粒状树脂
悬浮聚合 优点:散热容易,间歇生产,产物比较纯净 缺点:需要加分离、洗涤、干燥等程序,较为复杂
本体聚合 优点:聚合物纯净,宜生产透明浅色制品;设备相对简单 缺点:不易散热,聚合时易发生爆聚
本体聚合:
本体聚合(bulk polymerization;mass polymerization )是单体(或原料低分子物)
在不加溶剂以及其它分散剂的条件下,由引发剂或光、热、辐射作用下其自身进行聚合引发的聚合反应。有时也可加少量着色剂、增塑剂、分子量调节剂等。液态、气态、固态单体都可以进行本体聚合。:概念;单体(或原料低分子物)
在不加溶剂以及其它分散剂的条件下,由引发剂或光、热作用下其自身进行聚合引发的聚
合反应。英文名称bulk polymerization;mass polymerization ,是制造聚合物的主要方法之一。
特点:
产品纯净,电性能好,可直接进行浇铸成型;生产设备利用率高,操作简单,不需要复杂的分离、提纯
操作。
优点:生产工艺简单,流程短,使用生产设备少,投资较少;反应器有效反应容积大,生产
能力大,易于连续化,生产成本低.缺点:热效应相对较大,自动加速效应造成产品有气泡,变色,严
重时则温度失控,引起爆聚,使产品达标难度加大.由于体系粘度随聚合不断增加,混合和传热困难;
在自由基聚合情况下,有时还会出现聚合速率自动加速现象,如果控制不当,将引起爆聚;产物分子量
分布宽,未反应的单体难以除尽,制品机械性能变差等。
应用
应用于制造透明性好的材料,以及介
电性好的电器;
由于混合和传热困难,工业上自由基本体聚合不及悬浮聚合、乳液聚合应用广泛,离子
聚合由于多数催化剂易被水破坏,故常采用本体聚合和溶液聚合。
溶液聚合:
将单体和引发剂溶于适当溶剂中
,
在溶液状态下进行的聚合反应
,
溶液聚合
(solution
polymerization)
是高分子合成过程中一种重要的合成方法。
定义
溶液聚合为单体、引发剂(催化剂)
溶于适当溶剂中进行聚合的过程。溶剂一般为有机溶剂
,
也可以是水
,
视单体、引发剂(或催化剂)和生成
聚合物的性质而定。如果形成的聚合物溶于溶剂,则聚合反应为均相反应,这是典型的溶液聚合;如果形
成的聚合物不溶于溶剂,则聚合反应为非均相反应,称为沉淀聚合,或称为淤浆聚合。
特点
聚合体系
的粘度比本体聚合低,混合和散热比较容易,生产操作和温度都易于控制,还可利用溶剂的蒸发以排除
聚合热。若为自由基聚合,单体浓度低时可不出现自动加速效应,从而避免爆聚并使聚合反应器设计简
化。缺点是对于自由基聚合往往收率较低,聚合度也比其他方法小,使用和回收大量昂贵、可燃、甚至
有毒的溶剂,不仅增加生产成本和设备投资、降低设备生产能力,还会造成环境污染。如要制得固体聚合物,
还要配置分离设备,增加洗涤、溶剂回收和精制等工序。所以在工业上只有采用其他聚合方法有困难或直接使用聚合物溶液时,才采用溶液聚合。
优点: 聚合热易扩散,聚合反应温度易控制;可以溶液方式直接成品;反应后物料易输送;
低分子物易除去;能消除自动加速现象。水溶液聚合是用水作溶剂,对环境保护十分有利。
缺点:
单体被溶剂稀释,聚合速率慢,产物分子量较低;消耗溶剂,溶剂的回收处理,设备利用率低导致成本增加;溶剂的使用导致环境污染问题
悬浮聚合:定义;通过强力搅拌并在分散剂的作用下,把单体分散成无数的小液珠悬浮于水,由油溶性引发剂引发而进行的聚合反应,悬浮聚合体系
悬浮聚合体系一般有单体、引发剂、水,分散剂四个基本
组分组成。悬浮聚合体系是热力学不稳定体系,需借搅拌和分散剂维持稳定。在搅拌剪切作用下,溶有引发剂的单体分散成小液滴,悬浮于水中引发聚合。不溶于水的单体在强力搅拌作用下,被粉碎分散成小液滴,它是不稳定的,随着反应的进行,分散的液滴又可能凝结成块,为防止粘结,体系中必须加入分散剂。悬浮聚合产物的颗粒粒径一般在
