㈠ 沥青废气怎么处理
1 沥青烟气处理原理
在各种沥青基防水材料的生产过程中,需对沥青进行加热、输送并制成满足各种工艺要求的沥青类混合料供生产使用。在此工艺过程中,会产生大量的沥青烟气。烟气中含有多种有机物,包括碳环烃、环烃衍生物及其它化合物,有不少对人身健康有危害作用,沥青烟含有苯并芘、苯并蒽、咔唑等多种多环芳烃类物质”,且大多是致癌和强致癌物质,粒径多在0.1~1.0μm之间,最小的仅0.01μm,最大的约为10.0μm,尤其是以3,4-苯并芘为代表的多种致癌物质。其危害人体健康的主要途径是附着在8 um以下的飘尘上,通过呼吸道被吸人体内。因此,对沥青烟气进行净化治理,使排放满足大气环境标准,是非常必要的。我国目前大气环境质量标准有3个:《环境空气质量标准》(GB3095—1996)、《_T业企业设计卫生标准 W 36—79)中规定的“居住区大气中有害物质的最高允许浓度”及《工业企业设计卫生标准) ( 36—79)中规定的“车间空气中有害物质的最高允许浓度”;另外沥青烟气的排放必须满足《大气污染物排放标准 GB 16297— 1996》。沥青烟气主要是以0.1~1.0um的焦油细雾粒的形态存在,其净化治理就是尽可能多地捕捉这些微小的颗粒,使烟气的排放满足相关标准,又不形成二次污染。另外,在考虑沥青烟气的净化方法时,应注意到在改性沥青搅拌罐处产生的沥青烟气还含有粉尘。粉尘处理方法就是喷淋洗涤,使之全部溶于水,这样不但及时清理了管道,而且杜绝了火灾的发生。 2 沥青烟气处理的主要方法是组合式装置。沥青烟气的治理方法有很多种,下面对几种主要的沥青烟气净化方法进行简单介绍。 机械分离法:
沥青炯气中含有粉尘时,向其中喷蒸气或水雾以增大烟气颗粒直径.然后在沉降室或旋风除尘器中使气体与颗粒分离,从而达到净化沥青娴气的目的。
冷凝法:冷凝法用于沥青烟气净化足作为一种辅助手段而超作片J的.它应与其它净化方法如吸附、吸收等结合起来使用 沥青烟气通过冷凝,可增加烟气中雾粒的粒径,因而有利于对沥青烟气进行净化
吸收净化法
吸收净化法俗称洗涤法,是一种常用的工业废气治理方法。它是利用废气中各混合组分在选定的吸收剂中溶解度不同,或者某种组分与吸收剂中活性组分发生反应,达到净化废气的一种方法。吸收净化法应用于沥青烟气治理,就是将烟气中气态污染物(实际上是0.1~1.0u m的焦油细雾粒)转移到液相(吸收剂),从而达到净化炯气的目的。对于防水行业这种相对少量的沥青烟气处理,用水作为吸收剂是最简单有效的。沥青烟气中的焦油细雾粒被水吸附后,基本不溶于水,也不会发生反应产生大量新的化合物,只是形成浮油漂浮在水面,积累到一定程度可收集后掺入燃煤中作为燃料。水作为吸收剂可循环使用,所以不会造成二次污染。在其他行业例如焦化厂的含沥青烟气的废气处理中,也有用洗油作吸收剂、在填料塔内进行吸收的,。采用吸收净化法,应根据沥青烟气的处理量、压降、温度等具体情况,设计合适的吸收设备、 板式吸收塔是适合要求的一种吸收设备。板式吸收塔内有多块板式分离部件。作时,水从塔顶部进入,顺塔板向下逐级流下,沥青烟气从塔底部引入向上逐级穿过塔板,沥青烟气和水在塔板上充分接触进行吸收、传热。板式吸收塔的结构形式有很多种,筛板塔是结构简单、实用的一种。筛板塔的塔板上设计有若干一定直径的网孔,其开孔率及筛板层数应根据处理能力、压降等计算确定。
过滤法
过滤法是利用多孔介质,与沥青烟气中焦油细雾粒相碰撞而将烟气中焦油细雾粒吸附下来、 化烟气的一种方法.从原理上来说它应该是属于吸附法的一种这种烟气净化疗法在全国防水行业已有10多年的应用.也是目前应用最广泛的一种沥青烟气处理方法作为过滤介质的填料.一般为 0.1 x30的填料按一定密度编纵而成.根据使用要求的不同口 成标准型.高教型 高穿透型等 使用时,用丝网叠成的条形或盘形阀块,制成没汁要求的形状放置于相应的娴气设备中。一般将这种填料层块称为丝网除雾器。作为一种有效的气液分离装置,丝网除雾器在石油 化工 医药.冶金等行业有着广泛的应用采用丝网除雾器时.应进行有关的设汁汁算.确定操作气速、丝网除沫器的而积及厚度 分离效率 系统降等数据 丝嘲除沫器的操作气速对分离散率有很大的影响,应选取得当, 因为气速过低.烟气中夹带的焦油细雾粒处于飘荡状态.未与丝_网除雾器碰撞就随着气流通过丝网除雾器而被气体带走;气速过高.则在丝网除雾器上聚集的液滴形成液泛.以致一度被捕集的液滴又 溅起来,再次被气体携带走.使分离效率急剧降低 操作气速与效率的关系为提高净化效果.
吸附净化法
吸附净化法是用多孔固体(吸附滤料)将流体(气体或液体)混合物中的一种或多种组分积聚或凝缩在表面,达到分离目的的操作,根据吸附滤料表面与吸附质之间作用力的不同,分为物理吸附和化学吸附两类。吸附净化用于沥青烟气处理是物理吸附。物理吸附是由分子间引力引起的,通常称为“范德华力”,它是定向力、诱导力和色散力的总称。其特征是吸附剂与吸附质之间不发生化学作用,是一种可逆过程,即吸附与脱附。物理吸附一般不受温度的影响,但吸附量随温度的升高而下降,因此在吸附净化前对沥青烟气进行冷凝处理可提高净化效果。选用合适的吸附滤料是吸附净化法的关键之一。作为吸附滤料一般应具有以下特点:具有较大的吸附容量,即吸附滤料应是疏松的固体泡沫;具有良好的选择性,以便达到净化一种或几种污染物的目的;具有良好的再生特性和耐磨能力,有对酸、碱、水、高温的适应性。
沥青烟气吸附净化法的主要设备为固定床式吸附器,一般为圆柱形立式结构,内置格板或孔板,其上放置滤料,沥青烟气由容器内通过,穿过滤料间隙,经吸附后排出或进入下一道工序。固定床式吸附器的设计计算,主要是从吸附平衡及吸附速率两方面来考虑,而固定床的吸附平衡及吸附速率的影响因素,又主要体现在传质区大小、透过曲线的形状、到达破点的时间和破点出现时床层内滤料的饱和度等方面的数据,较为复杂。
总的来说,吸附净化法设备要求简单,对大气量、低浓度气态污染物的治理有独特的能力。吸附净化法应用在沥青烟气处理中,在除味方面也有较明显的效果,可根据具体情况与其他手段结合使用。
静电捕集法:由于沥青的比电阻适宜.对金属无腐蚀作用.经捕集后呈液体,静电捕集法净化沥青烟气有较好的效果 燃烧法:
就是将沥青烟气直接引入专用的加热炉焚烧,经一定时间的高温焚烧,可较为彻底地净化沥青烟气。在对氧化沥青装置的尾气处理时较多地采用这种疗法,但该法设备投资大,运行成本高.并且具有很大的安全隐患,所以很难在防水业推广应用。 3 结语
在生产应用中.沥青烟气的净化应根据备企业的实际情况具体确定采用何种方法.场地而积、周围环境、沥青烟气量 投资额等都是要考虑的,一般来说,为达到较为理想的效果 应将上述几种方法结合起来使用。
㈡ sbr污水处理工艺流程,以及设计计算
重要的参数——充水比。
弄清楚这个后,其余与常规活性污泥法计算没太大区别。
可以参GB50016《室外排水设计规范》。
㈢ 苯胺的备制
简单的说就是将硝基苯和氢气加热到200度左右,通入流化床反应器,在金属负载型催化剂(很多种,你这里是活性铜)的作用下,在200-320度时生成苯胺。
反应化学式为C6H5NO2+3H2—-—- C6H5NH2+2H20
