㈠ 合成氨工艺流程图
合成氨是以碳氨为主要原料, 我司可承包的 合成氨生成成套项目, 规模有 4×104 吨/年, 6×104 吨/年, 10×104 吨/年, 30×104 吨/年, 其产品质量符合中国国家标准.
1. 工艺路线:
以无烟煤为原料生成合成氨常见过程是:
造气 -> 半水煤气脱硫 -> 压缩机1,2工段 -> 变换 -> 变换气脱硫 ->压缩机3段 -> 脱硫 ->压缩机4,5工段 -> 铜洗 -> 压缩机6段 -> 氨合成 -> 产品NH3
采用甲烷化法脱硫除原料气中CO. CO2 时, 合成氨工艺流程图如下:
造气 ->半水煤气脱硫 ->压缩机1,2段 ->变换 -> 变换气脱硫 -> 压缩机3段 ->脱碳 -> 精脱硫 ->甲烷化 ->压缩机4,5,6段 ->氨合成 ->产品NH3
2. 技术指标:
(1) 原料煤: 无烟煤: 粒度15-25mm 或25-100mm
固定75%蒸汽: 压力0.4MPa, 1-3MPa
(2) 产品: 合成氨:氨含量(99.8%) 残留物含量(0.2%)
3. 消耗定额: ( 以4×104 吨/年计算)
(1) 无烟煤( 入炉) : 1,300kg
(2) 电: 1,000KWH( 碳化流程), 1,300KWH( 脱碳流程)
(3) 循环水: 100M3
(4) 占地: 29,000M2
4. 主要设备:
(1) 造气炉
(2) 压缩机
(3) 铜洗
(4) 合成塔
http://www.weisheng.com.cn/jjfa_show.asp?id=7
㈡ 合成氨和制碱生产工艺及相关设备的介绍
工艺流程
1.合成氨的工艺流程
(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程
在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:
CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ
由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
② 脱硫脱碳过程
各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。
粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。
目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:
CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ
CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ
(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:
N2+3H2→2NH3(g) =-92.4kJ/mol
2.合成氨的催化机理
热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:
xFe + N2→FexN
FexN +〔H〕吸→FexNH
FexNH +〔H〕吸→FexNH2
FexNH2 +〔H〕吸FexNH3xFe+NH3
在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。
3.催化剂的中毒
催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。
催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。
4.我国合成氨工业的发展情况
解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。
近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。
5.化学模拟生物固氮的研究
目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。
国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:
①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。
目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。
固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。
[编辑本段]生产方法
生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用,但随着能源格局的变化,现在煤制氨又被重视起来,外国主要是粉煤气化技术发展很快,国内则转向型煤制气技术已非常成熟。