0.05~0.2mm。其形状、大小随搅拌强度和分散剂的性质而定。
本段特点
优点:
(1)
聚合热易扩散,聚合反应温度易控制,聚合产物分子量分布窄;
(2)聚合产物为固体珠状颗粒,易分离干燥
缺点
(1)存在自动加速作用;
(2)必须使用分散剂,且在聚合完成后,很难从聚合产物中除去,会影响聚合产物的性能(如外观,老化性能等);
(3)
聚合产物颗粒会包藏少量单体,不易彻底清除,影响聚合物性能
. 乳液聚合:
乳液聚合
(emulsion
polymerization)
是高分子合成过程中常用的一种合成方法,因为它以水作
溶剂,对环境十分有利。在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,
由引发剂引发而进行的聚合反应。
特点
优点
(1)
聚合反应速度快,分子量高;
2
聚合热易扩散,聚合反应温度易控制;
(3)
聚合体系即使在反应后期粘度也很低,因而也适于制备高粘性的聚合物;
(4)
用水作介质,生产安全及减少环境污染;
(5)
可直接以乳液形式使用可同时实现高聚合速率和高
分子量。在自由基本体聚合过程中,提高聚合速率的因素往往会导致产物分子量下降。此外,乳液体系的
粘度低,易于传热和混合,生产容易控制,所得胶乳可直接使用,残余单体容易除去。缺点是聚合物含有
乳化剂等杂质影响制品性能;为得到固体聚合物,还要经过凝聚、分离、洗涤等工序;反应器的生产能力也比本体聚合时低。
缺点:
如果干燥需破乳,工艺较难控制
G. 聚丙乙烯的详细制造过程
乙丙橡胶(EPR)是继Zieg1er一Natta催化剂的发明、聚乙烯和聚丙烯的出现后问世的一种以乙烯。丙烯为基本单体的共聚橡胶,分为二元乙丙橡胶(EPM)和三元乙丙橡胶(EPDM)两大类。前者是乙烯和丙烯的共聚物;后者是乙烯、丙烯和少量非共轭二烯烃的共聚物。 EPR具有许多其它通用合成橡胶所不具备的优异性能,加之单体价廉易得,用途广泛,是80年代以来国外七大合成橡胶品种中发展最快的一种,其产量、生产能力和消费量在发达国家中均居第三位,仅次于丁苯橡胶、顺丁橡胶。1998年世界EPR总生产能力约为102吨,消费量为81.4万吨。初步统计,1999年消费量约为83.61万吨,预计2003年将达到98.0万吨。1998~2003年EPR的需求增长率为3.8%,高于丁苯橡胶和顺丁橡胶需求量的增长速率。
目前FPR工业生产工艺路线有溶液聚合法、悬浮聚合法和气相聚合法三种。下面将分别详细论述其技术状况及待点,并进行技术经济比较。
1、溶液聚合工艺
1.1技术状况
60年代初实现工业化,经不断完善和改进,技术己成熟,为许多新建装置所使用,是工业生产的主导技术,约占FPR总生产能力的77.6%。
该工艺是在既可以溶解产品、又可以溶解单体和催化剂体系的溶剂中进行的均相反应,通常以直链烷烃如正己烷为溶剂,采用V一A1催化剂体系,聚合温度为30~50C,聚合压力为0.4~0.8 MPa,反应产物中聚合物的质量分数一般为8%~10%。工艺过程基本上由原材料准备、化学品配制、聚合、催化剂脱除、单体和溶剂回收精制以及凝聚、干燥和
包装等工序组成, 但由于各公司在某部分或控制方面有自己的专利技术,因而各具独特的工艺实施方法。代表性的公司有DSM、 Exxon、uniroya1、DuPont、日本三井石化和JSR公司。其中最典型的代表是DSM公司,它不仅是全球最大的EPR生产者,而且在荷兰、美国、日本、巴西所拥有的四套装置均是采用溶液聚合工艺,占世界溶液聚合工艺生产EPR总能力的1/4。下面将以该公司为例进行说明。
