A. 带式输送机传动装置的安装调试
1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。
B. 设计带式输送机中的传动装置
给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2 、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3 、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100 ,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齿数比: u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;
则 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取 φ
齿宽: b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1 、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2 、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。
则 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滚动轴承的选择
1 、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2 、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1 、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2 、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3 、输入轴与带轮联接采用平键联接 =25mm L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4 、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计参考资料目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11
C. 课程设计带式输送机传动装置
本次毕业设计是关于矿用固定式带式输送机的设计。首选胶带输送机作了简单的内概述:接着分析了带式输送容机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通带式输送机由六个主要部件组成:传动装置,机尾和导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一中。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。
关键词:带式输送机,选型设计,主要部件
以上资料来自“三人行设计网” 我只是复制了一部分给你看 但愿能对你有所帮助 他的还算比较全 你可以去看看 呵呵
D. 带式输送机传动装置的介绍
可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
E. 带式输送机传动装置
一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷
F. 设计胶带输送机的传动装置
一、摩擦传动理论
带式输送机所需的牵引力是通过驱动装置中的驱动滚筒与输送带间的摩擦作用而传递的,因而称为摩擦传动。为确保作用力的传递和牵引构件不在驱动轮上打滑,必须满足下列条件:
(1)牵引构件具有足够的张力;
(2)牵引带与驱动滚筒的接触表面有一定的粗糙度;
(3)牵引带在驱动轮上有足够大的围包角。
图l—22为一台带式输送机的简图。当驱动滚筒按顺时针方向转动时,通过它与输送带间的摩擦力驱动输送带沿箭头方向运动。
在输送带不工作时,带子上各点张力是相等的。当输送带运动时,各点张力就不等了。其大小取决于张紧力P0、运输机的生产率、输送带的速度、宽度、输送机长度、倾角、托辊结构性能等等。故输送带的张力由l点到4点逐渐增加,而在绕经驱动滚筒的主动段,由4点到l点张力逐渐减小。必须使输送带在驱动滚筒上的趋入点张力Sn大于奔离点张力S1,方能克服运行阻力,使输送带运动。此两点张力之差,即为驱动滚筒传递给输送带的牵引力W0。在数值上它等于输送带沿驱动滚筒围包弧上摩擦力的总和,即
W0=Sn-S1 (1—1)
趋入点张力Sn随输送带上负载的增加而增大,当负载过大时,致使(Sn-S1)之差值大于摩擦力,此时输送带在驱动滚筒上打滑而不能正常工作。该现象在选煤厂中可经常遇到。
Sn与S1应保持何种关系方能防止打滑,保证输送带正常工作,这是将要研究的问题。
在讨论前,先作如下假设:
(1)假设输送带是理想的挠性体,可以任意弯曲,不受弯曲应力影响;
(2)假设绕经驱动滚筒上的输送带的重力和所受的离心力忽略不计(因与输送带上张力和摩擦力相比数值很小)。
如图l—22b所示,在驱动滚筒上取一单元长为dl的输送带,对应的中心角即围包角为dα。当滚筒回转时,作用在这小段输送带两端张力分别为S及S+dS。在极限状态下,即摩擦力达到最大静摩擦力时,dS应为正压力dN与摩擦系数μ的乘积,即
dS=μdN
dN为滚筒给输送带以上的作用力总和。
列出该单元长度输送带受力平衡方程式为
由于dα很小,故sin(dα/2)≈(dα/2),cos(dα/2)≈1,上述方程组可简化为
略去二次微量:dSdα,解上述方程组得 .
