A. 18883-2002检测标准
2002年,原国家环境保护总局会同原国家质量监督检验检疫总局、原卫生部,制定了《室内空气质量标准》(GB/T 18883-2002),该标准规定了温度等物理性参数、二氧化硫等化学性参数、菌落总数、氨等室内空气质量参数及检验方法。由2003年3月1日正式实施。
其中附录A室内空气检测技术导则规定
1.范围
本导则规定了室内空气监测时的选点要求、采样时间和频率、采样方法和仪器、室内空气中各种参数的检验方法、质量保证措施、测试结果和评价。
2.选点要求
采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于50㎡的房间应设1~3个点;50~100㎡设3~5点;100㎡以上至少设5个点。在对角线上或梅花式均匀分布。
采样点应避开通风口,离墙壁距离应大于0.5 m。
采样点的高度:原则上与人的呼吸带高度相一致。相对高度0.5 m~1.5 m之间。
3.采样时间和频率
年平均浓度至少采样3个月,日平均浓度至少采样18 h,8 h平均浓度至少采样6 h,1 h平均浓度至少采样45 min,采样时间应函盖通风最差的时间段。
4.采样方法和采样容器
根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于50 dB (A)。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。
筛选法采样:采样前关闭门窗12 h,采样时关闭门窗,至少采样45 min。
累积法采样:当采用筛选法采样达不到本标准要求时,必须采用累积法(按年平均、日平均、8 h平均值)的要求采样。
5.质量保证措施
气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。
流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过5%。采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准5个点,绘制流量标准曲线。记录校准时的大气压力和温度。
空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。
仪器使用前,应按仪器说明书对仪器进行检验和标定。
在计算浓度时应用下式将采样体积换算成标准状态下的体积:
B. 空气测氡仪
上海仁日 有的卖!
RnRa-222型氡及子体连续监测仪为上海仁日公司可携式“实时”专“连续”测量属氡浓度/氡子体与总∂潜能浓度的多功能监测仪,参考国家标准GB/T14582-1993《环境空气中氡及其子体测量方法》采用特殊设计的有源(微型泵)高压静电收集采样装置 。该监测仪为“主动式有源”采样结构,具有典型的优越性,可用于地下工程、矿山井下、旅游山洞、核设施场所、伴生铀矿系以及室内环境氡的测量、卫生监督与放射性检测评价,是一种寻找氡(钍)来源、氡治理、辐射安全评价等所必备的装置,符合辐射效应委员会就氡子体监测与氡剂量估算的应用研究要求。该仪器可即时给出结果,操作简单,携带方便,适合大规模的氡水平调查和利用氡子体浓度进行地质灾害预报等应用场所。
C. 压缩空气质量检测仪的简介
压缩空气检测仪最早起源于欧洲EN12021标准中对于呼吸压缩空气的要求,目前压缩空气质量检测仪最好品牌是德国德尔格,也是压缩空气质量检测仪的始创者,最早历史可以追溯到1937年。压缩空气质量检测仪实在为一个压缩气体压力和流量调节装置,调节到检测管所要的压力和流量,其核心技术部件实际为检测管,属于安防领域中气体检测仪的衍生产品。目前使用最广的是Aerotest Alpha压缩空气质量检测仪 这款型号。
Aerotest Alpha的快速插接头能够和低压压缩空气供气系统相连接用。Aerotest Alpha所有部件都可装入一个硬质手提箱中,方便携带,易于操作。Aerotest Simultan Alpha, 完整配置
· - 1个手动减压器(3-15巴)- 1个可同时安装4支检测管的流量调节器- 1个计时器- 1个开管器- 1本使用手册- 1盒10支德尔格检测管,二氧化碳 100/a-p- 1盒10支德尔格检测管,一氧化碳 5/a-p- 1盒10支德尔格检测管,油 10/a-p- 1盒10支德尔格检测管,水蒸气 20/a-p- 1个手提箱Aerotest Alpha技术参数:
便携箱 长 300 mm; 宽 360 mm; 高 80 mm流量 0.2 升/分和 4.0 升/分
D. 空气质量仪的相关外文文献
建议您到岩研图书馆查询。
外文文献不易查询,因为外文文献和国内不同,不同专业的文献会被不同数据库所收录。因此建议您先自已搜索一下英文关键词,找到心仪的文献,记住收录此文献的外文数据库,然后到岩研图书馆进行咨询和。
并且,外文文献一般不会有中文翻译,所以找到文献之后需要您使用谷歌翻译一下。
E. 求一篇关基于单片机的空气质量检测仪的英文文献资料,有赏分的谢谢。
我处禁止上传文件,相关PDF外文文献有,没那么多,不知是否满足近几年的要求,翻译没有,翻译得靠你自己,希望能满足你的需要,能帮到你,多多给点悬赏分吧,急用的话请多选赏点分吧,这样更多的知友才会及时帮到你,我找到也是很花时间的,如果需要请直接网络 私信 或者 Hi 中留言贴出你在 网络知道的问题链接地址 及 邮箱地址
F. 空气采样装置
空气采样管来抽取被抄保护空间的空袭气样本到中心检测室,以监视被保护空间内烟雾存在与否的火灾探测器。空气采样探测器能够通过测试空气采样管抽取的空气样本了解烟雾的浓度,并根据预先确定的阈值给出相应的报警信号。这是空气采样探测器运行的基本原理
