A. 黄酮提取
我原来做过一个大豆异黄酮的提取实验,是用乙醇法索氏提取器提取的
B. 黄酮类化合物的提取方法有哪些
1、醇提取法
黄酮类化合物提取最常用一种方法,常用的有机溶剂主要有乙醇、乙醚、甲醇和乙酸乙酯等,其中乙醇是最常用的。
2、微波提取法
微波提取技术又称微波萃取技术,其最大的优点是耗能耗材少、无污染,尤其对特定的药材提取具有高选择性。
3、超临界萃取技术
超临界萃取是一种较广泛使用的药物提取、分离手段,其最大的优点是无有机溶剂残留,保证了提取成分的100%纯天然。
4、酶解法
酶解法是一种较好的辅助提取方法。酶具有高度的选择性,因此对不同提取材料,选择合适的酶对提取率影响较大。
5、膜分离提取法
膜分离技术也是一种常用的辅助提取技术,其中超滤法作为唯一能用于分子级别的分离方法广泛的应用于黄酮类化合物的提取分离。利用超滤技术分离纯化黄酮化合物最大的优点是操作简便、无需加热、不破坏活性成分的结构,纯化和浓缩一步完成,超滤装置还可反复使用。
(2)提取黄酮的实验装置扩展阅读
黄酮类化合物的颜色与分子中存在的交叉共轭体系及助色团(-OH)等的类型、数目及取代位置有关。一般来说,黄酮、黄酮醇及其苷类多呈灰黄至黄色,查尔酮为黄色至橙黄色,而二氢黄酮、二氢黄酮醇、异黄酮类等因不存在共轭体系或共轭很少,故不显色。
花色素及其苷元的颜色,因pH的不同而变,一般呈红(pH<7)、紫(7<8.5)、蓝(PH>8.5)等颜色。
黄酮苷元一般难溶或不溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂,易溶于稀碱液。黄酮类化合物的羟基糖苷化后,水溶性相应加大,而在有机溶剂中的溶解度相应减少。黄酮苷一般易溶于水、甲醇、乙醇、乙酸乙酯、吡啶等溶剂,难溶于乙醚、三氯甲烷、苯等有机溶剂。
黄酮类化合物因分子中多有酚羟基而呈酸性,故可溶于碱性水溶液、吡啶、甲酰胺及二甲基甲酰胺中。有些黄酮类化合物在紫外光(254nm或365nm)下呈不同颜色的荧光,氨蒸汽或碳酸钠溶液处理后荧光更为明显。多数黄酮类化合物可与铝盐、镁盐、铅盐或锆盐生成有色的络合物
C. 怎样把植物中的黄酮分离出来
若是鉴别的话:
1.纸色谱(PC):适用于分离各种天然黄酮类化合物及其苷类混合物。混合物的鉴定常采用双向色谱法。以黄酮苷类来说,一般第一向展开采用某种醇性溶剂,如正丁醇-醋酸-水(4:1:5,上层)等,主要是根据分配作用原理进行分离。第二向展开溶剂则用水或其他含水溶液,如2~6%醋酸等,主要是根据吸附作用原理进行分离。
黄酮类化合物苷元中,平面性分子如黄酮、黄酮醇、查耳酮等,用含水溶剂如3%~5%HOAC展开时,几乎停留在原点不动(Rf<0.02);而非平面性分子如二氢黄酮、二氢黄酮醇、二氢查耳酮等,因亲水性较强,Rf 值较大( 0.10~0.30)。黄酮类化合物分子中羟基苷化后,极性随之增大,在醇性展开剂中Rf 值相应降低,同一类型苷元,Rf值依次为:苷元>单糖苷>双糖苷。但在用水或2~8%醋酸、3%氯化钠水溶液或1%盐酸展开时,则苷元几乎停留在原点不动,Rf 值大小顺序为:苷元<单糖苷<双糖苷。
2.硅胶薄层色谱:用于分离和鉴定弱极性黄酮类化合物。分离黄酮苷元常用的展开剂是甲苯-甲酸乙酯-甲酸(5:4:1)。