通过在这段单元长度上输送带的受力分析,可以得到,当摩擦力达到最大极限值时,欲保持输送带不打滑,各参数间的关系应满足dS/S=μdα。以定积分方法解之,即可得出输送带在整个驱动滚筒围包弧上,在不打滑的极限平衡状态下,趋入点的Sn与奔离点的Sk之间的关系
解上式,得
式中 e——自然对数的底,e=2.718;
μ——驱动滚筒与输送带之间的摩擦系数;
——输送带在驱动滚筒上趋入点的最大张力;
S1一一输送带在驱动滚筒奔离点的张力;
α——输送带在驱动滚筒上的围包角,弧度。
上式)即挠性体摩擦驱动的欧拉公式。根据欧拉公式可以绘出在驱动滚筒围包弧上输送带张力变化的曲线,见图l—23中的bca'。
从上述分析可知,欧拉公式只是表达了趋入点张力为最大极限值时的平衡状态。而实际生产中载荷往往是不均衡的;而且,在欧拉公式讨论中,将输送带看作是不变形的挠性体,实际上输送带(如橡胶带)是一个弹性体,在张力作用下,要产生弹性伸长,其伸长量与张力值大小成正比。因此,输送带沿驱动滚筒圆周上的分布规律见图1—23中bca曲线变化(而不是bca’)。在BC弧内,输送带张力按欧拉公式之规律变化;到c点后,张力达到Sn值,在CA弧内,Sn值保持不变。也就是说为了防止输送带在驱动滚筒上打滑,应使趋入点的实际张力Sn小于极限状态下的最大张力值,即
既然输送带是弹性体,那么,在受力后就要产生弹性伸长变形。这是弹性体与刚性体最本质的区别。受力愈大,变形也愈大,而输送带张力是由趋入点向奔离点逐渐减小,即在趋入点输送带被拉长的部分,在向奔离点运动过程中,随着张力的减小而逐渐收缩,从而使输送带与滚筒问产生相对滑动,这种滑动称为弹性滑动或弹性蠕动(它与打滑现象不同)。显然,弹性滑动只发生于输送带在驱动滚筒围包弧上有张力变化的一段弧内。产生弹性滑动的这一段围包弧,称为滑动弧,即图l-23中的BC弧,滑动弧所对应的中心角称为滑动角,即λ角;不产生弹性滑动的围包弧,称为静止弧(图中的CA弧),静止弧所对应的中心角,称为静止角,即图中γ角。滑动弧两端的张力差,即为驱动滚筒传递给输送带的牵引力。由此可见,只有存在滑动弧,驱动滚筒才能通过摩擦将牵引力传递给输送带;在静止弧内不传递牵引力,但它保证驱动装置具有一定的备用牵引力。
当输送机上负载增加时,趋入点张力Sn增大,滑动弧及对应的滑动角也相应均要增大,而静止弧及静止角则随之减小。图1—23中的C点向A点靠拢,当趋入点张力Sn增大至极限值Snmax时,则整个围包弧BA弧都变成了滑动弧,即C点与A点重合,整个围包角都变成了滑动角(λ=α,γ=0)。这时驱动滚筒上传送的牵引力达到最大值的极限摩擦力:
(1—4)
若输送机上的负荷再增加,即 ,这时.输送带将在驱动滚筒上打滑,输送机则不能正常工作。
二、提高牵引力的途径
根据库擦传动的理论及式(1—4)均可以看出,提高带式输送机的牵引力可以采用以下三种方法:
(1)增加奔离点的张力S1,以提高牵引力。具体的措施是通过张紧输送机的拉紧装置来实现。随着S1的增大,输送带上的最大张力也相应增大,就要求提高输送带的强度,这种做法是不经济的,在技术上也不合理。
(2)改善驱动滚筒表面的状况,以得到较大的摩擦系数μ,由表1—29可知,胶面滚筒的摩擦系数比光面滚筒大,环境干燥时比潮湿时大,所以,可以采用包胶、铸塑,或者采用在胶面上压制花纹的方法来提高摩擦系数。
(3)采用增加输送带在驱动滚筒上的围包角来提高牵引力。其具体措施是增设改向滚筒(即增面轮)可使包角由180°增至210°-240°必要时采用双滚筒驱动。
三、刚性联系双滚筒驱动牵引力及其分配比朗确定
刚性联系双滚筒和单滚筒相比,增加一个主动滚筒:当两个滚筒的直径相等时其角度是相同的(图1—24)。从图l—24中可以看出,输送带由滚筒②的C点到滚筒①的B点时,这两点之间除了一小段(BC段)胶带的臼重外,张力没有任何变化,故B点可看作C点的继续。因而刚性联系的双滚筒与单滚筒实质上是相同的,因为滑动弧随着张力增大而增大这一规律对它同样适用的。