G. 求可燃气体报警器的外文文献2份!
在中国逐步进入工业化的同时,中国每年发生的工业事故也在屡屡发生。煤矿爆炸、厂房起火、工人中毒等此类新闻报道层出不穷。这些事故的发生主要因为工业环境中使用易燃易爆、有毒有害气体不当造成。对此中国政府不断推出相关法令来预防工业事故的发生:2002年6月29日中华人民共和国第九届全国人民代表大会常务委员会第二十八次会议通过了《中华人民共和国安全生产法》,自2002年11月1日起施行。各个省市也作出相关法令:2006年3月30日山东省第十届人民代表大会常务委员会第十九次会议通过了《山东省安全生产条例》本条例自2006年6月1日起施行。
什么是气体报警器?
顾名思义气体报警器就是气体泄露检测报警仪器。当工业环境中可燃或有毒气体泄露时,当气体报警器检测到气体浓度达到爆炸或中毒报警器设置的临界点时,报警器就会发出报警信号,以提醒工作采取安全措施,并驱动排风、切断、喷淋系统,防止发生爆炸、火灾、中毒事故,从而保障安全生产。
气体报警器的结构构成:
工业用固定式气体报警器由报警控制器和探测器组成,控制器可放置于值班室内,主要对各监测点进行控制,探测器安装于气体最易泄露的地点,其核心部件为内置的气体传感器,传感器检测空气中气体的浓度。探测器将传感器检测到的气体浓度转换成电信号,通过线缆传输到控制器,气体浓度越高,电信号越强,当气体浓度达到或超过报警控制器设置的报警点时,报警器发出报警信号,并可启动电磁阀、排气扇等外联设备,自动排除隐患。
便携式气体检测仪为手持式,工作人员可随身携带,检测不同地点的气体浓度,便携式气体检测仪集控制器,探测器于一体,小巧灵活。与固定式气体报警器相比主要区别是便携式气体检测仪不能外联其他设备。
气体报警器的分类
按检测气体可分为:可燃气体报警器,有毒气体报警器和复合式气体报警器,气体报警器使用不同传感器检测不同气体
,复合式气体报警器可同时检测可燃和有毒气体。按使用环境可分为:工业用气体报警器和家用燃气报警器。按自身形态可分为固定式气体报警器和便携式气体检测仪。
Enters the instrialization graally while China, the instrial accident which China occurs every year repeatedly is also occurring. The coal-mine explosion, the workshop are on fire, the worker poison and so on this kind of reportage to emerge one after another incessantly. Because these accident's occurrence mainly in the instry environment uses flammable explosive, the virulent noxious gas to create improper. Regarding the Chinese government promotes the related law to prevent instrial accident's occurrence unceasingly: on June 29, 2002 the People's Republic of China ninth Standing Committee of the National People's Congress 28th conference adopted "the People's Republic of China Safety in proction Law", became effective from November 1, 2002. Each provinces and cities also make the related law: on March 30, 2006 Shandong Province tenth session of the National People's Congress Standing committee 19th conference adopted "Shandong Province Safety in proction Rule" this rule becomes effective from June 1, 2006. what is the gas alarm apparatus? the gas alarm apparatus are the gas revelation examination warning instrument as the name suggests. When in instry environment inflammable or noxious gas revelation, when the gas alarm apparatus examine the gas strength to achieve the critical point which the detonation or the toxicant alarm apparatus establish, the alarm apparatus will send out the alarm, will remind the work to take the security measure, and will actuate a row of wind, the cut-off, to spray the system, will prevent to have the detonation, the fire, the toxicant accident, will thus safeguard the safety in proction. gas alarm apparatus' structure constitution: the instrial used stationary type gas alarm apparatus are composed of the warning controller and the detector, the controller may lay aside in the ty officers observation room, mainly carries on the control to various test points, the detector installment the place which is easiest in the gas to reveal, its core part for built-in gas sensor, in sensor examination air gas density. Detector the gas strength which examines the sensor transforms the electrical signal, passes commits a footfault the cable to transmit the controller, the gas strength is higher, the electrical signal is stronger, when the gas strength achieves or surpasses the alarm point which the warning controller establishes, the alarm apparatus send out the alarm, and may start the solenoid valve, the exhaust fan substandard association equipment, removes the hidden danger automatically. the portable gas instrumentation is the handhold, the staff may body carrying, the examination different place gas strength, portable gas instrumentation collection controller, detector in a body, exquisite nimble. Compares the main difference with the stationary gas alarm apparatus is the portable gas instrumentation cannot outside unite other equipment. gas alarm apparatus' classified may divide into according to the examination gas: The flammable gas alarm apparatus, the noxious gas alarm apparatus and the compound expression gas alarm apparatus, gas alarm apparatus use different sensor examination different gas , the compound expression gas alarm apparatus may simultaneously examine inflammable and the noxious gas. May divide into according to the use environment: Instrial used gas alarm apparatus and home use fuel gas alarm apparatus. May divide into the stationary gas alarm apparatus and the portable gas instrumentation according to own shape.