硝基苯催化加氢法是目前工业上生产苯胺的主要方法,包括固定床气相催化加氢、流化床气相催化加氢以及硝基苯液相催化加氢三种工艺。
催化剂
C6H5NO2+3H2—-—- C6H5NH2+2H20+Q
生产工艺:1,硝基苯加氢还原:硝基苯经预热和氢气以1:9(摩尔比)进入气化器,气化并加热至185~200℃,通人流化床。以铜作催化剂,气态硝基苯在流化床内发生加氢还原反应。控制流化床内中心温度220~270℃。H:≥90%。加氢反应产生的热量由废热锅炉产生1.3~1.7MPa的饱和蒸汽,供气化器和后续精馏工序使用。流化床顶部出来的气态反应生成物经冷凝、冷却。液相为反应生成的苯胺和水,分层得到粗品苯胺。不凝气(H:≥90%)少量排放,其余压缩后。和新鲜氢混合循环使用。床内铜催化剂定期进行再生处理。2,苯胺精制:粗品苯胺从脱水塔顶泵人。控制脱水塔釜温度140-160℃,塔顶温度120~140℃。塔内真空度一0.06至-0.07MPa。当脱水塔釜液水分≤0.1%后,进入精馏塔精馏脱除重组份(硝基苯、联苯胺类等)。控制塔釜温度l10~120℃。塔顶温度100~llO~C。塔内真空度一0.09MPa以上。气态苯胺从塔顶蒸出冷凝得到成品;塔釜内的重组份定期排放,蒸馏回收苯胺后作为焦油。
固定床气相催化加氢工艺是在l~3 MPa和200—300 摄氏度等条件下,硝基苯和氢发生反应,苯胺的选择性>99%。具有运转费用低、投资少、技术成熟和产品质量好等优点,不足之处是易发生局部过热而引起副反应和催化剂失活。国外大多数苯胺生产厂采用此工艺进行生产。
流化床气相催化加氢法是汽化后的硝基苯与过量H:混合,进人流化床反应器,在260—280℃进行加氢还原反应生成苯胺和水蒸汽。该法较好地改善了传热状况,避免局部过热,减少副反应的生成,延长了催化剂的使用寿命;不足之处是操作较复杂,催化剂磨损大,装置建设、操作和维修费用较高。我国绝大多数苯胺生产厂家均采用流化床气相催化加氢工艺进行生产。
硝基苯液相催化加氢工艺是在无水条件下硝基苯进行加氢反应生成苯胺,苯胺的收率为99%。优点是反应温度较低,副反应少,催化剂负荷高,寿命长,设备生产能力大,不足之处是反应物与催化剂以及溶剂必须进行分离,设备操作以及维修费用高。
目前,成功应用于硝基苯加氢工艺的催化剂主要是还原态的铜基催化剂和贵金属铂系催化剂。
俄罗斯催化研究所披露了硝基苯加氢制苯胺的铜加强催化剂的制备方法:通过在不锈钢的栅格中烧结分布在热交换器表面的镍和铝粉末,得到镍.铝载体,铜催化剂便依附在此载体上,用此方法制得的催化剂活性高。
硝基苯催化加氢工艺的技术进展主要表现在催化剂的改进方面。
美国杜邦公司成功开发了硝基苯液相催化加氢工艺:在150—250℃和0.15—1.0 MPa条件下,采用贵金属催化剂,在无水条件下硝基苯进行加氢反应生成苯胺,收率为99%。俄国物理有机研究所研制出以稀土金属氧化物为载体的硝基苯催化加氢钯催化剂,实验证明,在硝基苯加氢制苯胺中,l%Pd/Sm:03比1%Pd/A120 的催化活性高,两者的稳定性比值为3.5。莫贝公司研制出由金、银铂或钯等贵金属制成的网状、波纹状或蜂窝状催化剂,在此催化剂存在下,以甲醇为溶剂,于131—150oC和6.4 MPa条件下硝基苯加氢反应63 rain,苯胺收率98.1%以上。天津大学制成了一种功能性磷树脂,把Pd、Pt或Ni负载于该树脂上制成催化剂,可用于硝基苯的氢化反应。
㈣ 高径比怎么计算
弹簧高径比=自由高度/中径。
高径比是吸附塔重要的结构参数,尤其是对变压吸附装置更是如此,通常人们以此值设计出相应规格的吸附塔。吸附塔高径比是指吸附塔高度与内径的比值,根据空塔气速和吸附剂量计算得出。
目前,我国每年因采煤向空气中排放大量的煤层气,同时由于我国煤层气有着“三高一低”的特点,很难像美国、澳大利亚那样大规模的采用地面开发的方式,而主要采用井下抽放的方式进行,致使我国煤矿抽放的煤层气浓度普遍较低。
2008年煤层气抽采量约58亿立方米,而井下抽放量近53亿立方米,但井下抽放的甲烷浓度在20%~65%。对于低浓度煤层气(甲烷浓度<30%) ,出于安全考虑,通常被禁止直接利用,致使煤矿区抽采的煤层气利用率非常低,目前国内低浓度煤层气主要采用焚烧销毁或者放散的办法处理。
㈤ 一体化净水器的大少怎么计算
净水器体积大小?还是RO膜的大小?
体积的话 外包装上有尺寸 查看下就好
RO膜的话 通常分类是50G\75G\125G\400G等
例如50G 是指每天24销售制水量为50加仑 也就是50*3.785升=189升左右
㈥ 沥青搅拌站除尘器沥青烟怎么处理
一、废气来源:
沥青搅拌排放的烟气经布袋除尘去除粉尘、烟尘后的含沥青烟气净化。
二、废气特性:
1、废气成分:
烟气中含有多种有机物,包括碳环烃、环烃衍生物及其它化合物(如苯并芘、苯并蒽、咔唑等)。粒径多在0.1~1.0μm之间,最小的仅0.01μm,最大的约为10.0μm。其危害人体健康的主要途径是附着在8 um以下的飘尘上,通过呼吸道被吸人体内。因此,对沥青烟气进行净化治理,使排放满足大气环境标准,是非常必要的。
2、对人体的危害
沥青及其烟气对皮肤粘膜具有刺激性,有光毒作用和致肿瘤作用。人体吸入沥青烟气就会感觉头昏、头胀,头痛、胸闷、乏力、食欲不振等,全身症状和眼、鼻、咽部的刺激症状。 3、烟气特点
1)粒径小:沥青烟气主要是以0.1~1.0um的焦油细雾粒的形态存在,最小的仅0.01μm。
2)烟气温度一般高:沥青烟气温度一般高于100℃;
3)有火灾、爆炸等不安全隐患。
治理
三、常用处理技术:
沥青烟气的治理方法有很多种,常用的沥青烟气净化方法有以下几种。
1、机械分离法:
沥青烟气中含有粉尘时,向其中喷蒸气或水雾以增大烟气颗粒直径,然后在沉降室或旋风除尘器中使气体与颗粒分离,从而达到净化沥青烟气的目的。由于粉尘粒径太小,即使采用互相碰撞使其增大,但仍达不到旋风收尘适宜的粒径,收尘效果很差,故机械分离法应用较少。
2、冷凝法:
冷凝法用于沥青烟气净化作为一种辅助手段,与其他净化方法(如:吸附、吸收等)配合使用的处理方法。沥青烟气通过冷凝,可增加烟气中雾粒的粒径,因而有利于对沥青烟气进行净化。
3、吸收净化法:
吸收净化法俗称洗涤法,是一种常用的工业废气治理方法。它是利用废气中各混合组分在选定的吸收剂(汽油、柴油等)中溶解度不同,或者某种组分与吸收剂中活性组分发生反应,达到净化废气的一种方法。
吸收净化法应用于沥青烟气治理,就是将烟气中气态污染物(实际上是0.1~1.0u m的焦油细雾粒)转移到液相(吸收剂),从而达到净化烟气的目的。对于沥青混凝土搅拌站通过干法袋式除尘后相对少量的沥青烟气处理,用水作为吸收剂是最经济有效的吸收剂。沥青烟气中的焦油细雾粒被水吸附后,基本不溶于水,也不会发生反应产生大量新的化合物,绝大少部分形成浮油漂浮在水面,积累到一定程度可收集后掺入燃煤中作为燃料。到多次循环后,水中的乳化液浓度增加,会减低处理效果。
4、过滤法:
过滤法是利用多孔介质,与沥青烟气中焦油细雾粒相碰撞而将烟气中焦油细雾粒吸附下来、从而使沥青烟气得到净化的一种方法。从原理上来说它应该是属于吸附法的一种,这种烟气净化方法在国内防水行业已有10多年的应用.也是目前应用最广泛的一种沥青烟气处理方法。