3.聚酰胺薄层色谱:特别适合于分离含游离酚羟基的黄酮及其苷类。展开剂中多含有醇、酸和水。
用紫外及可见光谱对黄酮类化合物进行结构测定的一般程序:
(1)测定样品在甲醇溶液中的UV光谱。
(2)测定样品在甲醇中加入各种诊断试剂后得到的UV及可见光谱。常用的诊断试剂有甲醇钠(NaOMe)、醋酸钠(NaOAc)、醋酸钠-硼酸(NaOAc-H3BO3 )、三氯化铝(AlCl3)、三氯化铝-盐酸(Al?鄄Cl3-HCl)等。
(3)样品如为黄酮苷类,需先进行水解或甲基化后水解,得到苷元或甲基化苷元,再测定苷元或其衍生物的UV光谱。
黄酮类化合物在甲醇溶液中的UV光谱特征:
1.黄酮及黄酮醇类:黄酮、黄酮醇等多数黄酮类化合物,因分子中存在桂皮酰基及苯甲酰基组成的交叉共轭体系,故其甲醇溶液在200~400nm的区域内存在两个主要的紫外吸收带,称为峰带Ⅰ(300~400nm)及峰带Ⅱ(220~280nm)。黄酮、黄酮醇可通过带I的最大吸收峰波长予以鉴别,小于350nm者为黄酮,而大于350nm者为黄酮醇。
2.查耳酮及橙酮类:共同特征是带Ⅰ很强,为主峰,而带Ⅱ较弱,为次强峰。查耳酮中,带Ⅱ位于220~270nm, 带Ⅰ位于340~390nm,有时分裂为Ⅰa (340~390nm)及Ⅰb(300~320nm)。
3.异黄酮、二氢黄酮及二氢黄酮醇:除有由A环苯甲酰基系统引起的带Ⅱ吸收(主峰)外,因B环不与吡喃酮环上的碳基共轭(或共轭很弱),带Ⅰ很弱,常在主峰的长波方向处有一肩峰。根据主峰的位置,可以区别异黄酮与二氢黄酮及二氢黄酮醇。前者在245~270nm,后者在270~295nm。
黄酮类化合物的1HMNR谱主要特征:
一、A环质子
1.5,7-二羟基黄酮:H-6及H-8将分别作为二重峰(J=2.5Hz),出现在δ5.7~6.9区域内,且H-6总是比H-8位于高场。
2.7-羟基黄酮:A环上有H-5、H-6、H-8三个芳香质子。H-5因有C-4位羰基强烈的负屏蔽效应的影响,以及H-6的邻偶作用,将作为一个二重峰(J=9.0Hz)出现在δ8.0左右。H-6因有H-5的邻偶(J=9.0Hz)及H-8的间偶(J=2.5Hz)作用,将表现为一个双二重峰。H-8 因有H-6的间位偶合作用,显现为一个裂距较小的二重峰(J=2.5Hz)。
二、B环质子
1.4’-氧取代黄酮:B环质子分为H-3’,H-5’和H-2’,H-6’两组,各以相当于2个氢的双峰信号((J=8.5Hz)出现在δ6.5~7.9区域。H-3’,H-5’的化学位移总是比H-2’,H-6’的化学位移值小,原因是有4’-OR取代基的屏蔽作用,以及C环对H-2’,H-6’的负屏蔽效应。
2.3’,4’,5’-三氧取代黄酮类:当B环有3’,4’,5’-羟基时,则H-2’及H-6’将作为相当于两上质子的一个单峰,出现在δ6.50~7.50范围内。
三、C环质子
1.黄酮类:H-3常常作为一个尖锐的单峰信号出现在δ6.30处。
2.异黄酮类:异黄酮上的H-2,因正好位于羰基的β位,且通过碳和氧相接,故将作为一个单峰出现在比一般芳香质子较低的磁场区(δ7.60~7.80)。
3.二氢黄酮及二氢黄酮醇类