用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。
贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。
制碱法 一、联合制碱法
(侯氏制碱法)
NH3+CO2+H20+NaCl=NH4Cl+NaHCO3↓ (NaHCO3 因溶解度较小,故为沉淀,使反应得以进行)
2NaHCO3=Na2CO3+CO2↑+H2O ("="上应有加热的符号)
其要点是在索尔维制碱法的滤液中加入食盐固体,并在30 ℃~40 ℃下往滤液中通入氨气和二氧化碳气,使它达到饱和,然后冷却到10℃以下,根据 NH4Cl 在常温时的溶解度比 NaCl 大,而在低温下却比 NaCl 溶解度小的原理,结晶出氯化铵(一种化肥),其母液又可重新作为索尔维制碱法的制碱原料。
此法优点:保留了氨碱法的优点,消除了它的缺点,使食盐的利用率提高到 96 %; NH4Cl 可做氮肥;可与合成氨厂联合,使合成氨的原料气 CO 转化成 CO2 ,革除了 CaCO3 制 CO2 这一工序。
碳酸钠用途非常广泛。虽然人们曾先后从盐碱地和盐湖中获得碳酸钠,但仍不能满足工业生产的需要。
1862年,比利时人索尔维(Ernest Solvay 1838—1922)发明了以食盐、氨、二氧化碳为原料制取碳酸钠的“索尔维制碱法”(又称氨碱法)。此后,英、法、德、美等国相继建立了大规模生产纯碱的工厂,并组织了索尔维公会,对会员以外的国家实行技术封锁。
第一次世界大战期间,欧亚交通梗塞。由于我国所需纯碱都是从英国进口的,一时间,纯碱非常缺乏,一些以纯碱为原料的民族工业难以生存。1917年,爱国实业家范旭东在天津塘沽创办了永利碱业公司,决心打破洋人的垄断,生产出中国的纯碱。他聘请正在美国留学的侯德榜先生出任总工程师。
1920年,侯德榜先生毅然回国任职。他全身心地投入制碱工艺和设备的改进上,终于摸索出了索尔维法的各项生产技术。1924年8月,塘沽碱厂正式投产。1926年,中国生产的“红三角”牌纯碱在美国费城的万国博览会上获得金质奖章。产品不但畅销国内,而且远销日本和东南亚。
针对索尔维法生产纯碱时食盐利用率低,制碱成本高,废液、废渣污染环境和难以处理等不足,侯德榜先生经过上千次试验,在1943年研究成功了联合制碱法。这种方法把合成氨和纯碱两种产品联合生产,提高了食盐利用率,缩短了生产流程,减少了对环境的污染,降低了纯碱的成本。联合制碱法很快为世界所采用。
侯氏制碱法的原理是依据离子反应发生的原理进行的,离子反应会向着离子浓度减小的方向进行。也就是很多初中高中教材所说的复分解反应应有沉淀,气体和难电离的物质生成。他要制纯碱(Na2CO3),就利用NaHCO3在溶液中溶液中溶解度较小,所以先制得NaHCO3。再利用碳酸氢钠不稳定性分解得到纯碱。要制得碳酸氢钠就要有大量钠离子和碳酸氢根离子,所以就在饱和食盐水中通入氨气,形成饱和氨盐水,再向其中通入二氧化碳,在溶液中就有了大量的钠离子,铵根离子,氯离子和碳酸氢根离子,这其中NaHCO3溶解度最小,所以析出,其余产品处理后可作肥料或循环使用。
二、氨碱法
1862年,比利时人索尔维(Ernest Solvay,1832-1922)以食盐、氨、二氧化碳为原料,制得了碳酸钠,是为氨碱法(ammomia soda process)。
反应分三步进行:
NH3+CO2+H2O===NH4HCO3
NH4HCO3+NaCl===NaHCO3+NH4Cl
2NaHCO3===Na2CO3+CO2 +H2O
反应生成的CO2可以回收再用,而NH4Cl又可以与生石灰反应,产生NH3,重新作为原料使用:2NH4Cl+CaO===2NH3+CaCl2+H2O
氨碱法使生产实现了连续性生产,食盐的利用率得到提高,产品质量纯净,因而被称为纯碱,但最大的优点还在于成本低廉。1867年索尔维设厂制造的产品在巴黎世界博览会上获得铜制奖章,此法被正式命名为索尔维法。此时,纯碱的价格大大下降。消息传到英国,正在从事路布兰法制碱的英国哈琴森公司取得了两年独占索尔维法的权利。1873年哈琴森公司改组为卜内门公司,建立了大规模生产纯碱的工厂,后来,法、德、美等国相继建厂。这些国家发起组织索尔维公会,设计图纸只向会员国公开,对外绝对保守秘密。凡有改良或新发现,会员国之间彼此通气,并相约不申请专利,以防泄露。除了技术之外,营业也有限制,他们采取分区售货的办法,例如中国市场由英国卜内门公司独占。由于如此严密的组织方式,凡是不得索尔维公会特许权者,根本无从问津氨碱法生产详情。多少年来,许多国家要想探索索尔维法奥秘的厂商,无不以失败而告终。消息传到英国,正在从事路布兰法制碱的英国哈琴森公司取得了两年独占索尔维法的权利。1873年哈琴森公司改组为卜内门公司,建立了大规模生产纯碱的工厂,后来,法、德、美等国相继建厂。
㈢ 谁有合成氨的设备平立面布置图、部分管道布置图,有的发我[email protected],谢谢!!