S1及μ值在一定的情况下,而且μl=μ2,只有当滚筒②传递的牵引力达到极限值时,滚筒①才开始传递牵引力。设λ1、λ2、γ1、γ2、α1、α2分别为第①及第②滚筒的滑动角,静止角及围包角、则在λ2=α2,λ1=0的情况下,静止弧仅存在于滚筒①上。当λ2=α2时,λ1=α1-γ1时,输送带在两个主动滚筒上张力变化曲线如图1—24所示。
滚筒②可能传递的最大牵引力为
滚筒①可能传递的最大牵引力为
式中 S’——两滚筒间输送带上的张力。
驱动装置可能传递总的最大牵引力为
式中 α——总围包角
两滚筒可能传递的最大牵引力之比为
在一般情况下: 因而
(1-5)
显然,当第①滚筒上传递的牵引力未达到极限时,即 时,则两驱动滚筒传递的牵引力之比为
由上式可知,当总的牵引力W0和张力S1一定时,若μ值增加,则第⑧个驱动滚筒传递的牵引力WII增大,而WI减小。反之,若μ值减小时,则WI增大(因W0=WI+WII为一定值)。
由此可以看出:刚性联系的双滚筒驱动装置,其滚筒牵引力的分配比值随摩擦系数的变化而改变。但由式(1-5)可知,驱动滚筒①可能传递的最大牵引力等于滚筒⑨的 倍这一比值是不变的。
刚性联系的双驱动滚筒缺点是已设计的牵引力分配比值,只适用于一定的荷载和一定的摩擦系数。当荷载变化,其比例也就被破坏了。此外,还由于大气潮湿程度的变化,两滚筒的表面清洁程度的不同,摩擦系数也发生了变化,其分配比实际上不可能保持定值。
G. 带式输送机传动装置设计
一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
二、设计安装调试:
1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。
H. 带式输送机传动装置如何设计
【传动方案拟定】
工作条件:使用年限10年,每年按300天计算,两班制工作,载荷回平稳。
原始数据:滚答筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
【电动机的选择】
电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
确定电动机的功率:
传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
I. 链式输送机传动装置的设计
1.1 设计题目: 设计链式输送机传动装置 1.2 已知条件:
1. 输送链牵引力 F=4.5 kN ;
2. 输送链速度 v=1.6 m/s(允许输送带速度误差为 5%); 3. 输送链轮齿数 z=15 ; 4. 输送链节距 p=80 mm;
5. 工作情况:两班制,连续单向运转,载荷平稳,室内工作,无粉尘; 6. 使用期限:20年; 7. 生产批量:20台;
8. 生产条件:中等规模机械厂,可加工6-8级精度齿轮和7-8级精度蜗轮; 9. 动力来源:电力,三相交流,电压380伏;
10.检修间隔期:四年一次大修,二年一次中修,半年一次小修。
验收方式:
1.减速器装配图;(使用AutoCAD绘制并打印为A1号图纸) 2.绘制主传动轴、齿轮图纸各1张; 3.设计说明书1份。
J. 谁能告诉我什么是带式输送机传动装置 具体指的是哪部分
可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,它与普通胶带输送机相比增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
结构概述
伸缩胶带输送机分为固定部分和非固定部分两大部分。固定部分由机头传动装置、储带装置、收放胶带装置等组成;非固定部分由无螺栓连接的快速可拆支架、机尾等组成。
1、 机头传动装置由传动卷筒、减速器、液力联轴器、机架、卸载滚筒、清扫器组成。
n 机头传动装置是整个输送机的驱动部分,两台电机通过液力联轴器、减速器分别传递转距给两个传动滚筒(也可以用两个齿轮串联起来传动)。用齿轮传动时,应卸下一组电机、液力联轴器和减速器。