H. 大气环境监测
大气环境中CO2浓度的监测是目前确定CO2是否泄漏较为有效和快捷的手段之一,其主要目的是发现来自于储存工程可能的泄漏,以及项目周边环境有没有受到负面影响。目前最常用的技术有红外线气体检测技术、大气CO2示踪、陆地生态系统通量观测三种。
1.光学CO2传感器
绝大多数CO2浓度监测技术都是基于CO2近红外(IR)吸收光谱特征设计的,并且都可以做到实时监测和在线数据传输。由于CO2在一些近红外光谱段有着较强的吸收特性,同时其他气体在相应的光谱范围内的吸收特性较弱,从而使得一些近红外波段成为探测和监测CO2的良好途径。CO2对于近红外4.25μm太阳辐射具有较强的吸收特征,因此该波段对于探测大气中的CO2非常敏感(图10-2)。大部分固定和移动式的商业化CO2监测设备都是利用这一近红外通道设计和制造的。CO2另一个较强的近红外吸收通道是2.7μm,但其吸收强度仅有4.25μm处的1/10。这个通道对于监测CO2也非常敏感,并且基本不受其他气体的干扰。该通道被美国国家航空航天局(NASA)的火星探险号用于探测CO2浓度。2μm处也是一个比较有潜力的通道,但CO2在该通道的吸收率仅为在4.25μm处的1/250,这一弱吸收通道已经被用来探测燃烧环境中的CO2浓度。在4.41~4.45μm处,13CO2具有较强的吸收特性。由于13C的浓度要远低于12C的浓度(大约为其的1/100),所以这一通道可以用来探测CO2浓度较高的环境,探测范围可以达到0.27%。CO2在1.57μm处仍有一个吸收谷,在这一波段的吸收率很低,约为在2μm 处的1/100。但这一波段几乎完全不受其他气体的干扰,所以这一弱吸收波段不适宜短程CO2监测(例如燃烧室等),但却在CO2浓度处于典型大气浓度范围时,是长程CO2浓度监测的理想波段(Shu1er et al.,2002)。
CO2浓度监测仪和涡度相关法都只能监测较小范围内的CO2浓度。当需要监测较大范围(几公里范围)的大气中CO2浓度变化情况时,就需要采用开放路径监测设备,例如使用激光发射出电磁波(选择CO2较为敏感的吸收波段),然后接收从地表反射回来的电磁波,由于发射和反射的电磁波受到了不同物质的吸收(例如大气中的CO2),所以可以通过分析接收到的电磁波的衰减程度,在较大范围内监测CO2浓度变化。激光雷达技术就是一种光探测技术,当前激光及差分吸收雷达技术已经被用于CO2浓度监测。
如果需要在更大范围内监测CO2浓度,例如几千平方千米或者更大,则就需要使用卫星遥感技术(激光也属于遥感技术的一种)。尽管当前已经有利用卫星遥感探测大气CO2浓度的技术和应用,例如日本的温室气体观测卫星(GOSAT)、欧洲太空局ENVISAT卫星上搭载的SCIAMACHY等,但当前的CO2遥感监测精度相对CO2地质储存的需求仍存在较大差异。但这类技术无疑是高效、高频率、低成本CO2浓度监测的最佳选择,随着技术进步,遥感技术必将在CO2地质储存环境监测中发挥越来越重要的作用。
I. 急求翻译一篇英文文献。字数不是很多,还请各位帮帮忙。。。谢谢。。。在线等!!!1
铵丰富废水
美国范栋勤, M.S.M. Jetten *和M.C.M.凡雷赫特**
生物工程系,应用科学学院,荷兰代尔夫特大学。技术, Julianalaan 67 ,荷兰
2828年荷兰代尔夫特(电子邮箱: [email protected] )
*当前地址:微生物学系科学系,大学。奈梅亨,荷兰6525 ED镜头奈梅亨的
荷兰
**通讯作者
摘要铵的治疗丰富的废水,如污水污泥沼气池,可显着
当新的改进过程,介绍了生物技术。本文结合部分
硝化过程(硝化® )和缺氧氨氧化(厌氧氨氧化® )工艺处理
氨丰富进水评价。在此合并过程中研究了污泥回收利用
酒从污水处理厂鹿特丹Dokhaven 。沙龙过程操作稳定超过2
多年来在十升CSTR中连续曝气,以HRT为1天。氨水在污泥白酒
转换为53 % ,亚硝酸盐只。在测试期间没有形成硝酸盐观察。出水的
沙龙的过程是非常适合作为进水的厌氧氨氧化反应器。在厌氧氨氧化过程
经营作为颗粒污泥SBR工艺过程。 80 %以上的氨转化为二
天然气负荷的1.2 kgN/m3每天。 Planctomycete样细菌为主的混合社会
厌氧氨氧化反应器,只有一小的人口比例由好氧氨氧化
细菌。这表明,氨氧化菌在污水沙龙进程并未