①二氢黄酮类:H-2与两个磁不等同的H-3偶合(Jtrans=11.0Hz,Jcis=5.0Hz),故作为一个双二重峰出现,中心位于δ5.2处。两个H-3,因有相互偕偶(J=17.0Hz)及H-2的邻偶,将分别作为一个双二重峰出现,中心位于δ2.80处,但往往相互重迭。
②二氢黄酮醇类:在天然存在的二氢黄酮醇中,H-2及H-3多为反式二直立键,故分别作为一个二重峰出现(J=11.0Hz)。H-2位于δ4.9前后,H-3则位于δ4.30左右。
流化喷雾干燥是近十年来迅速发展的一种制粒技术。该技术利用流化床干燥器使粉末呈流化态,再喷洒药液(或黏合剂),使之与粉末黏合成颗粒。其将浸膏与粉末混合、干燥、粉碎、制粒等工序合并在一起,具有工艺简单、减少污染机会、减轻劳动强度、可连续生产等优点。最近几年,各种符合GMP要求的流化干燥设备不断创新,使这项技术日趋成熟。
在该项研究中,技术人员采用FLP型流化造粒包衣机对全浸膏粉胶囊及部分生药粉加浸膏的胶囊,分别用流化喷雾干燥制粒工艺进行了小试制备。
首先,制备含生药加浸膏的养血胶囊,即将中药提取液浓缩至相对密度达1.15~1.18,将生药粉粉碎成细粉(100目),按生药粉∶浸膏为1∶1的重量比,将生药粉置流化床内,加热至80℃,抽风,使粉末流化,采用顶喷式喷洒浓缩液,50分钟后结束喷液,沸腾干燥15分钟,将所得颗粒分填胶囊。随后,制备全浸膏的清热胶囊,即将药液浓缩到相对密度1.14~1.18的范围,取该品种干浸膏细粉(100目),按浸膏粉∶浸膏液为1∶1的重量比,将上述浸膏粉置于流化床内,之后使药粉流化,喷洒药液,床内温度控制在40℃以下,50分钟后喷液完成,沸腾干燥15分钟,将所得颗粒分填胶囊。所得样品为均匀细粒状浅褐棕色粉末。
研究表明,颗粒粒径与喷洒药液的雾化程度、喷洒过程中流化床内的温度有关。液滴大,温度低,颗粒粒径大;反之则小。用新工艺方法制备的颗粒粒径在45~60目之间,外观性状均较常规方法为好,颗粒均匀,颜色稍浅,溶散也较常规方法快。并且新工艺制得的颗粒剖面可见许多微孔。用这些细颗粒填充胶囊,流动性好,装量比常规制法稳定,装量差异小。研究人员对制备的细颗粒与传统工艺制得的颗粒按产品质量标准检验,结果表明,薄层分析的斑点以新工艺法明显清晰,这可能与两种方法加热时间长短不同对所含成分的影响有关。
D. 活性成分总黄酮的提取方法有哪些
总黄酮的提取方法
1、 熔剂法
热水提取法、碱性水或碱性稀醇提取法、有机溶剂提取法 2、
2、微波提取法
微波提取是利用不同结构的物质在微波场中吸收微波能力的差异,使基体物质中的某些区域或提取体系中的某些组分被选择性加热,从而使被提取物质从基体或体系中分离,进入介电常数较小,微波吸收能力相对差的提取剂[1]。这种方法的优点是对提取物具有较高的选择性、提取率高、提取速度快、溶剂用量少、安全、节能、设备简单[2]。 2.2 超声波提取法
用超声波提取法提取黄酮类物质,是目前比较新的方法。原理是利用超声波在液体中的空化作用加速植物有效成分的浸出提取,另外,还利用其次效应,如机械振动、扩散、击碎等,使其加速被提取成分的扩散、释放。超声波提取法具有设备简单,操作方便,提取时间短,产率高,无需加热,同时有利于保护热不稳定成分,省时,节能,提取率高的优点。
3、 超临界流体萃取法