袋式过滤器是常用的方法之一。但用于沥青烟气净化,需要滤袋具有防油、防水、耐热、耐腐蚀性能。虽有较高的净化效率,但不能过滤0.5微米以下的烟尘。
5、吸附净化法:
吸附净化法是用多孔固体(吸附滤料)将流体(气体或液体)混合物中的一种或多种组分积聚或凝缩在表面,达到分离目的的操作,根据吸附滤料表面与吸附质之间作用力的不同,分为物理吸附和化学吸附两类。
吸附净化用于沥青烟气处理是物理吸附。物理吸附是由分子间引力引起的,通常称为“范德华力”,它是定向力、诱导力和色散力的总称。其特征是吸附剂与吸附质之间不发生化学作用,是一种可逆过程,即吸附与脱附。物理吸附一般不受温度的影响,但吸附量随温度的升高而下降,因此在吸附净化前对沥青烟气进行冷凝处理可提高净化效果。选用合适的吸附滤料是吸附净化法的关键之一。作为吸附滤料一般应具有以下特点:具有较大的吸附容量,即吸附滤料应是疏松的固体泡沫;具有良好的选择性,以便达到净化一种或几种污染物的目的;具有良好的再生特性和耐磨能力,有对酸、碱、水、高温的适应性。
沥青烟气吸附净化法的主要设备为固定床式吸附器,一般为圆柱形立式结构,内置格板或孔板,其上放置滤料,沥青烟气由容器内通过,穿过滤料间隙,经吸附后排出或进入下一道工序。固定床式吸附器的设计计算,主要是从吸附平衡及吸附速率两方面来考虑,而固定床的吸附平衡及吸附速率的影响因素,又主要体现在传质区大小、透过曲线的形状、到达破点的时间和破点出现时床层内滤料的饱和度等方面的数据,较为复杂。
6、静电捕集法:
由于沥青的比电阻适宜.对金属无腐蚀作用.经捕集后呈液体,静电捕集法净化沥青烟气有较好的效果。
7、燃烧法:
就是将沥青烟气直接引入专用的加热炉焚烧,经一定时间的高温焚烧,可较为彻底地净化沥青烟气。在对氧化沥青装置的尾气处理时较多地采用这种疗法,但该法设备投资大,运行成本高.并且具有很大的安全隐患。
8、低温等离子体除尘技术:
低温等离子体技术作为一种高效、新型的除尘技术,实现了除尘、脱硫、脱硝一体化,烟尘净化率可达到98%,有机挥发物VOCs 去除率:≥85%。可以收集0.001~0.01μm级的超细尘粒。
㈦ 新风系统的计算公式是什么
1、臭氧消毒的特点
臭氧消毒灭菌方法与常规消毒灭菌方法相比具有以下特点:
(1)高效性:臭氧消毒不需要其他任何辅助材料和添加剂。消毒进行时臭氧发生装置产生一定量的臭氧,在相对密封的环境下,扩散均匀,包容性、通透性好,克服了紫外线杀菌存在的消毒死角的问题,达到全方位、快速、高效的消毒杀菌目的。另外,由于它的灭菌广谱,既可以杀灭细菌繁殖体、芽胞、病毒、真菌和原虫孢体等多种微生物,还可以破坏肉毒杆菌和毒素及立克次氏体等,同时还具有很强的除霉、腥、臭等异味的功能。
(2)高洁性:臭氧在环境中可自然分解为氧,这是臭氧作为消毒灭菌剂的独特优点。臭氧利用空气中的氧气产生的,消毒氧化过程中,多余的氧原子(O)在30分钟后又结合成为分子氧(O2),不存在任何残留物质,解决了消毒剂消毒时,残留物的二次污染问题,同时省去了消毒结束后的再次清洁。
(3)方便性:臭氧杀菌设备一般安装在室内或中央空调系统、空气净化系统中,或者是灭菌设备中(如臭氧消毒灭菌柜、传递窗等)。可根据灭菌所需浓度及时间,自动设置臭氧灭菌设备的定时控制,操作使用方便。而甲醛、环氧乙酸熏蒸消毒时间长,而臭氧消毒可以天天定时开启使用。
(4)经济性:通过臭氧消毒灭菌在诸多制药行业GMP中的应用,以及医疗卫生单位的使用及运行比较,臭氧消毒方法与其他方法相比具有很大的经济效益和社会效益。
2、臭氧消毒的应用领域
(1)水体消毒:由于臭氧在水中的不稳定性,分解后产生氧化能力极强(比单原子氧还强)的羟基(OH)和单原子氧等,可有效的杀灭水中的各种细菌和病毒。国外把臭氧视作最为理想的水质消毒净化剂,很多大型水厂普遍采用臭氧来处理饮用水,我国的昆明自来水公司,深水集团、上海自来水公司也陆续采用臭氧对水质进行净化消毒。
氯剂消毒水,可以产生致癌毒物三氯甲烷,如果氯剂投加量增多,三氯甲烷的生成量也就增多,随着人类对致癌物质毒性的研究深入,世界水质协会,世界卫生组织等已经不主张将氯剂用于饮水消毒。而臭氧用于饮水消毒有以下优点:
氧化能力强,杀菌效率高,杀菌速度快,臭氧杀灭水中微生物的效率是氯剂的600-3000倍,可以杀灭水中所有的细菌、病毒、芽胞、孢子虫类,还能杀灭藻类等;
臭氧在水中的作用后,产物是无毒无害的氧气,并且臭氧本身无永久的残留性,还能增加水中溶解氧;有去色、除臭的作用,降低水的浑浊度;能氧化分解水中的铁、锰、银、钴、悬浮颗粒、有机农药和洗涤剂等,极大改善水质。
水处理中臭氧的投加量要根据水的理化性质、污染程度、接触时间等设计。对于生活用水和饮用水消毒时,投加0.1-1mg/L即可,一般水体投加臭氧量0.5-1.5mg/L,接触5-10分钟,水中保持剩余臭氧浓度0.1-0.5mg/L。
臭氧也广泛用于污水处理,由于臭氧的强杀菌能力,国外许多医院采用臭氧处理污水,并取得了满意的效果,试验证明,当医院排放污水中含有106—108个细菌/L时,投加臭氧浓度达10-20mg/L作用10-15分钟,对细菌繁殖体的杀灭率达99.999%-100%,投加25-30mg/L作用15分钟,对芽胞的杀灭率也可达99.999%以上。
臭氧用于饮用水、污水消毒的同时,还可以制成高浓度臭氧消毒水,对蔬菜、瓜果、食品用具、手和其他物品清洗、消毒。在日本,使用高浓度臭氧消毒水已经成为消毒领域的重点,特别是,在1996年夏季,病原型大肠杆菌0517爆发性感染事件中,以前使用的次氯酸钠、乙醇、乙酸等杀菌剂,在长期的100-300ppm浓度下,致使大肠菌等革兰氏阴性菌产生极强的抗药菌变异,而作用机理完全不同的高浓度臭氧消毒水对此却十分有效。而在日本的医疗卫生系统,抗青霉素金黄色葡萄球菌感染也成为严重的问题,使用高浓度臭氧水进行医疗人员洗手以及医疗器械消毒的解决办法受到了重视。
日本在进行臭氧水对医疗部门相关微生物的杀菌效果试验中,对在平时经常性接触的,也是在医院感染中重要的微生物作为测试样本,如细菌:大肠杆菌IFO3301、铜绿色极毛杆菌IFO3445、金黄色葡萄球菌ATCC43300、表皮葡萄球菌IFO12993;病毒:疱疹病毒RF、腺病毒3型、科赛奇病毒B5FAULKNER、艾珂病毒7型WALLACE、流行感冒病毒PR8等,与氯剂消毒水对比,各供试菌在臭氧水浓度4mg/L作用10秒后即可全部杀死,而对照组在30秒后,仍有103mg/L以上的活菌数残存。对于病毒,其结果由病毒半数组织培养感染量(TCID50)表示,TCID50减少103以上,可认为病毒灭活。在臭氧水4mg/L浓度作用下20秒,疱疹病毒、流行感冒病毒减少TCID50103以上,科赛奇B5病毒、艾珂7型病毒减少TCID50104以上,所以可以确认臭氧水对于医疗、制药及食品加工领域中引起感染的细菌、病毒具有很好的杀灭作用。
在对医护人员清洗手指附着菌去除,供试菌体为抗青霉素金黄色葡萄球菌,对比组采用消毒用乙醇,MK212。对清洗后排水鉴定杀菌效果和排水二次污染,排水中菌数,对照组104,臭氧水仅为101。证明臭氧水杀菌效果明显,而且对外界没有造成二次细菌污染。