合成氨的设备平立面图(设备、管道)是相当复杂的,首先确定其年生产能力、确定回原料(油、气还是煤)、再由答工艺确定其各工段的生产流程(如造气、脱硫、变换、二氧化碳清除、精练、合成)与方法,及各段的压力确定压缩机等,还应根据当地地形与取水方式(水的用量是很大的),这些确定后确定设备的形式、结构与大小,所有这些确定后,根据其流程、风向、安全等因素才能确定设备的具体布置,设备间的关系必须很清楚,宜去同规模的厂去考察,才能做到布局合理。原材料、产品进出方便,设备布局确定后(同时确定建筑),才能把管道布置按工艺流程进行布置,一般在设计过程中需要经常调整。
这是个大型的系统工程,不可能在网上能解决问题的,如是作业需要,则参考相关书籍,闭门造车即可!
说实在的,我是个40多年的老合成氨设计者,我也确觉得无能为力帮助你!
㈣ 合成氨原料气的脱硫方法有哪些
您好,原料气中的硫化物不仅能腐蚀设备和管道,而且能使催化剂中毒。合成氨生产过程中所用的催化剂,对原料气中硫化物的含量都有一定的要求。 脱硫的方法较多,按照脱硫剂的物理形态,可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体脱硫剂脱除原料气中少量硫化氢和有机硫化物。湿法脱硫主要用于脱除气体中的硫化氢。 希望我的回答能够为您提供帮助。
㈤ 合成氨工艺流程
不要意思,我不能把流程图画出来。学了四年的大学化学,现把一些理论写下来,希望对你有点帮助。
在200MPa的高压和500℃的高温和催化剂作用下,N2+3H2====2NH3,经过压缩冷凝后,将余料在送回反应器进行反应,
合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。
合成氨主要用作化肥、冷冻剂和化工原料。
生产方法 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。
贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运
合成氨是以碳氨为主要原料, 我司可承包的 合成氨生成成套项目, 规模有 4×104 吨/年, 6×104 吨/年, 10×104 吨/年, 30×104 吨/年, 其产品质量符合中国国家标准.
1. 工艺路线:
以无烟煤为原料生成合成氨常见过程是:
造气 -> 半水煤气脱硫 -> 压缩机1,2工段 -> 变换 -> 变换气脱硫 ->压缩机3段 -> 脱硫 ->压缩机4,5工段 -> 铜洗 -> 压缩机6段 -> 氨合成 -> 产品NH3
采用甲烷化法脱硫除原料气中CO. CO2 时, 合成氨工艺流程图如下:
造气 ->半水煤气脱硫 ->压缩机1,2段 ->变换 -> 变换气脱硫 -> 压缩机3段 ->脱碳 -> 精脱硫 ->甲烷化 ->压缩机4,5,6段 ->氨合成 ->产品NH3
2. 技术指标:
(1) 原料煤: 无烟煤: 粒度15-25mm 或25-100mm
固定75%蒸汽: 压力0.4MPa, 1-3MPa
(2) 产品: 合成氨:氨含量(99.8%) 残留物含量(0.2%)
3. 消耗定额: ( 以4×104 吨/年计算)
(1) 无烟煤( 入炉) : 1,300kg
(2) 电: 1,000KWH( 碳化流程), 1,300KWH( 脱碳流程)
(3) 循环水: 100M3
(4) 占地: 29,000M2
4. 主要设备:
(1) 造气炉
(2) 压缩机
(3) 铜洗
(4) 合成塔
㈥ 合成氨脱碳的方法有哪些
化学吸收法