积聚在SBR法。测试期间表明,合并沙龙厌氧氨氧化系统可以工作
稳定和长期的进程是准备全面实施。
关键词部分硝化;亚硝酸盐;好氧和厌氧氨氧化;污泥酒;沙龙
厌氧氨氧化
导言
氨是一种最重要的组成部分废水已被删除
在废水可以出院。这主要是实现了完整的氧化
硝酸盐,和随后的硝酸盐还原为二气缺氧条件下
牺牲的COD 。采用氧气(空气)进入废水的氧化
铵需要大量的能源。此外,大量的COD本是
废水往往是有限的,使购买中COD的形式甲醇必要。
由于长期污泥硝化所需的年龄,大型反应堆(面积要求)
是必要的。其中的一些限制,可能会绕过两个应用
最近开发的新生物技术的进程:部分硝化的氨
亚硝酸盐的快速增长的硝化和反硝化作用的亚硝酸盐,以二天然气使用氨水
作为电子供体。这样氮去除以最小的COD和能源。
阿脱氮工艺极少使用能源和COD
图1中的一个基本流程拟议沙龙厌氧氨氧化的概念,已部分
在污水处理厂实施Dokhaven ,荷兰鹿特丹,是描绘。那个
污泥循环水通常含有15 %的工厂的总负荷只有1 %的
水力负荷。氨水( 1-1.5 gNH4氮/升)在污泥酒采用删除
部分氧化铵为亚硝酸盐,亚硝酸盐是whereafter的denitrified铵
作为电子供体。这两个系统必不可少的这些进程最近已
水科学和技术:第1期第44卷第153-160 ©纽伦堡出版社2001年
153
在我们的开发部:沙龙® ®和厌氧氨氧化过程(范雷赫特
和Jetten 1998年) 。这样,氧气要求脱氮减少
60 % ,没有需要的化学需氧量,污泥产量边缘化,净二氧化碳排放量
大大减少。
氨氧化没有生物质能保留
沙龙进程( Hellinga等。 , 1997年, 1999年)的运作没有任何生物保留。
这意味着,污泥龄(广播电视)等于水力停留时间( HRT ) 。在
这样一个系统出水浓度只有依靠增长率( 1/SRT )的
细菌参与,和独立的进水浓度。在操作过程中的
沙龙过程中温度超过25 ℃ ,快速增长的铵oxidisers
选定。但是,这些生物体有低亲和力的铵(亲和常数
20-40 mgNH4氮/升) 。在实践中,这将导致在应用微生物,以废水
相对较高的铵浓度( ñ 50-100毫克/升) 。因此,沙龙
过程是最适合处理废水具有高浓度铵( “ 500毫克
ñ /升) ,而不是出水水质的关键。
沙龙进程的污泥消化废水都是在30-40摄氏度的
微生物生物量没有任何保留,因此,稀释率可设置这样一个利率
硝酸铵氧化剂的增长速度不够快留在反应堆,而亚硝酸盐氧化菌
正在洗出。沙龙一直在经营过程中的实验室( 2升反应堆)上
消化废水超过2年。这是直接扩大到全部规模( 1800立方米)
在那里,它正在按照预期(穆尔德等。 , 2001年) 。
混合微生物群落在沙龙生物量进行了调查
分子生态技术( Logemann等。 , 1998年) 。总DNA提取
从生物样品及用于PCR扩增引物,具有普遍的细菌。
的PCR产物被用来建造一个基因库。分析表明,克隆
占主导地位的克隆( 69 % )是非常相似的硝化产碱杆菌。这是质量
和定量证实了两个独立的微观方法。存在
约50-70 %的氨氧化细菌表明使用16县rRNA基因
有针对性的荧光寡核苷酸探针( NEU653 )具体的硝化物种。
硝化产碱杆菌已被描述的文学作为一个快速成长的硝化细菌能够
在高增长铵和硝酸盐的浓度。美国范栋勤等人。 154
图1执行沙龙厌氧氨氧化工艺在污水处理厂鹿特丹Dokhaven
沙龙进程产生氨,亚硝酸盐混合物
当沙龙反应堆是用于提供饲料的厌氧氨氧化过程中只有50 %
对铵需要转化为亚硝酸盐:
硫酸铵
+ + HCO3
- + 0.75氧气→ 0.5硫酸铵
+ + 0.5二氧化氮
- +二氧化碳+ 1.5水( 1 )
这反应化学计量意味着没有额外增加的基地是必要的,因为污泥
酒造成厌氧消化一般将包含足够的碱度(在
形式的碳酸氢钠) ,以弥补生产的酸如果只有50 %的硝酸铵是
氧化。有可能产生50:50混合铵和亚硝酸盐的
沙龙一直在评估过程中广泛的实验室系统,污泥酒
从鹿特丹作为污水处理厂进水。结果(图1 ,表1 )表明,事实上
一个稳定的转换是可能的。该氧化铵53 % ,亚硝酸盐在1.2千克氮
负荷每立方米每天,没有任何需要的pH值控制。氨氧化细菌的