DSM公司采用己烷为溶剂,乙叉降冰片烯(ENB)或双环戊二烯(DCPD)为第三单体,氢气为分子量调节剂,VOCL3一1/2AL2Et3CL3为催化剂。此外,为提高催化剂活性及降低其用量,还加入了促进剂。催化剂的配比用量、预处理方式、促进剂类型是DSM公司的专有技术。反应物料二级预冷到一500C,根据生产的牌号,单釜或两釜串联操作。聚
合釜容积大约为6m3。聚合反应条件为:温度低于650C,压力低于2. 5 MPa,反应热用于反应器绝热升温。在碱性脱钒剂和热水作用下,聚合物胶液中残留的钒催化剂进入水相,经两次转相过程被彻底脱除。未反应单体经二次减压闪蒸回收并循环使用。此时向胶液中加入稳定剂等助剂(生产充油牌号时加入填充油)。汽提蒸出残存的乙烯、丙烯和大部分溶剂
后撇液送至两台串联的凝聚釜进行凝聚,并进一步蒸出回收残余己烷溶剂循环使用, JC胶粒浆液脱水后进入干燥系统,然后压块或粉料包装。含ENB的废热空气送至焚烧炉焚烧,含钒污水送至污水脱钒单元,在脱钒剂的中和絮凝作用下,钒进入钒渣中,定期送堆埋场掩埋,经脱钒的污水排至污水处理厂处理。
DSM公司EPR溶液聚合工艺技术成熟,比较先进,有下列优点: (1)投资低,工艺最佳化。反应器的优比设计能满足反应物料混合要求,能准确控制聚合反应工艺参数和产品质量,聚合物胶液浓度高而循环溶剂量少,聚合釜体积小但生产强度高,原料和循环单体不需要精制,催化剂效率高,三废中钒含量低,生产弹性大。(2)生产操作费用低,装置年操作时间长,原料和催比剂的消耗低,采用先进控制系统对生产进行控制。(3)产品质量具有极强的竞争力。产品中催化剂残渣含量低,生产中次品少,产品牌号切换灵活,切换废品量少,产品特性能够按用户要求进行调整,产品牌号多,门尼值可在20~160宽范围内调节,质量稳定,重复性好,产品规格指标变化幅度窄和产品加工性能优异。
1.2技术特点
技术比较成熟,操作稳定,是工业生产EPR的主要方法;产品品种牌号较多,质量均匀,灰分含量较少,应用范围广泛;产品电绝缘性能好。但是由于聚合是在溶剂中进行,传质传热受到限制,聚合物的质过分数一般控制在6%~9%,最高仅达11%~14%,聚合效率低。同时,由于溶剂需回收精制,生产流程长,设备多,建设投资及操作成本较高。
2 悬浮聚合工艺
2.技术状况
EPR悬浮聚合工艺产品牌号不多,其用途有局限性,主要用作聚烯烃改性,目前只有Enichem公司和Bayer公司两家使用,占EPR总生产能力的13.4%。该工艺是根据丙烯在共聚反应中活性较低的原理,将乙烯溶解在液态丙烯中进行共聚合。丙烯既是单体又兼作反应介质,靠其本身的蒸发致冷作明控制反应温度,维持反应压力。生成的共聚物不溶于液态丙烯,而呈悬浮于其中的细粒淤浆。又可分为一般悬浮聚合工艺和简化悬浮聚合工艺。
2.1.1一般悬浮聚合工艺
Enichem公司采用此工艺:以乙酰丙酮钒和AlEt2Cl为催化剂,二氯丙二酸二乙酯为活化剂,HNB或DCPD为第三单体,二乙基锌和氢气为分子量调节剂。视所生产产品牌号的不同,将乙烯、丙烯、第三单体以及催化剂加入具有多桨式搅拌器的夹套式聚合釜中,反应条件为:温度一20~20oC,压力0.35~1.05MPa。反应热借反应相的单体蒸发移除。反应相中悬浮聚合物的质量分数控制在30%~35%,整个聚合反应在高度自动控制下进行,生成的聚合物丙烯淤浆间歇地(10~15次/h)送入洗涤器,用聚丙二醇使催化剂失活,再用NaOH水溶液洗涤。悬浮液送入汽提塔汽提,未反应的乙烯、丙烯和ENB分别经回收系统精制后循环使用。胶粒一水浆液经振动筛脱水、挤压干燥、压块和包装即得成品胶。该工艺特点是聚合精制不使用溶剂,聚合物浓度高,强化了设备生产能力,同时省略了溶剂循环和回收,节省了能量。
2.1.2简化悬浮聚合工艺