根据医疗器械及医用材料基础性生物学试验标准:
细胞毒性试验,对动物固体毒性试验即由人或动物细胞进行细胞毒性试验,此次为小鼠成腺细胞,进行吉姆萨染色,结果反映,臭氧水无细胞毒性或微小毒性。
过敏性试验,皮肤过敏性试验是人在某物质反复暴露时,引起免疫反应障碍,检查是否引起过敏症状。试验采用最大值进行,臭氧水注射土拨鼠皮内,结果均无红斑、浮肿等过敏症状,无过敏反应。
眼粘膜刺激性试验,在用4mg/L臭氧水滴眼时,无刺激、结膜,虹膜,角膜均无损伤,判定无眼粘膜一次刺激性。
皮肤累积刺激试验,对新西兰小白鼠背部皮肤连续在14天内,使用臭氧水擦抹,试验动物在试验期间行为正常,毛及排泄物均无变化,皮肤无红斑及浮肿,可以认为臭氧水连续使用时对皮肤无累积性刺激。
综上所述,使用臭氧水消毒灭菌,是极其有效和安全的。对于一般细菌,1mg/L臭氧水已经足以杀死。而对于病毒的灭活,我们建议应使用高浓度臭氧水。
臭氧水除了对试验中所使用的供试细菌、病毒,还可以对诸如亲脂性病毒和亲水性病毒(包括甲肝HAV、乙肝HBV、丙肝HCV以及艾滋病毒HIV),绿脓杆菌,荧光假单胞菌属,军团菌属,产黄杆菌属,产碱杆菌属,阿米巴原虫,人致病性真菌(如白色念珠菌属)等等。
同样,臭氧水也作为有效的治疗手段,用于治疗疾病。1902年J·H·Clarke的《医疗实践手册》中记述了臭氧水在治疗贫血、糖尿病等疾病中的成功运用。1979年DR George Freibott开始使用臭氧治疗艾滋病患者。到今天,在德国、法国、意大利、俄罗斯、葡萄牙等欧盟国家臭氧疗法已经广泛应用。在应用臭氧水处理产妇产后护理,烧伤病人清洗消毒方面,我国也有初步的研究。而英国皇太后在世时,之所以长寿的秘诀,一个是随身不离的热水袋,再有就是坚持臭氧水注射保健。
在食品生产领域,臭氧水杀菌代替传统的消毒剂也更显示出卓越的优势,美国、欧盟等在公共用水和食品加工中已广泛应用臭氧水。在蔬菜加工中,传统的消毒灭菌方法是采用高温杀菌工艺,不仅对蔬菜的色泽、口感、质地等造成破坏,而且还消耗大量能源。利用臭氧水作为冷杀菌技术可避免传统工艺对蔬菜质量的破坏,提高产品附加值,同时也降低了成本。在相关试验中,与二氧化氯对照比较,其蔬菜加工品的卫生指标达到无菌要求,杀菌效果优于二氧化氯水溶液。
在对水产品,如鱼类等消毒净化中,同样对照氯剂消毒净化,在储藏时间、细菌繁殖率、味道、原生质、外表等方面,臭氧水均优于氯剂类。在采用臭氧海水处理贝类,经过处理,贝类自身洁净速度加快,在研究的九个菌种包括大肠杆菌,假单胞菌属绿脓杆菌和伤寒属沙门氏菌等,总体上比采用氯剂对照组要减少1/100—1/1000。
臭氧水也可以用于制药行业、食品加工行业的管路、生产设备及盛装容器的浸泡和清洗,从而达到消毒灭菌的目的。采用高浓度臭氧水进行浸泡、冲洗,一是管路、设备及盛装容器表面的细菌、病毒被大量冲淋去除;二是残留在表面上的未被冲走的细菌、病毒被臭氧杀死,使用简单,在医药生产和食品加工中不会产生死角,避免了生产中使用化学消毒剂带来的化学毒害物质的排放和残留污染等环境问题。
(2)空气消毒:臭氧在空气中可以弥漫到室内所有物品周围和空间的每个角落,扩散性好,浓度均匀,不留死角,因此比紫外线更具有优势,而紫外线以光辐射方式杀菌,只有在照射到的位置达到照射强度标准才能有杀菌效果,而且臭氧的溶菌性消毒机理可以有效的杀灭空气中的各种微生物。低于安全容许浓度(0.2mg/M3)的臭氧即对一般细菌繁殖体具有良好的杀灭作用。试验用30 mg/M3浓度臭氧,作用15分钟,对样本医院病房内的自然菌的杀灭率≥92.7%,对气溶胶中金黄色葡萄球菌,以0.12 mg/M3臭氧作用30分钟,杀灭率达到99.9%以上,对枯草杆菌黑色变种芽胞以5.67 mg/M3浓度臭氧作用60分钟,杀灭率≥99%。
采用气相臭氧消毒的主要优点:臭氧的最终分解物是氧气,无残留,对环境无任何公害;对所消毒物品,如器皿、餐具、食品等不会有任何残留物,而且对原有物品的理化性质影响较小;相对于其他消毒方式,如紫外线、药剂熏蒸等,运行成本较小;适用范围广阔,没有特别的限制条件。
在气相条件中,臭氧杀灭微生物的效果,取决这几个主要因素:臭氧阀值浓度,即当臭氧空气浓度在达到此浓度要求时,才能具有杀灭微生物的能力;微生物种类;处理时间;臭氧分布方式;空间内的温度和湿度条件;室内墙面、顶棚、地板及其他装饰材料的还原性影响等。
气相条件下,臭氧对微生物的杀灭效果是有区别的,经实验证明,臭氧对人、动物的致病菌、病毒具有很强的溶菌性杀灭作用。
影响气相臭氧杀菌效果的环境因素主要是温度和湿度。一般情况下,温度低、湿度大则杀灭效果好,尤其是湿度条件,相对湿度≤45%,臭氧对空气中悬浮微生物几乎没有杀灭作用,相对湿度>70%,杀灭效果才真正的体现出来。这是由于相对湿度提高,可以使细胞膨胀,细胞壁变薄,使之更容易受到臭氧的渗透溶解。
表三 空气中使用臭氧参考浓度(单位:ppm)
用途
种类
浓度
使用方法
消毒
冷库
食品车间
病房、手术室
工作服消毒
非典污染区空气
6-10
1.0-1.5
1.5-5
10-20
≥15
根据库容和污染程度连续开机
每天班后开机送臭氧气体
需要消毒时开机,按标准检查细菌总数
相对温度90左右,衣服用衣架挂起
防霉保鲜
一般场所
鸡蛋
香蕉
苹果
叶绿素少的蔬菜
鱼干酪
1-2
2-2.5
2.5-3.5
2.0
1.5-1
0.5-1
定期开机
间断供给臭氧气体,每天开机2-3次
间断供给臭氧气体,每天开机2-3次
除臭净化
停尸房
鱼类加工厂
屠宰车间
脂肪酸类工厂
橡胶厂
垃圾废物处理厂
污水处理厂
3
3
2-3
10
3-10
10
1-2
有臭味即开机除臭
抽污染气体人处理管道,在管道内投加臭氧气体氧化除臭。如车间内异味严重,应在车间进风口投加臭氧气体,以嗅不到臭氧气味为止
综合以上因素,我们在空气消毒用臭氧发生器的使用上建议:
空气消毒用臭氧发生器的安装。分体或移动式放在单独空间中,一般要放置高处,因为臭氧比重在空气中较大,易下降,放置高处的目的主要是有利于臭氧的散播;在空间相对封闭的,如空气自循环的无菌室,建议采用在闭路空气循环系统中,加装臭氧发生装置,如组装在空调机组、安装在总送风道或总回风道中,在达到设定消毒时间后,使用活性炭吸附或催化剂还原进行空气消毒灭菌,这样既可以达到空气消毒的目的,同时还可以使工作人员不必离开工作环境。目前该项技术在制药行业无菌室的应用已经十分广泛和成熟,主要工作流程如下:空压机—制氧机—臭氧发生装置—空调总送风管—各消毒净化区。
空气消毒用臭氧发生装置的选用计算。利用臭氧消毒需要至少要达到阀值浓度,发生浓度低于阀值浓度,是达不到灭菌效果的,而浓度过高会造成运行成本增加,所以应该计算选用合适范围的发生浓度的臭氧发生装置。根据《消毒技术规范》和实践应用数据,在GMP制药车间的洁净区,洁净级别三十万级取消毒需要保持臭氧浓度N=5mg/M3,十万级取N=10 mg/M3,万级取N=30mg/M3,百级取N=40mg/M3。臭氧总用量计算公式为:W=NV/(1-S),式中,W-臭氧总用量(mg/M3);S-臭氧衰减率S=40%;V-总体积(M3);N-洁净区域消毒需要保持的臭氧浓度(mg/M3)。其中V=V1+V2+V3,V1-洁净区域总体积;V2-空调风道体积;V3-补充新风量造成臭氧损失的有效体积(V3=总风量×20%常规新风更换率×10%(保持洁净区域的正压补充新风量)×60%=总风量×1.2%)。