耐受高浓度的亚硝酸盐( “ 0.5克二氧化氮氮/ L时,在pH 7 ) 。
对铵/亚硝酸盐比出水沙龙过程可以灵敏
受不断变化的反应pH值6.5和7.5之间。以这种方式准确率
充分脱氮厌氧氨氧化过程中可以得到。在实验
期间,数个成功的测试进行(第一阶段3和5 )的可能性进行评估
使用pH值的控制方法设置所需的铵/亚硝酸盐比率
美国范栋勤等人。
155
表1转换沙龙反应堆在测试期间。进水是centrate的
消化污泥离心机在污水处理厂鹿特丹Dokhaven (水力停留时间=广播电视= 1天)
参数机组稳态运行共计期间( 240四)
进水氨氮kg/m3 1.18 ± 0.14 1.17 ± 0.25
进水氮氧化物kg/m3 0 0
废水氨氮kg/m3 0.55 ± 0.10 0.60 ± 0.20
废水二氧化氮氮kg/m3 0.60 ± 0.10 0.55 ± 0.20
废水硝态氮kg/m3 0 0
pH值6.7 ± 0.3 6.8 ± 1.2
NH4 - N的转化% 53 49
氮转化kg/m3/d 0.63 ± 0.10 0.52 ± 0.20
图2硫酸铵转换沙龙反应器连续运转。水力停留时间和广播电视人
双方一天。期间1 :启动期,期间2,4和6稳态运行withot pH值控制,周期3
5测试期间,评估影响反应堆的pH值对转换。 (十:氨氮的; ö : NH4 - N的输出; • :二氧化氮氮出)
出水。这一控制的原则下,恒化器系统的使用:在不断稀释
利率底物浓度的污水将不变。它已经表明,氨,而
然后铵
+是积极基板( Hellinga等。 , 1999年) 。如果pH值的增加,不断
氨含量的手段降低铵水平。即通过提高pH值的数量
废水中的铵下降迅速。结果表明:在3日和5日期间的确实是一个
在pH值稍有变化已经导致了大量的改变出水铵/亚硝酸盐的比例。
没有控制的转换已经是一个总的“ 90 %可以得到,因此值得怀疑
是否额外清除了pH值控制在经济上是值得的。
在厌氧氨氧化过程
在厌氧氨氧化过程是一个过程,其中缺氧条件下转化为亚硝酸盐
二天然气铵作为电子供体:
硫酸铵
+ +二氧化氮
- →氮气+ 2水( 2 )
这种细菌的厌氧氨氧化催化反应是自养,这意味着,亚硝酸盐可
转换为二气,而无需使用化学需氧量或增加外部甲醇
( Jetten等。 , 1998年) 。在厌氧氨氧化过程中被发现存在一个试验性工厂安装
的精神,锦(穆尔德等。 , 1992年, 1995年) 。生物性质的过程可以
表明自厌氧氨氧化活性灭活由伽马射线照射,
加热试验厂污泥或孵化各种抑制剂( Jetten等。 , 1998年) 。
细胞可逆性抑制氧气浓度低至0.5 %空气饱和度
( Strous等。 , 1997年, Jetten等。 , 1998年) 。此外有人指出,亚硝酸盐
首选的电子受体的进程。
细菌负责进程已丰富的序批式反应器
在合成培养基中铵,亚硝酸盐和碳酸氢钠( Strous等。 ,
1998年, 1999年) 。增长速度(倍增时间11天)和成长率( 0.11金视/
gNH4 - n )的生物体是非常低的。明显的优势的厌氧氨氧化过程,因此
低污泥生产。然而,一个有效的系统,如生物量保留
SBR系统的使用将有必要保持所有的厌氧氨氧化反应器中生物量和
只要启动时间将需要生产足够的生物量。具体的高度最高
氮消耗率( 0.82肾炎/ gVSS.day ) ,非常高的亲和力氨水和
亚硝酸盐(报表“ 0.1毫克ñ / L )和颗粒增长使高效生物质能保留,
使设计的非常紧凑的装置成为可能。
先前的研究表明,一些硝化物种也能
氨氧化与亚硝酸盐作为电子受体。缺氧或氧气限制
条件下的反应速率小于0.08肾炎/ gVSS.day (博克等。 , 1995年; Jetten
等。 , 1999年;郐, Verstraete , 1998年;施密特,博克, 1997年;施密特,博克, 1998年; Zart ,
博克, 1998年) 。在厌氧氨氧化活性的我们的文化远高于这一比例。
此外,我们的文化占主导地位70 %或以上的一个morphotypical微生物。
结果表明有三个属性的成员在共同的订单
Planctomycetales :细胞分裂的萌芽,内部细胞条块分割的
在场的crateriform结构的细胞壁,以及存在的血脂异常