化学吸收法即利用CO2是酸性气体的特点,采用含有化学活性物质的溶液对合成气进行洗涤,CO2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分解并释放CO2,解吸后的溶液循环使用。化学吸收法脱碳工艺中,有两类溶剂占主导地位,即烷链醇胺和碳酸钾。化学吸收法常用于CO2分压较低的原料气处理。 (l)烷链醇胺类的脱碳工艺有: ①-乙醇胺(monoethanolamine,H2NCH2CH2OH,MEA)法; ②甲基二乙醇胺(methyl diethanolamine,CH3N(CH2CH2OH)2,MDEA)法; ③活化MDEA法(即aMDEA工艺)。 (2)碳酸钾溶液作吸收剂的脱碳工艺,即热钾碱脱碳工艺有: ①无毒G-V法;②苯菲尔法;③催化热钾碱(Cata carb)法;④Flexsorb法。
MEA法
MEA法是一种比较老的脱碳方法。吸收过程中,MEA与CO2发生反应生成碳酸化合物,经过加热即可将CO2分解出来。该法的最大优点是可以在一个十分简单的装置中,把合成气中的CO2脱除到可以接受的程度。 但它本身存在两个缺点:(1) CO2能与吸收反应生成的碳酸化合物发生进一步反应生成酸式碳酸盐,该盐较稳定,不易再生;(2) CO2能与MEA发生副反应,生成腐蚀性较强的氨基甲酸醋,容易形成污垢。
甲基二乙醇胺MDEA
MDEA法脱碳过程中,CO2与甲基二乙醇胺(MDEA,一种叔胺)生成的碳酸盐稳定性较差,分解温度低,且无腐蚀性。相对其它工艺,MDEA法有以下优点:(1)能耗和生产费用低;(2)脱碳效率高,净化气中CO2含量可小于100ppm;(3)使用范围广,可用于大、中、小各型合成氨厂;(4)溶剂稳定性好;(5)溶剂无毒、腐蚀性极小;(6)能同时脱硫。由于MDEA具有以上优点,所以不需要毒性防腐剂,设备管道允许采用廉价碳钢材料,不需要钝化过程,耗热低,设备管道不需要伴热盘管,能达到很好的节能效果[3]。 在MDEA溶液中添加少量活化剂即为aMDEA法,活化剂为眯哇、甲基咪哇等,浓度约为2-5%。活性MDEA工艺开发于20世纪60年代末,第一套活化MDEA脱碳工艺装置是1971年在德国BAFS公司氨三厂投入使用在此后的几年里,另有8套装置采用了活化MDEA,这些装置的成功使用,使得aMDEA工艺自1982年后备受欢迎。我国在大型装置中使用MDEA脱碳工艺,乌鲁木齐石化公司化肥厂属于首例[4]。BAFS公司推出的aMDEA脱碳工艺,主要用于对原来MEA工艺的改造,近几年我国一些研究单位正在对这方面进行积极的研究。
㈦ 精脱硫工艺流程图
脱硫工艺流程图,烟气脱硫技术主要利用各种碱性的吸收剂或吸附剂捕集烟气中的二氧化硫,将之转化为较为稳定且易机械分离的硫化合物或单质硫,从而达到脱硫的目的。FGD的方法按脱硫剂和脱硫产物含水量的多少可分为两类:①湿法,即采用液体吸收剂如水或碱性溶液(或浆液)等洗涤以除去二氧化硫。②干法,用粉状或粒状吸收剂、吸附剂或催化剂以除去二氧化硫。按脱硫产物是否回用可分为回收法和抛弃法。按照吸收二氧化硫后吸收剂的处理方式可分为再生法和非再生法(抛弃法)。
各种不同的烟气脱硫技术所用的吸收剂、脱硫副产品,以及脱硫效率和投资成本差别很大。对于某一具体项目,最适用的烟气脱硫技术一般是根据现场的客观条件和经济情况来选择的,即这种脱硫技术充分利用了现场的有利条件,并在整个使用期间总成本最低。影响总成本的因素有很多,这些因素包括:技术因素;经济因素(生产成本、投资成本);商业因素等。