n 液力联轴器为YL-400型,它由泵轮、透平轮、外壳、从动轴等构成,其特点是泵轮侧有一辅助室,电机启动后,液流透过小孔进入工作室,因而能使负载比较平衡地启动而电机则按近于坚载启动,工作时壳体内加20号机械油,充油量为14m3,减速器采用上级齿轮减速,第一级为圆弧锥齿轮,第二、第三级为斜齿和直齿圆柱齿轮,总传动比为25.564,与SGW-620/40T型刮板输送机可通用互换,减速器用螺栓直接与机架连接。
n 传动卷筒为焊接结构,外径为Φ500毫米,卷筒表面有特制的硫化胶层,因此对提高胶带与滚筒的eua值,防止打滑、减少初张力,具有较好的效果。
n 卸载端和头部清扫器,带式逆止器,便于卸载,机头最前部有外伸的卸载臂,由卸载滚筒和伸出架组成,滚筒安装在伸出架上,其轴线位置可通过轴承两侧的螺栓进行调节,以调整胶带在机头部的跑偏,在卸载滚筒的下部装有两道清扫器,由于清扫器刮板紧压在胶带上,故可除去粘附着的碎煤,带式逆止器以防止停车时胶带倒转。
n 机架为焊接结构,用螺栓组装,机头传动装置所有的零部件均安装在机架上。电动机和减速器可根据具体情况安装在机架的左侧或右侧。
2、 储带装置包括储带转向架、储带仓架、换向滚筒、托辊小车、游动小车、张紧装置、张紧绞车等。
n 储带装置的骨架由框架和支架用螺栓连接而成,在机头传动装置两具转框架上装有三个固定换向滚筒与游动小车上的两个换向滚筒一起供胶带在储带装置中往复导向,架子上面安装固定槽形托辊和平托辊,以支撑胶带,架子内侧有轨道,供托辊不画和游动小车行走。
n 固定换向滚筒为定轴式,用于储带装置进行储带时,用以主承胶带,使其悬垂度不致过大,托辊小车随游动小车位置的变动,需要用人力拉出或退回。
n 游动小车由车架、换向滚筒、滑轮组、车轮等组成,滑轮组装在车身后都与另一滑轮组相适应,其位置可保证受力时车身不被抬起,这样,对保持车身稳定,防止换向滚筒上的胶带跑偏效果较好,车身下部还装着止爬钩,用以防止车轮脱轨掉道。
n 游动小车向左侧移动时,胶带放出,机身伸长,游动小车向右侧移动时,胶带储存,机身缩短,通过钢丝绳拉紧游动小车可使胶带得到适当的张紧度。
n 在储带装置的后部,设有张紧绞车,胶带张力指示器和张力缓冲器,张力缓冲器的作用是使输送机(在起动时让胶带始终保持一定的张力,以减少空载胶带的不适度和胶带层间的拍打)。
3、 收放胶带装置位于张紧绞车的后部,它由机架、调心托辊、减速器、电动机、旋杆等组成,其作用是将胶带增补到输送机机身上或从输送机机身取下,机架的两端和后端,各装一旋杆,当增加或减少胶带时用以夹紧主胶带,调心托辊组供卷筒收放胶带时导向,工作时将卷筒推进机架的一端用尾架顶起,另一端顶在减速器出轴的顶尖上,开动电动机通过减速器出轴的拨盘带动卷筒,收卷胶带,放出胶带,放出胶带时不开电机由外拖动卷筒反转,在不工作时活动轨可用插销挂在机架上,以缩小宽度,在活动轨上方应设置起重装置悬吊卷筒,巷道宽度可视具体情况适当拓宽,以利胶带收入时操作。
4、 中间架由无螺栓连接的快速可拆支架,由H型支架、钢管、平托辊和挂钩式槽形托辊、“V”型托辊等组成,是机器的非固定部分,钢管可作为拆卸的机身,用柱销固装在钢管上,用小锤可以打动,挂钩式槽形托辊胶接式,槽形角30°,用挂钩挂在钢管的柱销上,挂钩上制动的圆弧齿槽,托辊就是通过齿槽挂在柱销上的,可向前向后移动,以调节托辊位置控制胶带跑偏。
5、 上料装置、下料装置;上料装置安装在收放装置后边,由转向转导向接上料段,运送的物料从此段装上运至下料段,下料装置由下料段一组斜托辊将物料卸下,下料段直接极为,机尾由导轨(Ⅰ、Ⅱ、Ⅲ)和机尾滚筒座组成,导轨一端用螺栓固定在中支座上,并与另一导轨的前端用柱销胶接,藉以适应底板的不平,机尾滚筒与储带装置中的滚筒结构相同,能互换,其轴线位置可用螺栓调节,以调整胶带中在机尾的跑偏,机尾滚筒前端设有刮煤板,可使滚筒表面的碎煤或粉煤刮下,并收集泥槽中,用特制的拉泥板取出,机尾加上装有缓冲托辊组,受料时,可降低块煤对胶带的冲击,有利于提高胶带寿命