膜( Strous等。 , 1999年) 。基于的16S RNA分析的暂定名称
Brocadia Anammoxidans已经提出了作为负责任的有机体的厌氧氨氧化
进程。
最近大量的氮损失(表2 )报告了几个污水处理
系统(海尔默和艺术, 1998年; Hippen等。 , 1996年;西格里斯特等人。 , 1998年,施密德等
基地。 , 2000年) 。拥有非常高氮负荷和有限的空气供应,大量的
氨损失气体氮化合物。在这样的系统条件可能预先美国范栋勤等人。 156
韦尔在这两个硝化和厌氧氨氧化细菌可以共存
(施密德等人。 , 2000年) 。借助于具体杂交探针经确定
厌氧氨氧化类细菌中存在大量的这些进程。只有在
微反应器被发现大量常规硝化。这些意见
表明,厌氧氨氧化可能是普遍的性质和可
可从许多不同的来源。
可行性研究
在最近的可行性研究报告( Strous等。 , 1997年)取消铵从污泥
沼气池废水进行了调查与厌氧氨氧化过程。这项研究的结果
表明,化合物中的沼气池污水没有产生不利影响厌氧氨氧化
污泥。 pH值( 7.0-8.5 )和温度( 30-37 ℃ )优化的进程良好
的范围之内的价值预计为沼气池废水。实验室实验
规模( 2升)流化床反应器表明,厌氧氨氧化污泥能力
氨和亚硝酸盐去除高效沼气池的污泥污水。氮
负荷厌氧氨氧化流化床反应器,可提高由0.2千克Ntot/m3d 2.6
公斤Ntot/m3d 。由于亚硝酸盐的限制,最大的能力没有达到。在
实验合成废水,价值观五点一公斤Ntot/m3d已获得
( Jetten等。 1998年) 。
相结合,厌氧氨氧化过程和部分硝化(沙龙)
进程已成功试射利用污泥消化池出水。沙龙反应堆
经营未经pH值控制的总氮负荷约1.2公斤N/m3每天。
对铵在沼气池污水污泥转化为53 % ,而pH值
控制(表1 ) 。这样一铵,亚硝酸盐混合物适合厌氧氨氧化
过程产生的。出水沙龙反应堆作为进水的
厌氧氨氧化序批式反应器。亚硝酸盐在有限的厌氧氨氧化反应器所有亚硝酸盐
删除,剩余铵依然存在。在测试期间的氮负荷
0.75公斤ñ每天每立方米(表3 ) 。活动达成价值高达0.8千克氮每公斤
干体重每天。
一个关键方面的可行性研究是可能的影响,生物量
(硝酸铵氧化剂和污泥中的细菌酒)在进水的厌氧氨氧化
厌氧氨氧化过程的进程。稍有积累的淤泥,进水
在厌氧氨氧化反应器可产生不利影响的厌氧氨氧化过程。净生产
的厌氧氨氧化细胞低和积累量的影响将淡化
厌氧氨氧化生物量显着。 FISH分析表明,大多数的细菌
在厌氧氨氧化反应器的厌氧氨氧化型,只有少量的硝化原产
从沙龙的过程,可检测。此外数额铵
氧化细菌在厌氧氨氧化出水和进水了比较。这表明
该洗出量从沙龙系统(经营无生物
美国范栋勤等人。
157
表2报告厌氧氨氧化活性和存在planctomycete像厌氧氨氧化细菌
系统进水条件鱼类神经/ Amx参考
红细胞废水O2 -的有限+ / +西格里斯特等人。 1998年
红细胞渗滤液O2 -的有限+ / + Hippen等。 1996年
赫尔默1998年
滴滤铵中O2 -的有限+ / +施密德等人。 2000年
填料床铵介质缺氧- / + Ashbolt属。商业。
流化床铵介质缺氧- / + Jetten等。 1998年
SBR法硫酸铵介质缺氧- / + Strous等。 1998年
SBR工艺污泥酒缺氧- / +本文
保留)并没有负面影响的厌氧氨氧化过程完成时,它是在一个
颗粒污泥反应器。
目前,全面实施合并沙龙厌氧氨氧化过程
评价。为此全过程设计和经济评价了
治疗污泥污水处理厂酒在鹿特丹Dokhaven 。这一进程
设计给出了表4 。三起案件进行了评估,因为污泥管理
有相当影响的流量和浓度的centrate水。直接消化
的剩余污泥导致铵含量500 mgN /湖集中
污泥增厚或离心消化之前给出了更高浓度铵
和较低的流动。过程而不污泥停留(沙龙) ,主要
尺度上的水力停留时间,沙龙反应堆尺寸,因此强烈
影响更集中进水。生物膜过程基本上是尺度
实际负荷,并不会影响进水浓度。保留
时间在这里的变量参数。由于生物膜反应器中生物膜领域主要是
确定转换能力,颗粒污泥型过程(如颗粒污泥
SBR工艺,上流式厌氧污泥床或内循环( IC )的反应堆)导致反应堆尺寸小得多。
基于进程的成本估算了。在此假定安装