理想的脱硫工艺应该是投资少,占地小,运行成本低,与主体工程兼容性好,脱硫效率能够满足排放标准要求,脱硫副产品容易处理,无二次污染。如果副产品能有较好的销售市场,所产生的经济效益可冲抵部分装置运行费用,甚至有所结余,则是最理想的。
锅炉烟气脱硫烟气,经过干式等离子体,由脱硫塔体中下部进入,进气口的布置是精心设计的,以保持向塔内有足够的向下倾斜坡度,从而保证烟气的停留时间和均匀分布,有效地避免烟气的旋流及壁面效应。吸收液由泵打入喷淋母管,经喷嘴从塔体上部均匀喷出。这时,喷出的吸收液和上流向的烟气充分接触,碱液液滴、液雾与烟气中的SO2发生剧烈碰撞,经反应生成亚硫酸钠,钠盐液体流到塔体底部,继续循环吸收。脱硫后的净烟气,经吸收塔上部的一级除雾器除水后再经过湿式等离子体由塔顶直接排放,塔底排出吸收液送入公司污水处理场。
脱硫后的烟气采用国际流行的直排方案,其原因是经过联合脱硝脱硫的工艺,烟气内的污染物含量已经非常小,从塔顶加高后直接排出即可确保对周边环境无影响,符合国家环保标准。
烟气直排:塔顶直排方式是在吸收塔上加装烟气管道,烟气经过吸收除雾装置后直接在塔顶排放,不回原烟道,其总高度满足烟囱最低允许高度要求。
㈧ 以煤为原料产合成氨的工艺流程和各工序控制要点及主要设备是什么啊
1、以无烟煤为原料生成合成氨常见过程是:
造气 -> 半水煤气脱硫 -> 压缩机1,2工段 -> 变换 -> 变换气脱硫 ->压缩机3段 -> 脱硫 ->压缩机4,5工段 -> 铜洗 -> 压缩机6段 -> 氨合成 -> 产品NH3
2. 技术指标:
(1) 原料煤: 无烟煤: 粒度15-25mm 或25-100mm
固定75%蒸汽: 压力0.4MPa, 1-3MPa
(2) 产品: 合成氨:氨含量(99.8%) 残留物含量(0.2%)
3. 消耗定额: ( 以4×104 吨/年计算)
(1) 无烟煤( 入炉) : 1,300kg
(2) 电: 1,000KWH( 碳化流程), 1,300KWH( 脱碳流程)
(3) 循环水: 100M3
(4) 占地: 29,000M2
4. 主要设备:
(1) 造气炉
(2) 压缩机
(3) 铜洗
(4) 合成塔
㈨ 合成氨的工艺流程是什么
第一步是原料气的制备。采用合成法生产氨,首先必须制备含氢和氮的原料气。它可以由分别制得的氢气和氮气混合而成,也可同时制得氢氮混合气。
第二步是原料气的净化。制取的氢氮原料气中都含有硫化合物、一氧化碳、二氧化碳等杂质。这些杂质不仅能腐蚀设备,而且能使氨合成催化剂中毒。因此,把氢氮原料气送入合成塔之前,必须进行净化处理,除去各种杂质,获得纯净的氢氮混合气。
第三步是原料气的压缩和氨的合成。将纯净的氢氮混合气压缩到高压,并在高温和有催化剂存在的条件下合成为氨。
生产合成氨的原料主要焦炭、煤、天然气、重油、轻油等燃料,以及水蒸气和空气;生产合成氨的主要过程一般如下图所示。
原料 →原料气的制备 → 脱 硫→ 一氧化碳的变换→ 脱 碳→ 少量一氧化碳及二氧化碳的清除→压 缩 →氨的合成→ 产品氨。
(9)合成氨原料气脱硫装置设计扩展阅读:
氨分子式为NH₃,是一种无色气体,有强烈的刺激气味。极易溶于水,常温常压下1体积水可溶解700倍体积氨,水溶液又称氨水。降温加压可变成液体,液氨是一种制冷剂。
氨也是制造硝酸、化肥、炸药的重要原料。氨对地球上的生物相当重要,它是许多食物和肥料的重要成分。氨也是所有药物直接或间接的组成。
氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。由于氨可以提供孤对电子,所以它也是一种路易斯碱。
㈩ 合成氨脱硫造气的基本原理