湿度适当。臭氧的灭菌效果在湿度为70-80%条件下效果最理想,在湿度低于45%时效果较差,所以一般使用中,特别是制药车间无菌室、病房等使用应注意在环境中适当增加湿度。
臭氧浓度。浓度掌握是空气型臭氧发生器使用的关键,不同的用途应有不的浓度和时间来配合。比如一般的除味、除臭等,浓度掌握一般不超过0.05ppm。如果用于室内灭菌消毒则一般掌握在0.1-1ppm;如果用于食品保鲜或物体表面消毒则一般掌握在1-5ppm的浓度。当然这些浓度指标都是与时间量相关的,指的是整个空间传播的散播浓度,而不是局部浓度。物体表面或病房区一般需要浓度都较高。
空气消毒型臭氧发生器选型。由于臭氧只能就地生产,目前最经济也是技术成熟的产生臭氧的方式为电晕放电,而用于空气消毒用臭氧发生器多是使用陶瓷片高频放电的模式,它具有结构简单、性能可靠、运行费用低及调节灵活等优点。
臭氧空气消毒的安全性。臭氧安全性在广泛的动物和人体试验中,主要暴露途径为吸入法,持续、长期的吸入试验显示臭氧不致癌(NTP,1995);但是对动物和人体的呼吸系统有明显的刺激作用,在暴露环境中,可影响呼吸功能。所以,我们建议,使用臭氧消毒空气,应在无人环境下进行,在消毒完毕半小时后,人员方可进入。
臭氧空气消毒的适用领域:
制药行业的GMP验证空气消毒。洁净生产区的中央空调净化系统、臭氧灭菌柜、其他没有中央空调系统的生产用空间灭菌,这是部分使用臭氧消毒的制药企业,沈阳济世制药有限公司、大连珍奥药业有限公司、上海庆安药业有限公司、吉林敖东药业集团延吉股份有限公司、福建兴安药业有限公司等,臭氧作为空气消毒的主要手段为这些企业的GMP验证作出了重要的贡献。
医院空气消毒。医院病房、门诊手术室、治疗室等,日本使用臭氧作为空气消毒的医院就有札幌自卫队医院、名古屋保健生大学等28所医院,使用臭氧技术处理食品、卫生保健的单位和医院达53家之多,台湾使用臭氧的有荣民总医院等51家,国内的有北京医院、北京佑安医院等。
军用空气消毒。西方国家已经研制出军用臭氧空气消毒产品,,如在太空舱、潜水艇、坦克及其其他军用车船的舱体安装臭氧发生装置,净化空间环境,消毒杀菌。此类产品由蓄电池或光电池供电。
家庭空气消毒。随着城市环境污染的加剧,家庭空气净化器市场前景广阔,将臭氧发生装置移植于空调中,在空气出口处安装臭氧催化分解、吸附装置,这样既可以制冷制热,还可以利用室内循环风对空气进行消毒、净化,分解后的氧气和负离子可以使室内空气保持清新。另外,空气消毒用臭氧发生器也可在宾馆、饭店、商场、剧院等公共空间使用。在家庭和公共环境中应用臭氧进行空气消毒时应注意:臭氧的杀菌效果K为臭氧实际浓度C与作用时间T的乘积即K=C×T,而臭氧实际浓度C为达到杀菌阀值浓度Cmin时,即使延长时间,在实际运行中,恐怕也是没有杀菌效果的。臭氧用作空气消毒应按不同应用空间、不同的杀菌消毒目的,而配置不同的臭氧产量和臭氧发生浓度的臭氧发生装置,臭氧发生浓度是指以自然扩散方式的按固定体积内30分钟的浓度计,单位为mg/m3,臭氧产量是由臭氧发生浓度与时间累积计算出来的,臭氧产量、臭氧发生浓度是最基本的参数标准。所以以空气消毒为目的的臭氧消毒产品应标注消毒浓度与消毒时间指标。还有两个通用指标,即应用空间的臭氧安全指标和产品使用寿命指标等,也是需要向使用者注明的。
(3)臭氧对物品表面消毒:
臭氧对物品表面的微生物也同样具有杀灭效果,应用也十分广泛如对餐具、玩具、器皿、医疗器具等进行消毒、灭菌,现在市场上的臭氧消毒柜,臭氧可弥漫在器具周围进行杀菌,耗电少,杀菌效果显著,弥补了高温高压蒸汽、红外线和紫外线消毒柜的不足。如对无菌室、洁净室、医院的工作服的消毒处理,传统采用高温高压蒸汽灭菌,灭菌后棉质衣料会由白变黄,多次灭菌后,衣服纤维变脆而脱落。直接影响衣服的寿命和无菌室、洁净室的洁净度,而现在的绸质工作服更不宜用高温高压蒸汽灭菌,而采用臭氧消毒处理,它对衣料的损伤程度较低,而且无任何残留、印痕和异味,并且较高温高压蒸汽灭菌的消毒效果相同或略好,试验中,对无菌工作服的试验用人为污染菌群,总体杀灭率≥95%。
还有试验研究(荆门禽蛋联合加工厂),将臭氧气体用于种蛋消毒,比常规福尔马林熏蒸时间短,残留气体分解快,使用经济、方便,而且臭氧对种蛋还具有延迟性杀菌作用,使种蛋孵化孵出率明显提高。
㈧ 吸附材料的化工装置设计
你是想做设计吗?专业问题可以直接咨询设计院:山东中天科技工程有限公司
㈨ 求固定床吸附器的资料
固定床吸附器:
⑴ 形式与结构:
工业上应用最多的吸附设备是固定床吸附器,主要有立式和卧式两种,都是圆柱形容器。卧式圆柱形吸附器,两端为球形顶盖,靠近底部焊有横栅条,其上面放置可拆式铸铁栅条,栅条上再放金属网(也可用多孔板替代栅条),若吸附剂颗粒细,可在金属网上先堆放粒度较大的砾石再放吸附剂。立式吸附器基本结构与卧式相同。
⑵ 吸附过程的操作方式:
a)、间隙过程:欲处理的流体通过固定床吸附器时,吸附质被吸附剂吸附,流体是由出口流出,操作时吸附和脱附交替进行。
b)、连续过程:通常流程中都装有两台以上吸附器,以便切换使用。在吸附时原料气由下方通人,吸附后的原料气从顶部出口排出。与此同时,吸附器处于脱附再生阶段,再生用气体由加热器加热至要求的温度,再生气进入吸附器的流向与原料气相反,再生气携带从吸附剂上脱附的组分从吸附器底部放出,经冷却器冷凝分离,再生气循环使用。如果所带组分不易冷凝,要采用其它方法使之分离。
⑶ 优缺点:
a)优点:结构简单、造价低,吸附剂磨损少。
b)缺点:
ⅰ)操作麻烦,因是间歇操作,操作过程中两个吸附器需不断地周期性切换;
ⅱ) 单位吸附剂生产能力低,因备用设备虽然装有吸附剂,但处于非生产状态;
ⅲ)固定床吸附剂床层尚存在传热性能较差,床层传热不均匀等缺点。
2 固定床吸附器的操作特性:
1)非定态的传质过程
当流体通过固定床吸附剂颗粒层时,床层中吸附剂的吸附量随着操作过程的进行而逐渐增加,同时床层内各处浓度分布也随时间而变化。
ⅰ)未吸附区
吸附质浓度为 的流体由吸附器上部加入,自上而下流经高度为 的新鲜吸附剂床层。开始时,最上层新鲜吸附剂与含吸附质浓度较高的流体接触,吸附质迅速地被吸附,浓度降低很快,只要吸附剂床层足够,流体中吸附质浓度可以降为零。经过一段时间dl后,水平线密度大小表示固定床内吸附剂上吸附质的浓度分布,顶端的吸附剂上吸附质含量高,由上而下吸附剂上吸附质含量逐渐降低,到一定高度 以下的吸附剂上吸附质含量均为零,即仍保持初始状态,称该区为未吸附区。此时出口流体中吸附质组成 近于零。
ⅱ) 吸附传质区、吸附传质区高度
继续操作至 时,由于吸附剂不断吸附,吸附器上端有一段吸附剂上吸附质的含量已经达到饱和,向下形成一段吸附质含量从大到小的 形分布的区域,从 到 的 线所示。这一区域为吸附传质区,其所占床层高度称为吸附传质区高度,此区以下仍是未吸附区。
ⅲ) 饱和区