超临界流体萃取技术是利用超临界流体处于临界温度和临界压力以上,兼有气体和液体的双重特点,对物质具有良好的溶解能力,从而作溶剂进行萃取分离。可做超临界流体的物质很多,一般为低分子量的化合物,如CO2、C2H6、NH3、N2O 等。目前多采用CO2 做萃取剂,因为它具有密度大、溶解能力强、临界压力适中、临界温度接近常温、不影响萃取物的生理活性、无毒无味、化学性质稳定、生产过程中容易回收、无环境污染、价格便宜等一系列优点。但单一的CO2作萃取剂只对低极性、亲脂性化合物有较强的溶解能力,对大多数极性较强的组分则不起作用,因此,在其中加入夹带剂,通过影响溶剂的密度和溶质与夹带剂分子间的作用力来影响溶质在二氧化碳流体中的溶解度和选择性[15]。超临界流体萃取技术有许多传统分离技术不可比拟的优点:过程容易控制、达到平衡的时间短、萃取效率高、无有机溶剂残留、对热敏性物质不易破坏等[16]。但它所需要的设备规模较大,技术要求高,投资大,安全操作要求高,难以用于较大 规模的生产。
4、 酶法提取
酶解法适用于被细胞壁包围的黄酮类物质,利用酶反应的高度专一性,破坏细胞壁,使其中的黄酮类化合物释放出来。黄剑波等[22]采用纤维素酶辅助法从甜茶中提取黄酮类化合物,黄酮类物质的提取率为91%,提取纯度为54%。王悦等[23]对桔皮细胞进行游离酶、固定化酶和常规法提取,黄酮得率分别是1.43%,0.94% 和0.79%,和传统的方法相比,游离酶法的总黄酮得率提高了81%。
5、双水相提取法
双水相提取技术是瑞典Per Albersson首先发现并研究 的一种技术,双水相萃取法属于液- 液萃取,当物质进入双 水相体系后,由于表面性质、电荷作用和各种力的作用,溶 液环境的影响,其在上、下相中的浓度不同,即各成分在两 相间选择性分配,从而达到萃取的目的。由于双水相体系分 相快、使用温度低、容易操作、无污染、提取率高,因此成 为黄酮化合物富集分离的一种有效方法。张春秀等[24]取一 定量的银杏叶浸提液,加到PEG1500/ 磷酸盐体系双水相 系统中,则黄酮类化合物进入上相PEG,从而将黄酮类化合 物分离,提取率可达98.2%。
6、 半仿生提取法
半仿生提取法是将整体药物研究法与分子药物研究法相结合,模拟口服给药后药物经胃肠道转运的环境,为经消化道给药的中药制剂设计的一种新的提取工艺。这种提取方法的特点是可以提取和保留更多的有效成分,能缩短生产周期、降低成本。
7、膜分离法
膜分离法主要有超滤、微滤、纳滤和反渗透等,其中超滤法是膜分离的代表,它是唯一能用于分子分离的过滤方法,是以多孔性半透膜为分离介质,依靠薄膜两侧压力差作为推动力来分离溶液中不同分子量的物质。由于大多数黄酮类化合物的分子量在1000 以下,而非有效成分如大多数的多糖、蛋白质等分子量多在50000 以上,因而使用超滤能有效去除蛋白质、多肽、大分子色素、淀粉等,达到除菌、除热原、提高药液澄明度以及提高有效成分含量等目的。这种方法操作简便、不需要加热、不损坏黄酮类化合物,提取效果好、超滤装置可反复使用。于涛等[26]研究了银杏叶中黄酮类化合物的提取过程及工艺,使用超滤技术对粗提的产品进行精制,对影响超滤的工艺条件进行了考察,超滤后产品中黄酮质量分数达到33.99%。
8、 热压流体萃取法