氨法脱硫工艺皆是根据氨与SO2、水反应成脱硫产物的基本机理而进行的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。
1、电子束氨法(EBA法)与脉冲电晕氨法(PPCP法)
电子束氨法与脉冲电晕氨法分别是用电子束和脉冲电晕照射喷入水和氨的、已降温至70℃左右的烟气,在强电场作用下,部分烟气分子电离,成为高能电子,高能电子激活、裂解、电离其他烟气分子,产生OH、O、HO2等多种活性粒子和自由基。在反应器里,烟气中的SO2、NO被活性粒子和自由基氧化为高阶氧化物 SO3、NO2,与烟气中的H2O相遇后形成H2SO4和HNO3,在有NH3或其它中和物注入情况下生成(NH4)2SO4/NH4NO3的气溶胶,再由收尘器收集。脉冲电晕放电烟气脱硫脱硝反应器的电场本身同时具有除尘功能。
这两种氨法能耗和效率尚要改进,主要设备如大功率的电子束加速器和脉冲电晕发生装置还在研制阶段。
2、简易氨法
简易氨法已商业化的有TS、PS氨法脱硫工艺等,主要利用气相条件下的H2O、NH3与SO2间的快速反应设计的简易反应装置,严格地讲简易氨法是一种不回收的氨法,其脱硫产物大部分是气溶胶状态的不稳定的亚铵盐,回收十分困难,氨法的经济性不能体现;且脱硫产物随烟气排空后又会有部分分解出SO2,形成二次污染。所以,该工艺只能用在环保要求低、有废氨水来源、不要求长期运行的装置上。
3、湿式氨法
湿式氨法是目前较成熟的、已工业化的氨法脱硫工艺,并且湿式氨法既脱硫又脱氮。湿式氨法工艺过程一般分成三大步骤:脱硫吸收、中间产品处理、副产品制造。根据过程和副产物的不同,湿式氨法又可分为氨-硫铵肥法、氨-磷铵肥法、氨-酸法、氨-亚硫酸铵法等。
(1)吸收过程:
脱硫吸收过程是氨法烟气脱硫技术的核心,它以水溶液中的SO2和NH3的反应为基础:
SO2+H2O+xNH3 = (NH4) xH2-XSO3 (1)
得到亚硫酸铵中间产品。其中,x=1.2-1.4。
直接将亚铵制成产品即为亚硫酸铵法
(2)中间产品处理
中间产品的处理主要分为两大类:直接氧化和酸解。
a) 直接氧化——氨-硫铵肥法
在多功能脱硫塔中,鼓入空气将亚硫铵氧化成硫铵,其反应为:
(NH4)XH2-XSO3+1/2O2 +(2-x)NH3=(NH4)2SO4 (2)
b) 酸解——氨酸法
用硫酸、磷酸、硝酸等酸将脱硫产物亚硫铵酸解,生成相应的铵盐和气体二氧化硫。反应如下:
(NH4)XH2-XSO3+x/2H2SO4=x/2(NH4)2SO4+SO2+H2O (3)
(NH4)XH2-XSO3+xHNO3=xNH4NO3+SO2+H2O (4)
(NH4)XH2-XSO3+x/2H3PO4=x/2(NH4)2HPO4+SO2+H2O (5)
(3)副产品制造
中间产品经处理后形成了铵盐及气体二氧化硫。铵盐送制肥装置制成成品氮肥或复合肥;气体二氧化硫既可制造液体二氧化硫又可送硫酸制酸装置生产硫酸。而生产所得的硫酸又可用于生产磷酸、磷肥等。
4、湿式氨法的脱氮作用
湿式氨法在脱硫的同时又可起一定的脱氮作用。
反应式为:
2NO十02=2N02
2N02十H20=HN03 + HN02
NH3+ HN03 = HN4NO3+H2O
NH3+ HN02 = HN4NO2+H2O
4(HN4)2SO3+ 2N02 = N2 +4(HN4)2SO4
湿式氨法脱硫工艺系统一般组成
氨水洗涤脱硫工艺设备主要由脱硫洗涤系统、烟气系统、氨贮存系统、硫酸铵生产系统(若非氨-硫铵法则是于其工艺相对应的副产物制造系统)等组成。核心设备是脱硫洗涤塔。