在饱和区内,两相处于平衡状态,吸附过程停止;从高度 处开始,两相又处于不平衡状态,吸附质继续被吸附剂吸附,随之吸附质在流体中的浓度逐渐降低,至 处接近于零,此后,过程不再进行。
ⅳ) 吸附波
吸附传质只在吸附传质区内进行,再继续操作,吸附器上端的饱和区将不断扩大,吸附传质区尤如“波”一样向下移动,故称为吸附波,其移动的速度远低于流体流经床层的速度。到 时,吸附传质区的前端已移至吸附器的出口。
ⅴ)穿透点与穿透曲线
从吸附器流出的流体中吸附质浓度突然升高到一定的最高允许值 说明吸附过程达到所谓的“穿透点”。若再继续通人流体,吸附传质区将逐渐缩小,而出口流体中吸附质的浓度将迅速上升,直至吸附传质区几乎全部消失,吸附剂全部饱和,这时出口流体中吸附质浓度接近起始浓度y。实际上吸附操作只能进行到穿透点为止,从过程开始到穿透点所需时间称为穿透时间。
vi) 吸附负荷曲线与穿透曲线的关系
吸附负荷曲线与穿透曲线成镜面相似,即从穿透曲线的形状可以推知吸附负荷曲线。对吸附速度高而吸附传质区短的吸附过程,其吸附荷曲线与穿透曲线均陡些。
不仅吸附负荷曲线、穿透曲线、吸附传质区高度和穿透时间互相密切相关,而且都与吸附平衡性质、吸附速率、流体流速、流体浓度以及床高等因素有关。一般穿透点随床高的减小,吸附剂颗粒增大,流体流速增大以及流体中吸附质浓度增大而提前出现。所以在一定条件下,吸附剂的床层高度不宜太小。因为床高太小,穿透时间短,吸附操作循环周期短,使吸附剂的吸附容量不能得到充分的利用。
2) 作用:固定床吸附器的操作特性是设计固定床吸附器的基本依据,通常在设计固定床吸附器时,需要用到通过实验确定的穿透点与穿透曲线,因此实验条件应尽可能与实际操作情况相同。
3 固定床吸附器的设计计算
⑴ 固定床吸附器设计计算的主要内容
固定床吸附器设计计算的主要内容是根据给定体系,分离要求和操作条件,计算穿透时间为某一定值(吸附器循环操作周期)时所需床层高度,或一定床高所需的穿透时间。
对优惠型等温线系统,在吸附过程中吸附传质区的浓度分布(吸附负荷曲线)很快达到一定的形状与高度,随着吸附过程不断进行,吸附传质区不断向前平移,但吸附负荷曲线的形状几乎不再发生变化。因此应用不同床高的固定床吸附器将得到相同形状的穿透曲线。当操作到达穿透点时,在从床人口到吸附传质区的起始点 处的一段床层中吸附剂全部饱和在吸附传质区(从 到 )中吸附剂上的吸附质含量从几乎饱和到几乎不含吸附质,其中吸附质的总吸附量可等于床层高为 的床层的饱和吸附量。所以整个床层高 中相当于床高为 的床层饱和,而有 的床高还没有吸附,这段高度称为未用床层高 。对于一定吸附符合曲线, 为一定值。根据小型实验结果进行放大设计的原则是未用床高 不因总床高不同而不同,所以,只要求出未用床高 ,即可进行固定床吸附器的设计,即 。
⑵ 确定未用床高 有两种方法:
① 根据完整的穿透曲线求 。当达到穿透点时,相当于吸附传质区前沿到达床的出口。 时相当于吸附传质区移出床层,即床层中的吸附剂已全部饱和。图中阴影面积E对应于到达穿透点时床层中吸附质的总吸附量;阴影面积F对应于穿透点时床层尚能吸附的吸附量,因此到达穿透点时的未用床高为:
(9—16)
② 根据穿透点与吸附剂的饱和吸附量求 。因为到达穿透点时被吸附的吸附质总量为:
(9—17)
式中 ——流体流量, 惰性流体/s;
——穿透时间,s;
——流体中吸附质初始组成, 吸附质/ 惰性流体;
——与初始吸附剂呈平衡的流体相中的平衡组成, 吸附质/ 惰性流体。
吸附W 的吸附质相当于有 ,高的吸附剂层已饱和,故
(9—18)
式中 ——床层截面积,m2;
——吸附剂床层视密度,kg/m3;
——与流体相初始组成y。呈平衡的吸附剂上吸附质含量,kg吸附质/kg吸附剂;
——吸附剂上初始吸附质含量,kg吸附质/kg吸附剂。
所以床中的未用床高为:
(9—19)
③ 动态平衡吸附量和静态平衡吸附量:
(ⅰ)、所谓动态平衡吸附量是指在一定压力、温度条件下,流体通过固定床吸附剂,经过较长时间接触达到稳定的吸附量。它不仅与体系性质、温度和压力有关,还与流动状态和吸附剂颗粒等影响吸附过程的动态因素有关。其值通常小于静态平衡吸附量。如:式(9—19)中的平衡吸附量是指动态平衡吸附量。
(ⅱ)、所谓静态平衡吸附量是指一定温度和压力条件下,流体两相经过长时间充分接触,吸附质在两相中达到平衡时的吸附量。
9.4.2 移动床吸附器与移动床吸附过程计算:
1 移动床吸附器:
流体或固体可以连续而均匀地在移动床吸附器中移动,稳定地输入和输出。同时使流体与固体两相接触良好,不致发生局部不均匀的现象。
移动床吸附器又称“超吸附器”,特别适用于轻烃类气体混合物的提纯。图9—12所示,是从甲烷氢混合气体中提取乙烯的移动床吸附器。从吸附器底部出来的吸附剂由气力输送的升降管(9)送往吸附器顶部的料斗(3)中加入器内。吸附剂以一定的速度向下移动,在向下移动过程中,依次经历冷却,吸附、精馏和脱附各过程。由吸附器底部排出的吸附剂已经过再生,并供循环使用。待处理的原料气经分配板(4)分配后导人吸附器中,与吸附剂进行逆流接触,在吸附段(5)中活性炭将乙烯和其它重组分吸附,未被吸附的甲烷和氢成为轻馏分从塔顶放出。已吸附乙烯等组分的活性炭继续向下移动,经分配器进入精馏段(b),在此段内较难吸附的组分(乙烯等)被较易吸附的组分(重烃)从活性炭中置换出来。各烃类组分经反复吸附和脱附,重组分沿吸附器高从上至下浓度不断增大,与精馏塔中的精馏段类似。经过精制的馏分分别以侧线中间馏分(主要是乙烯,含少量丙烷)和塔底重馏分(主要是丙烷和脱附引入的直接蒸汽)的形式被采出。最后吸附了重烃组分的活性炭进人解吸段,解吸出来的重组分以回流形式流人精馏段。
移动床吸附过程可实现逆流连续操作,吸附剂用量少,但吸附剂磨损严重。可见能否降低吸附剂的磨损消耗,减少吸附装置的运转费用,是移动床吸附器能否大规模用于工业生产的关键。由于高级烯烃的聚合使活性炭的性能恶化,则需将其送往活化器中用高温蒸汽(400~500℃)进行处理,以使其活性恢复后再继续使用。
2 移动床吸附过程计算
移动床吸附器中,流体与固体均以恒定的速度连续通过吸附器,在吸附器内任一截面上的组成均不随时间而变化。因此可认为移动床中吸附过程是稳定吸附过程。对单组分吸附过程而言,其计算过程与二元气体混合物吸收过程类似,应用的基本关系式也是物料衡算(操作线方程)、相平衡关系和传质速率方程。为简化讨论,现以单组分等温吸附过程为例,论其计算原理。
连续逆流吸附装置如图9—13所示,对装置上部作吸附质的物料衡算,可得出连续、逆流操作吸附过程的操作线方程
(9—20)
式中 ——不包括吸附质的气相质量流速, ;
——不包括吸附质的吸附剂质量流速, ;
——吸附质与溶剂的质量比;
——吸附质与吸附剂的质量比。
显然,吸附操作线方程为一直线方程,如图9—14所示。
见图9—13,取吸附装置的微元段d 作物料衡算,
得:
(9—21)
根据总传质速率方程式(9—12),d 段内传质速率
可表示为:
(9—22)
式中 ——以 表示推动力的总传质系数, ;
——单位体积床层内吸附剂的外表面, 床层;
——与吸附剂组成X呈平衡的气相组成, 吸附质/ 惰性气。
若 可取常数,则式(9—22)积分可得吸附剂层的高度为:
(9—23)