热压流体萃取法是一种快速、环保、便宜、有效地萃取生物活性物质的方法。Chaorui Chen等[27]采用热压流体萃取法从巴西蜂胶中提取了7种黄酮类化合物,结果表明,通过热压水萃取的样品中当存在表面活性剂时萃取物的固体含量更高,当使用热压脂溶萃取时,7种黄酮类化合物的含量在脂溶萃取中超过了水溶萃取。KairHartonen等[28]用热压水萃取法从白杨中萃取了黄酮类化合物,考察了萃取时间、温度和压力等因素的影响,并与超声波萃取、高速逆流色谱做了比较,结果表明用热压水萃取法在150℃萃取35min效 果最好。
2.9 高压液相提取法
Ying Zhang等[29]通过高压液相萃取法从鱼腥草中萃取了黄酮类化合物,研究了乙醇浓度、流速、温度和压强等因素的影响,并与热浸法和超声波辅助萃取法进行对比,发现高压液相萃取法提取效果较好,当使用50% 乙醇,溶剂流速为1.8mL/min,温度为70℃,压强为8MPa 时,黄酮类化合物的得率和浓度可以达到3.152% 和23.962%
E. 乙醇提取黄酮类化合物怎么得到提取物
物料通过乙醇提取,然后上浓缩器浓缩。
把浓缩好的药液用水沉淀。实际上,不同的植物提取黄铜,工艺是不同的。举个例子:
以前做实验提取银杏叶总黄酮,用的工艺如下:
银杏叶加乙醇回流提取3次,合并提取液后浓缩。用硅藻土添加后索氏提取器,乙酸乙酯部位反复经硅胶柱色谱,氯仿-甲醇梯度洗脱得到粗品。
F. HPLC法测定蜂胶中黄酮类化合物的含量,给个方法谢了!
1 仪器与材料
蜂胶由上海舜夏生物科技有限公司提供,主要来自河南、浙江和福建。槲皮素对照品(自制,经高效液相色谱分析,纯度≥98%),乙腈、甲醇均为色谱纯(Sigma公司) ,水为超纯水,其余试剂为分析纯。岛津LC-10ATvp 液相色谱仪(包括LC-10AT 色谱泵、SPD - 10Avp 紫外检测器、混合器、Class-vp 色谱工作站) ;超纯水制备仪(PALL公司) ;电子分析天平(METTLER AE200) 。
2 方法
2. 1 色谱条件
色谱柱:Agilent ZORBAX Eclipse XDB C18(4.6mm×150 mm,3.5μm);流动相A:乙腈-甲醇(9∶1) ,流动相B: 20 mmol/L的醋酸铵溶液(用醋酸调pH至3.5),梯度洗脱,流速0.8mL/min,检测波长360nm ,柱温30℃。梯度程序为:0~10min ,从13%A 线性梯度至17%A ;10~50min,线性梯度至70%A;50~60min,线性梯度至100%A。每次运行结束后以初始流动相平衡色谱柱20min,以保证出峰情况稳定。
2. 2 溶液的制备
供试品溶液的制备:精密称取蜂胶0.5g ,置25mL小烧杯中,分别用15mL 甲醇超声2次(每次30min),过滤,残渣用甲醇洗涤2次,过滤,合并滤液,置50mL量瓶中,加甲醇稀释至刻度,摇匀。对照品溶液的制备:精确称取槲皮素10 mg ,置50mL量瓶中,加甲醇使之溶解并稀释至刻度,配成0.2mg/mL的溶液。
2. 3 方法学考察
为了考察分析方法的可靠性,以槲皮素的峰为内参比峰,其色谱峰(s)的保留时间和峰面积为l,计算其他各峰的相对保留时间和相对峰面积比值。