都必须建立在一个新网站。这些费用应被视为绝对的指示,因为
值可以是非常具体的网站。这些费用可以比较类似计算
其他进程已测试的试验工厂规模氮去除污泥消化
酒类( STOWA , 1995年) 。为与反硝化过程甲醇
这使得估算的F 2-3/kgN拆除。在这种比较结果表明,该费用
对甲醇和曝气脱氮平衡常规的额外投资
第二厌氧氨氧化反应器。其他生物技术(如生物膜与膜
美国范栋勤等人。 158
表3转换的颗粒污泥厌氧氨氧化反应器SBR法与美联储
nitrified污水由一名沙龙反应堆(表1 )
参数机组稳态运行
测试期间,每天110
进水氨氮kg/m3 0.55 ± 0.10
进水二氧化氮氮kg/m3 0.60 ± 0.10
NH4 - N的转化kg/m3/d 0.35 ± 0.08
NO2的氮转化kg/m3/d 0.36 ± 0.01
废水二氧化氮氮kg/m3 0
体积转换。公斤Ntot/m3/d 0.75 ± 0.20
污泥转化公斤Ntot /公斤党卫军/天0.18 ± 0.03
表4维度全面沙龙-厌氧氨氧化过程的三种不同的情况下
反应器的参数股案例1案例2案例3
一般氮负荷千克氮/天1,200 1,200 1,200
NH4 - N的浓度公斤N/m3 500 1,200 2,000
进水流量m3/day 2400 1000 600
沙龙反应器体积立方米3120 1300 780
需氧量公斤O2/day 2181 2181 2181
航空需求
*
Nm3/day 56,000 56,000 56,000
移动床体积立方米450 450 450
厌氧氨氧化反应器的水力停留时间4.5小时11月18日
颗粒污泥体积立方米75 75 75
厌氧氨氧化反应器的水力停留时间为0.75小时1.8 3
*计算假设氧耗15 g/Nm3/mreactor
流程)有较高的投资成本和运行成本较高,由于转换
超过硝酸盐引起的F 5-10/kg ñ删除。为物理/化学技术的价值
的F 10-25/kg ñ删除估计。这些值可以改变大大如果如能源是
免费或低价提供。然而,预处理必须消除碳酸盐
中的物理过程作出重大贡献的价格。
结论
两个新概念的脱氮废水制定了
这大大减少了能源,化工利用的目的。使用的
合并沙龙厌氧氨氧化过程中,脱氮将不再需要
投入的化学需氧量。合并后的系统,因此,可以独立运作。这使得
尽可能优化COD和脱氮分开。拟议的概念
考验,长时间显示一个稳定的污水,高氨氮去除
而不需要为过程控制。鉴于积极的成本计算的全面实施
可以预期在不久的将来。
鸣谢
研究氮转化技术在财政支持
基金会的应用水研究( STOWA ) ,该基金会为应用科学
(短期豁免书) ,皇家艺术和科学院( KNAW ) , DSM的主旨,帕克,和
Grontmij顾问。我们感谢我们的同事们进行富有成效的讨论和合作。
参考资料
博克,大肠杆菌,施密特,一, Stuven ,河和Zart , 4 ( 1995年) 。氮素流失所造成的反硝化
细胞铵或使用氢气作为电子受体。拱桥。微生物。 163 , 16-20 。
Hellinga ,角, Schellen , A.A.J.C. ,穆德。 J.W. ,凡雷赫特。 M.C.M.和Heijnen , J.J. ( 1998年) 。那个
硝化过程:一种创新的方法脱氮铵丰富的废水。笏。
科学。技术。 37 ( 9 ) , 135-142 。
Hellinga ,角,面包车雷赫特, M.C.M.和Heijnen , J.J. ( 1999年) 。基于模型的设计一种新型的进程
脱氮集中流动。数学。压缩机。莫代尔。强啡肽。系统。 5 , 1月13日。
赫尔默, C.和艺术,美国( 1998年) 。同时硝化/反硝化的好氧生物膜系统。
笏。科学。技术。 37 ( 4-5 ) , 183-187 。
Hippen ,答: , Rosenwinkel ,锁眼,鲍姆加滕湾和Seyfried叶酸( 1996年) 。有氧deammonification : 1
新的治疗体会废水。笏。科学。技术。 35 ( 10 ) , 111-120 。
Jetten , M.S.M. ,非洲之角, S.J.和Van雷赫特, M.C.M. ( 1997年) 。建立一个更加可持续的城市
废水处理系统。笏。科学。技术。 35 ( 9 ) , 171-180 。
美国范栋勤等人。