该工艺是在一般悬浮聚合工艺基础上开发成功的,主要是采用高效钛系催化体系,不必进行催化剂的脱除,未反应单体不需处理即可返回使用。通常用于生产EPM,这是因为闪蒸不易脱除未反应的第三单体。其工艺流程为:反应在带夹套的搅拌釜中进行,采用TiC1、一MgC12一A1(i一Bu),催化剂体系,催化剂效率为50kg聚合物/g钛,反应温度27C,压力1.3MPa,聚合物的质量分数为33%。反应釜出来的蒸汽物料压缩到2.7 MPa并冷却后返口反应釜。聚合物淤浆经闪蒸脱除未反应单体,不需精制处理,压缩和冷却后直接循环到反应釜使用。脱除单体的聚合物不必净化处理即可作为成品。产品可以为粉状、片状或颗粒状。近年来,Enichem公司采用改进后的V一A1催化体系,催化剂效率提高到30~50kg聚合物/g钒,省去了洗涤脱除催化剂工序,同样简化了工艺流程。
2.2技术特点
EPR悬浮聚合工艺的特点是:聚合产物不溶于反应介质丙烯,体系粘度较低,提高了转化率,聚合物的质量分数高达30%~35%,因而其生产能力是溶液法的4~5倍;无溶剂回收精制和凝聚等工序,工艺流程简化,基建投资少;可生产很高分子量的品种;产品成本比溶液法低。而其不足之处是:由于不用溶剂,从聚合物中脱离残留催化剂比较困难;产品
品种牌号少,质量均匀性差,灰分含量较高;聚合物是不溶于液态丙烯的悬浮粒子,使之保持悬浮状态较难,尤其当聚合物浓度较高和出现少量凝胶时,反应釜易于挂胶,甚至发生设备管道堵塞现象;产品的电绝缘性能较差。
3气相聚合工艺
3.1技术状况
EPR的气相聚合工艺是由Himont公司率先于20世纪80年代后期实施工业化的。UCC公司则于90年代初宣布气相法EPR中试装置投入试生产,其9.1万吨/年的气相法EPR工业装置于1999年正式投产。目前,该工艺占EPR总生产能力的9%。UCC公司的EPR气相聚合工艺最具代表性,它分为聚合、分离净化和包装三个工序。质量分数为60%的乙烯、35.5%的丙烯、4.5%的ENB同催化剂、氢气、氮气和炭黑一起加入流比床反应器,在50~65C和绝对压力2.07 kPa下进行气相聚合反应。乙烯、丙烯和ENB的单程转化率分别为5.2%。0.58%和0.4%。来自反应器的未反应单体经循环气压缩机压缩后进入循环气冷却器除去反应热,与新鲜原料气一起循环回反应器。从反应器排出的EPR粉未经脱气降压后进入净化塔,用氮气脱除残留烃类。来自净化塔顶部的气体经冷凝回收ENB后用泵送回流比床反应器。生成的微粒状产品进入包装工序。
3.2技术特点
与前两种工艺相比,气相聚合工艺有其突出的优点:工艺流程简短,仅三道工序,而传统工艺有七道工序;不需要溶剂或稀释剂,毋需溶剂回收和精制工序;几乎无三暖排放,有利于生态环境保护。但其产品通用性较差,所有的产品皆为黑色。这是由于为
避免聚合物过粘,采用炭黑作为流态化助剂之故。虽然开发成功了用硅烷粘土和云母代替炭黑生产的白色和有色产品,但第一套工业化生产装置仍然只能生产黑色FPR。
H. 聚丙乙烯的溶液聚合工艺
60年代初实现工业化,经不断完善和改进,技术己成熟,为许多新建装置所使用,是工业生产的主导技术,约占FPR总生产能力的77.6%。
该工艺是在既可以溶解产品、又可以溶解单体和催化剂体系的溶剂中进行的均相反应,通常以直链烷烃如正己烷为溶剂,采用V一A1催化剂体系,聚合温度为30~50℃,聚合压力为0.4~0.8 MPa,反应产物中聚合物的质量分数一般为8%~10%。
工艺过程基本上由原材料准备、化学品配制、聚合、催化剂脱除、单体和溶剂回收精制以及凝聚、干燥和 包装等工序组成,但由于在某部分或控制方面有自己的专利技术,因而各具独特的工艺实施方法。
I. 溶液聚合时,固含量设计量增大对反应体系有什么影响
增加了反应物浓度,会使得反应物分子量增大,反应更加剧烈,粘度会增加