式中 由下式确定:
(9—24)
其中 与 为气相侧与固相侧的传质分系数,阴为平衡线的斜率。因为在吸附剂通过吸附器的过程中,吸附质逐步渗入吸附剂内部,应用以平均浓度差推动力为基础的固相侧传质分系数 不是常数,所以式(9—23)和(9—24)在使用时只有当气相阻力控制时才可靠。然而,对实际吸附过程来说,常常是固体颗粒内的扩散阻力占主导地位,有关这方面的内容可参阅Perry手册。
㈩ 化学实验室常用工具
l.能加热的仪器
(l)试管 用来盛放少量药品、常温或加热情况下进行少量试剂反应的容器,可用于制取或收集少量气体。
使用注意事项:①可直接加热,用试管夹夹在距试管口 1/3处。 ②放在试管内的液体,不加热时不超过试管容积的l/2,加热时不超过l/3。 ③加热后不能骤冷,防止炸裂。④加热时试管口不应对着任何人;给固体加热时,试管要横放,管口略向下倾斜。
(2)烧杯 用作配制溶液和较大量试剂的反应容器,在常温或加热时使用。
使用注意事项:①加热时应放置在石棉网上,使受热均匀。
②溶解物质用玻璃棒搅拌时,不能触及杯壁或杯底。
(3)烧瓶 用于试剂量较大而又有液体物质参加反应的容器,可分为圆底烧瓶、平底烧瓶和蒸馏烧瓶。它们都可用于装配气体发生装置。蒸馏烧瓶用于蒸馏以分离互溶的沸点不同的物质。
使用注意事项:①圆底烧瓶和蒸馏烧瓶可用于加热,加热时要垫石棉网,也可用于其他热浴(如水浴加热等)。 ②液体加入量不要超过烧瓶容积的1/2。
(4)蒸发皿 用于蒸发液体或浓缩溶液。
使用注意事项:①可直接加热,但不能骤冷。 ②盛液量不应超过蒸发皿容积的2/3。 ③取、放蒸发皿应使用坩埚钳。
(5)坩埚 主要用于固体物质的高温灼烧。
使用注意事项:①把坩埚放在三脚架上的泥三角上直接加热。 ②取、放坩埚时应用坩埚钳。
(6)酒精灯 化学实验时常用的加热热源。
使用注意事项:①酒精灯的灯芯要平整。 ②添加酒精时,不超过酒精灯容积的2/3;酒精不少于l/4。 ③绝对禁止向燃着的酒精灯里添加酒精,以免失火。 ④绝对禁止用酒精灯引燃另一只酒精灯。 ⑤用完酒精灯,必须用灯帽盖灭,不可用嘴去吹。 ⑥不要碰倒酒精灯,万一洒出的酒精在桌上燃烧起来,应立即用湿布扑盖。
2.分离物质的仪器
(1)漏斗 分普通漏斗、长颈漏斗、分液漏斗。普通漏斗用于过滤或向小口容器转移液体。长颈漏斗用于气体发生装置中注入液体。分液漏斗用于分离密度不同且互不相溶的不同液体,也可用于向反应器中随时加液。也用于萃取分离。
(2)洗气瓶 中学一般用广口瓶、锥形瓶或大试管装配。洗气瓶内盛放的液体,用以洗涤气体,除去其中的水分或其他气体杂质。使用时要注意气体的流向,一般为“长进短出”。
(3)干燥管 干燥管内盛放的固体,用以洗涤气体,除去其中的水分或其他气体杂质,也可以使用U型管。
3.计量仪器
(l)托盘天平 用于精密度要求不高的称量,能称准到0.1g。所附砝码是天平上称量时衡定物质质量的标准。
使用注意事项:①称量前天平要放平稳,游码放在刻度尺的零处,调节天平左、右的平衡螺母,使天平平衡。 ②称量时把称量物放在左盘,砝码放在右盘。砝码要用镊子夹取,先加质量大的砝码,再加质量小的砝码。 ③称量干燥的固体药品应放在在纸上称量。
④易潮解、有腐蚀性的药品(如氢氧化钠),必须放在玻璃器皿里称量。 ⑤称量完毕后,应把砝码放回砝码盒中,把游码移回零处。
(2)量筒 用来量度液体体积,精确度不高。
使用注意事项:①不能加热和量取热的液体,不能作反应容器,不能在量筒里稀释溶液。②量液时,量简必须放平,视线要跟量简内液体的凹液面的最低处保持水平,再读出液体体积。
(3)容量瓶 用于准确配制一定体积和一定浓度的溶液。使用前检查它是否漏水。用玻璃棒引流的方法将溶液转入容量瓶。
使用注意事项:①只能配制容量瓶上规定容积的溶液。 ②容量瓶的容积是在20℃时标定的,转移到瓶中的溶液的温度应在20℃左右。
(4)滴定管 用于准确量取一定体积液体的仪器。带玻璃活塞的滴定管为酸式滴定管,带有内装玻璃球的橡皮管的滴定管为碱式滴定管。
使用注意事项:①酸式、碱式滴定管不能混用。 ②25mL、50mL滴定管的估计读数为±0.01mL。 ③装液前要用洗液、水依次冲洗干净,并要用待装的溶液润洗滴定管。④调整液面时,应使滴管的尖嘴部分充满溶液,使液面保持在“0’或“0”以下的某一定刻度。读数时视线与管内液面的最凹点保持水平。
(5)量气装置 可用广口瓶与量筒组装而成。如图所示。排到量筒中水
的体积,即是该温度、压强下所产生的气体的体积。适用于测量难溶于水
的气体体积。
4.其它仪器
铁架台(铁夹、铁圈) 坩埚钳 燃烧匙 药匙 玻璃棒 温度计 冷凝管 表面皿 集气瓶 广口瓶 细口瓶 滴瓶 滴管 水槽 研钵 试管架 三角架 干燥器
二、化学实验基本操作
1、仪器的洗涤
玻璃仪器洗净的标准是:内壁上附着的水膜均匀,既不聚成水滴,也不成股流下。
Ⅰ普通法:可向容器中加水,选择合适毛刷,配合去污粉或一般洗涤剂反复洗涤,然后用水冲洗干净。
Ⅱ特殊法:容器内附有普通法不能洗去的特殊物质,可选用特殊的试剂,利用有机溶剂或化学反应将其洗涤。
2、药品取用
(1)实验室里所用的药品,很多是易燃、易爆、有腐蚀性或有毒的。因此在使用时一定要严格遵照有关规定和操作规程,保证安全。不能用手接触药品,不要把鼻孔凑到容器口去闻药品(特别是气体)的气味,不得尝任何药品的味道。注意节约药品,严格按照实验规定的用量取用药品。如果没有说明用量,一般应按最少量取用:液体l-2mL,固体只需要盖满试管底部。实验剩余的药品既不能放回原瓶,也不要随意丢弃,更不要拿出实验室,要放人指定的容器内。
(2)固体药品的取用
取用固体药品一般用药匙。往试管里装入固体粉末时,为避免药品沾在管口和管壁上,先使试管倾斜,把盛有药品的药匙(或用小纸条折叠成的纸槽)小心地送入试管底部,然后使试管直立起来,让药品全部落到底部。有些块状的药品可用镊子夹取。
(3)液体药品的取用
取用很少量液体时可用胶头滴管吸取。取用较多量液体时可用直接倾注法:取用细口瓶里的药液时,先拿下瓶塞,倒放在桌上,然后拿起瓶子(标签应对着手心)瓶、口要紧挨着试管口,使液体缓缓地倒入试管。注意防止残留在瓶口的药液流下来,腐蚀标签。一般往大口容器或容量瓶、漏斗里倾注液体时,应用玻璃棒引流。
3、试纸的使用
试纸种类 应用 使用方法 注意
石蕊试纸 检验酸碱性(定性) ①检验液体:取一小块试纸放在表面皿或玻璃片上,用沾有待测液的玻璃棒点在试纸的中部,观察颜色变化。
②检验气体:一般先用蒸馏水把试纸润湿,粘在玻璃棒的一端,用玻璃棒把试纸放到盛有待测气体的试管口(注意不要接触),观察颜色变化。 ①试纸不可伸入溶液中,也不能与管口接触。
②测溶液pH时,pH试纸不能先润湿,因为这相当于将原溶液稀释了。
pH试纸 检验酸、碱性的强弱(定量)
品红试纸 检验SO2等漂白性物质
KI-淀粉试纸 检验Cl2等有氧化性物质
4、溶液的配制
(l)配制溶质质量分数一定的溶液
计算:算出所需溶质和水的质量。把水的质量换算成体积。如溶质是液体时,要算出液体的体积。
称量:用天平称取固体溶质的质量;用量简量取所需液体、水的体积。
溶解:将固体或液体溶质倒入烧杯里,加入所需的水,用玻璃棒搅拌使溶质完全溶解.