159
表5费用估算为沙龙厌氧氨氧化过程的三个案件中提到的表4
参数股案例1案例2案例3
氮负荷千克氮/天1,200 1,200 1,200
流M3/day 2400 1000 600
浓度kg/m3 500 1,200 2,000
投资的KF 4983 3997 3603
折旧的KF /年528 433 393
维修的KF /年101 90 83
个人的KF /年24 24 24
共计D物磷的KF /年653 547 500
电力的KF /年181 167 163
总成本的KF /年834 714 663
每千克氮成本除去f 2月30日1.97 1.83
Jetten ,的MSM , Strous先生,范德加莱Schoonen , KT公司, Schalk ,学者,范栋勤,研究,凡德格拉夫,机管局,
Logemann ,南, Muyzer湾,范雷赫特, M.C.M.和Kuenen , J.G. ( 1998年) 。厌氧氧化
硫酸铵。 FEMS观测微生物。评论22 , 421-437 。
Logemann ,南, Schantl ,学者, Bijvank ,南,凡雷赫特,多芯片组件, Kuenen , JG和Jetten , M.S.M. ( 1998年) 。
分子微生物多样性的硝化反应器系统中污泥停留。 FEMS观测微生物
生态27 , 239-249 。
加上原有的A , ( 1992年) 。缺氧氨氧化美国专利427849 ( 5078884 )的美国专利。
穆尔德,答: ,凡德格拉夫,机管局,罗伯逊,洛杉矶和Kuenen , JG ( 1995年) 。厌氧氨氧化
发现了反硝化流化床反应器。 FEMS观测微生物生态。 16 , 177-83 。
穆尔德,金威,凡雷赫特,多芯片组件, Hellinga ,角和Van肯潘,河( 2001年) 。全面应用
沙龙处理拒绝水的消化污泥脱水。笏。科学。技术。 ,
43 ( 11 ) , 127-134段。
西格里斯特阁下, Reithaar , S.和莱斯,第( 1998年) 。氮素损失在硝化轮流承办治疗铵
没有丰富的渗滤液有机碳。笏。科学。技术。 37 ( 4-5 ) , 589-591 。
施密德先生, Twachtmann ,美国,克莱因先生, Strous ,先生, Juretschko ,南, Jetten先生,梅茨格,学者, Schleifer ,锁眼
和瓦格纳先生( 2000年) 。分子水平的证据,属不同的细菌能够催化
厌氧氨氧化。系统。应用微生物。 23 , 93-106 。
Stowa ( 1995年) 。治疗氮丰富返回流动污水处理厂(在荷兰) 。 STOWA报告
95-08 ,乌得勒支荷兰。
Strous先生,范Gerven ,东平,卓, Kuenen , JG和Jetten , M.S.M. ( 1997年) 。铵免职
废物流集中的厌氧氨氧化(厌氧氨氧化)过程中不同
反应器的配置。笏。水库。 31日, 1955年至1962年。
Strous先生,范Gerven ,大肠杆菌, Kuenen , JG 。和Jetten , M.S.M. ( 1997年) 。有氧和微
条件对厌氧氨氧化(厌氧氨氧化)污泥。应用。环境。微生物。 63 ,
2446年至2448年。
Strous先生, Heijnen , J.J. , Kuenen , J.G.和Jetten , M.S.M. ( 1998年) 。在序批式反应器作为一个强有力的
工具研究非常缓慢增长的微生物。应用。微生物。生物工程。 50 , 589-596 。
Strous先生,富尔斯特,学者,克莱默,大肠杆菌, Logemann ,南, Muyzer湾,范德双人舞,光,韦伯,河, Kuene , J.和
Jetten先生( 1999年) 。失踪lithotroph确定为新的planctomycete 。自然400 , 446-449 。
Strous先生, Kuenen , J.G.和Jetten , M.S.M. ( 1999年) 。关键生理厌氧氨氧化。
应用。环境。微生物。 65 , 3248-3250 。
凡雷赫特, M.C.M.和Jetten , M.S.M. ( 1998年) 。微生物转换脱氮。
笏。科学。技术。 38 ( 1 ) , 1-7 。
美国范栋勤等人。