2. 3. 1 精密度试验取同一份供试品溶液,连续进样5次,检测指纹图谱,考察各主要色谱峰与内参比峰相对保留时间和相对峰面积的一致性,结果表明各主要色谱峰保留时间的RSD 均在1.0%以内,相对峰面积的RSD均在1. 5 %以内。
2. 3. 2 稳定性试验取同一份供试品溶液,分别在0 ,4 ,8 ,12 ,24h 进行检测。结果表明,各主要色谱峰相对保留时间无明显变化,RSD 均在1.4%以内;相对峰面积也变异较小,RSD 均在2%以内。
2. 3. 3 重复性试验取同一批号的供试品5份,按供试品溶液的制备方法,分别制成供试品溶液进行分析。结果表明,各主要色谱峰相对保留时间较稳定,相对保留时间的RSD 均在1. 1 %以内;相对峰面积也变异较小,RSD 均在2.5%以内。
3 结果
3. 1 测定方法
分别精密量取对照品溶液和各供试品溶液10μL ,注入液相色谱仪,记录50 min 图谱即得。以槲皮素的色谱峰(s) 的保留时间和峰面积为1,计算其他各峰的相对保留时间和相对峰面积比值。
3. 2 不同来源蜂胶指纹图谱比较
按供试品溶液的制备方法操作,分别取各批药材制成供试品溶液,取10μL 进样。同前条件测定图谱,见图3。对不同产地的蜂胶指纹图谱比较选出10 稳定的且具有代表的峰作为共有峰,见图1。各样品的指纹图谱较为相似,但各共有蜂面积的比值有明显不同。
4 讨论与结论
4. 1 本研究采用RP-HPLC 梯度洗脱的方法对蜂胶总黄酮进行研究,参考了相关文献的色谱条件,对其黄酮成分的分离取得了良好的效果。在对7批不同来源的蜂胶药材进行色谱分析的基础上建立了蜂胶的指纹图谱。
4. 2 蜂胶中黄酮类化合物主要包括黄烷酮、黄酮醇类、双氢黄酮类,世界各地蜂胶样品中分离出来的黄酮类化合物已有70多种。其中黄烷酮主要有白杨素、杨芽黄素、芹菜素、刺槐素、木犀草素、柳穿鱼素、蜜橘黄素、福橘黄素等;黄酮醇类主要包括槲皮素、芦丁、山柰素、鼠李素、良姜素、高良姜素等;双氢黄酮类主要有乔松素、樱花素、柚皮素等。本实验采用甲醇超声溶解能够较好地提取黄酮类成分,绝数色谱峰的紫外吸收均显示为黄酮类成分的特征吸收,与文献报道的色谱图基本相似,10个共有峰相对保留时间符合程度较好,所测图谱能够反映出蜂胶的指纹特征。
4. 3 不同产地的蜂胶指纹图谱有明显不同,峰数与相对峰面积相差较大,提示蜂胶用保健品应在固定产地的前提下,才能保证品质的一致性。
4. 4 蜂胶是含有树脂状物的粘性物质,不溶于水,易溶于甲醇、乙醇和甘油等有机溶剂。经过反复筛选本文选定溶解性高、无干扰的甲醇为溶剂。为克服蜂胶的黏性、样品处理时需冷冻粉碎;在用甲醇溶解提取后,需要过滤,除去不溶性杂质。
G. 氯化铝测总黄酮步骤
首先进行样品溶液的制备,制备好样品后进行测试。
准备70%乙醇溶液,料液比1_8 ,80度下回流2h。 取10g样品放入圆底烧瓶中加入80ml, 70%乙醇溶液回流2h,抽滤定容至100ml备用。使用时先离心再用70%乙醇稀释10倍做样品溶液。3AlCl3法测定总黄酮含量准确移取一定量的芦丁标准溶液或箬叶总黄酮提取液于10mL容量瓶中,加入乙醇5mL,0.5mol.L-l三氯化铝溶液0.50mL,pH为5.4的HAc-NaAc缓冲液2mL,用水定容至10.00mL。显色20min后,在415nm下以不加AlCl3的试液为空白,测定吸光度。
H. 植物中如何对黄酮类进行细提取
传统的萃取芝法有有机溶剂萃取,热水萃取,碱性水或碱性稀醇萃取体系溶剂萃取法。
乙醇和甲醇是提取黄酮类化合物最常用的溶剂,糖原的提取宜采用浓度较高的酒精(如9% ~ 9%),糖原的提取宜采用浓度约为%的乙醇或甲醇溶液,乙酸乙酯和丙酮也常用来提取黄酮类化合物,萃取过程包括冷浸、渗滤和回流。
超声提取是一种新的提取黄酮类化合物的方法,其原理是,超声空化对细胞膜的损伤有利于黄酮类化合物的释放和溶出,超声波使萃取液不断振荡,促进了溶质的扩同时,超声波的热效应使水温基本在7℃,原料可以用于水溶,超声波法大大缩短了提取时间,提高了有效成分的提取率和原料的利用率。
微波提取技术对黄酮类化合物的提取也取得了良好的效果,具有反应效率高、选择性强、操作简单、副产物少、提取率高、纯化方便等优点。该植物细粉在浸出过程中不凝结、不结胶,克服了热水法的不足。
酶解法可用于提取细胞壁包裹的黄酮类化合物原料,例如在山楂中,由于黄酮类化合物被细胞基细胞壁包围,而这些细胞壁之间又有果胶结合,所以酶法(酶提取)的提取率比一般方法要高。
将预干燥碾碎的山楂浸泡在蒸馏水中,加热至℃,加入%果胶酶溶液,调节pH值~用mol/LNaH,在℃下酶解然后酶解溶液回流纯化。
该方法可使萃取率提高,提取原理是果胶酶充分破坏连接细胞壁的果胶物质,将山楂中的果胶完全解压为小分子物质,降低了提取物质的抗性,使果肉中的黄酮类化合物充分释放。
(8)提取黄酮的实验装置扩展阅读:
我国对超临界萃取黄酮类化合物的研究始于9世纪,1999年陈树来等利用超临界CO从苦参米中提取芦丁,并以乙醚为夹带剂直接从苦参米中提取芦丁,结果表明,以醚作夹带剂,从苦参米中直接提取芦丁较为困难,提取效果好,纯度高,收率高。
半仿生提取法(SBE)是由孙秀梅和张昭旺首先提出的一种新的中药提取方法,如陈hsiao-chuan∽通过正交试验优化半仿生提取叫摘要杜仲中绿原酸和类黄酮工艺条件,杜仲叶为原料,有一块扭曲的柠檬酸性磷酸氢二钠缓冲溶液提取。
m(提取)m(液体)提到=分别提取pH值和787℃浸提H,每次浸提次数,在此条件下,得到了绿原酸的产率,黄酮类化合物得率达。
I. 某中药中含三萜皂苷,游离三萜,黄酮,黄酮醇,多糖成分,设计合理提取分离实验
皂苷部分极性较大,首先应该附集皂苷部位,通常可用正丁醇萃取或是大孔树脂得到总皂苷部位。对于具体皂苷的分离,若使用硅胶柱层析,一般以氯仿:甲醇:水进行洗脱,氯仿:甲醇:水一般为9:1:0.1,8:2:0.3,7:3:0.5。黄酮类化合物在硅胶上的吸附较多,可以采取减压硅胶柱或者中压硅胶柱,上样量稍大一些(这样可以减小吸附量),将样品分段,然后采用sephadex LH-20进行细分。多糖提取方法既有热水浸提法、酸碱浸提法、酶解提取法、微波辅助提取法、超声辅助提取法和超高压提取法等单一方法,也有超声微波辅助法、微波辅助酶法、超声波辅助酶法等联用方法。多糖分离纯化过程一般是先除杂,再对多糖组分进行分级纯化。分级纯化的常用方法有沉淀法、凝胶色谱法、阴离子交换色谱法、大孔树脂柱色谱法、超滤法等。
J. 乙醇回流提取黄酮所需器材及过程
索氏提取器。
过程:用滤纸包住要提取的东西,放在提取管中,乙醇放在烧瓶里。通冷凝水,加热回流。