(2)配制一定物质的量浓度的溶液
计算:算出固体溶质的质量或液体溶质的体积。
称量:用托盘天平称取固体溶质质量,用量简量取所需液体溶质的体积。
溶解:将固体或液体溶质倒入烧杯中,加入适量的蒸馏水(约为所配溶液体积的1/6),用玻璃棒搅拌使之溶解,冷却到室温后,将溶液引流注入容量瓶里。
洗涤(转移):用适量蒸馏水将烧杯及玻璃棒洗涤2-3次,将洗涤液注入容量瓶。振荡,使溶液混合均匀。
定容:继续往容量瓶中小心地加水,直到液面接近刻度2-3m处,改用胶头滴管加水,使溶液凹面恰好与刻度相切。把容量瓶盖紧,再振荡摇匀。
5、过滤 过滤是除去溶液里混有不溶于溶剂的杂质的方法。
过滤时应注意:
①一贴:将滤纸折叠好放入漏斗,加少量蒸馏水润湿,使滤纸紧贴漏斗内壁。
②二低:滤纸边缘应略低于漏斗边缘,加入漏斗中液体的液面应略低于滤纸的边缘。
③三靠:向漏斗中倾倒液体时,烧杯的夹嘴应与玻璃棒接触;玻璃棒的底端应和过滤器有三层滤纸处轻轻接触;漏斗颈的末端应与接受器的内壁相接触,例如用过滤法除去粗食盐中少量的泥沙。
6、中和滴定
准备过程 ①查滴定管是否漏水;②洗涤滴定管及锥形瓶;③用少量标准液润洗装标准液的滴定管及用待测液润洗量取待测液的滴定管;④装液体、排气泡、调零点并记录初始读数。
滴定过程 姿态:左手控制活塞或小球,右手摇动锥形瓶,眼睛注视锥形瓶内溶液颜色变化及滴速。
滴速:逐滴滴入,当接近终点时,应一滴一摇。
终点:最后一滴刚好使指示剂颜色发生明显改变时即为终点。记录读数。
7、蒸发和结晶 蒸发是将溶液浓缩、溶剂气化或溶质以晶体析出的方法。结晶是溶质从溶液中析出晶体的过程,可以用来分离和提纯几种可溶性固体的混合物。结晶的原理是根据混合物中各成分在某种溶剂里的溶解度的不同,通过蒸发减少溶剂或降低温度使溶解度变小,从而使晶体析出。加热蒸发皿使溶液蒸发时、要用玻璃棒不断搅动溶液,防止由于局部温度过高,造成液滴飞溅。当蒸发皿中出现较多的固体时,即停止加热,例如用结晶的方法分离NaCl和KNO3混合物。
8、蒸馏 蒸馏是提纯或分离沸点不同的液体混合物的方法。用蒸馏原理进行多种混合液体的分离,叫分馏。
操作时要注意:
①在蒸馏烧瓶中放少量碎瓷片,防止液体暴沸。
②温度计水银球的位置应与支管底口下缘位于同一水平线上。
③蒸馏烧瓶中所盛放液体不能超过其容积的2/3,也不能少于l/3。
④冷凝管中冷却水从下口进,从上口出。
⑤加热温度不能超过混合物中沸点最高物质的沸点,例如用分馏的方法进行石油的分馏。
9、分液和萃取 分液是把两种互不相溶、密度也不相同的液体分离开的方法。萃取是利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法。选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂,并且溶剂易挥发。
在萃取过程中要注意:
①将要萃取的溶液和萃取溶剂依次从上口倒入分液漏斗,其量不能超过漏斗容积的2/3,塞好塞子进行振荡。
②振荡时右手捏住漏斗上口的颈部,并用食指根部压紧塞子,以左手握住旋塞,同时用手指控制活塞,将漏斗倒转过来用力振荡。
③然后将分液漏斗静置,待液体分层后进行分液,分液时下层液体从漏斗口放出,上层液体从上口倒出。例如用四氯化碳萃取溴水里的溴。
10、升华 升华是指固态物质吸热后不经过液态直接变成气态的过程。利用某些物质具有升华的特性,将这种物质和其它受热不升华的物质分离开来,例如加热使碘升华,来分离I2和SiO2的混合物。
11、渗析 利用半透膜(如膀胱膜、羊皮纸、玻璃纸等),使胶体跟混在其中的分子、离子分离的方法。常用渗析的方法来提纯、精制胶体溶液。
三、物质的存放和事故处理
1.试剂保存
化学药品因见光、受热、受潮、氧化等可能使其变质,有些因其挥发性或吸水性等改变浓度。故药品的贮存方法与其化学、物理性质有关。
(1)试剂瓶选用原则:药品状态定口径—— 固体广口、液体细口
瓶塞取决酸碱性(注意:盛放液)避光存放棕色瓶
保存方法 原因 物质
广口瓶或细口瓶 便于取用 溴水、NaCl
瓶塞 用橡皮塞 防腐蚀 不能放HNO3、液Br2
用玻璃塞 防粘 不能放NaOH、Na2CO3、Na2S
塑料瓶 SiO2与HF反应 NH4F、HF
棕色瓶 见光分解 HNO3、氯水、
液封 水封 防氧化、挥发 P4、液Br2
煤油封 防氧化 Na、K
石蜡油封 防氧化 Li
密封 防挥发 HCl、HNO3、NH3.H2O
防氧化 Na2SO3、H2S、Fe2+、
防吸水、CO2 漂白粉、碱石灰
防吸水 CaC2、CaCl2、P2O5、浓H2SO4
1.空气中易变质的试剂:这类试剂应隔绝空气或密封保存,有些试剂的保存还要采取特殊的措施。
被氧化的试剂:亚铁盐,活泼金属单质、白磷、氢硫酸、苯酚、Na2SO3等。
易吸收CO2的试剂:CaO,NaOH, Ca(OH)2,Na2O2等。
易吸湿的试剂:P2O5、CaC2、CaO、NaOH、无水CaCl2、浓H2SO4、无水CuSO4、FeCl3•6H2O等。
易风化的试剂:Na2CO3•10H2O、Na2SO4•10H2O等。
2.见光或受热易分解的试剂:应用棕色瓶盛放且置于冷、暗处。如氨水,双氧水,AgNO3、HNO3等。
3.易挥发或升华的试剂:这类试剂应置于冷,暗处密封保存。
易挥发的试剂:浓氨水、浓盐酸、浓硝酸、液溴、乙酸乙酯、二硫化碳、四氯化碳、汽油等。
易升华的试剂:碘、萘等。
4.危险品:这类试剂应分类存放并远离火源。
易燃试剂:遇明火即可燃烧的有汽油、苯、乙醇、酯类物质等有机溶剂和红磷、硫、镁、硝酸纤维等。能自燃的有白磷。
本身不可燃但与可燃物接触后有危险的试剂有:高锰酸钾、氯酸钾、硝酸钾、过氧化钠等。
易爆试剂:有硝酸纤维、硝酸铵等。
剧毒试剂:氰化物、汞盐、黄磷、氯化钡、硝基苯等。
强腐蚀性试剂:强酸、强碱、液溴、甲醇、苯酚、氢氟酸、醋酸等。
5.有些试剂不宜长久防置,应随用随配。如硫酸亚铁溶液、氯水、氢硫酸、银氨溶液等。
2.常见事故的处理
事故 处理方法
酒精及其它易燃有机物小面积失火 立即用湿布扑盖
钠、磷等失火 迅速用砂覆盖
少量酸(或碱)滴到桌上 立即用湿布擦净,再用水冲洗
较多量酸(或碱)流到桌上 立即用适量NaHCO3溶液(或稀HAC)作用,后用水冲洗
酸沾到皮肤或衣物上 先用抹布擦试,后用水冲洗,再用NaHCO3稀溶液冲洗
碱液沾到皮肤上 先用较多水冲洗,再用硼酸溶液洗
酸、碱溅在眼中 立即用水反复冲洗,并不断眨眼
苯酚沾到皮肤上 用酒精擦洗后用水冲洗
白磷沾到皮肤上 用CuSO4溶液洗伤口,后用稀KMnO4溶液湿敷
溴滴到皮肤上 应立即擦去,再用稀酒精等无毒有机溶济洗去,后涂硼酸、凡士林
误食重金属盐 应立即口服蛋清或生牛奶
汞滴落在桌上或地上 应立即撒上硫粉
四、气体的发生装置
(1)装置顺序:制气装置→净化装置→反应或收集装置→除尾气装置
(2)安装顺序:由下向上,由左向右
(3)操作顺序:装配仪器→检验气密性→加入药品
1、气体发生装置的类型
(1)设计原则:根据反应原理、反应物状态和反应所需条件等因素来选择反应装置。
(2)装置基本类型:
装置类型 固体反应物(加热) 固液反应物(不加热) 固液反应物(加热)
装置
示意图
主要仪器
典型气体 O2、NH3、CH4等 H2、CO2、H2S等 Cl2、HCl、CH2=CH2
操作要点 (l)试管口应稍向下倾斜,以防止产生的水蒸气在管口冷凝后倒流而引起试管破裂。
(2)铁夹应夹在距试管口 l/3处。
(3)胶塞上的导管伸入试管里面不能太长,否则会妨碍气体的导出。 (1)在用简易装置时,如用长颈漏斗,漏斗颈的下口应伸入液面以下,否则起不到液封的作用;
(2)加入的液体反应物(如酸)要适当。
(3)块状固体与液体的混合物在常温下反应制备气体可用启普发生器制备。 (1)先把固体药品加入烧瓶,然后加入液体药品。
(2)要正确使用分液漏斗。
几种气体制备的反应原理
1、 O2 2KClO3 2KCl+3O2↑
2KMnO4 K2MnO4+MnO2+O2↑
2H2O2 2H2O+O2↑
2、NH3 2NH4Cl+Ca(OH)2 CaCl2+2NH3↑+2H2O
NH3•H2O NH3↑+H2O
3、CH4 CH3COONa+NaOH Na2CO3+CH4↑
4、H2 Zn+H2SO4(稀)=ZnSO4+H2↑
5、CO2 CaCO3+2HCl=CaCl2+CO2↑+H2O
6、SO2 Na2SO4+H2SO4(浓)=Na2SO4+SO2↑+H2O
7、NO2 Cu+4HNO3(浓)=Cu(NO3)2+2NO2↑+2H2O
8、NO 3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O
9、C2H2 CaC2+2H2O→Ca(OH)2+CH≡CH↑
10、Cl2 MnO2+4HCl(浓) MnCl2+Cl2↑+2H2O
11、C2H4 C2H5OH CH2=CH2↑+H2O
12、N2 NaNO2+NH4Cl NaCl+N2↑+2H2O
2、收集装置
选用收集方法的主要依据是气体的密度和水溶性。由氯气的物理性质得,用向上排空气法收集氯气,因氯气难溶于饱和食盐水,也可用排饱和食盐水收集。
(1)设计原则:根据氧化的溶解性或密度
(2)装置基本类型:
装置类型 排水(液)集气法 向上排空气集气法 向下排空气集气法
装 置
示意图
适用范围 不溶于水(液)的气体 密度大于空气的气体 密度小于空气的气体
典型气体 H2、O2、NO、CO、CH4、
CH2=CH2、CH≡CH Cl2、HCl、CO2、SO2、H2S H2、NH3、CH4
3、净化与干燥装置
尾气吸收处理装置:有三种:①用倒扣漏斗------极易溶于水的气体;②玻璃管----能溶于水或溶于溶液的气体的吸收(如用NaOH溶液吸收Cl2);③点燃法----处理CO。
(1)设计原则:根据净化药品的状态及条件
(2)装置基本类型:
装置
类型 液体除杂剂(不加热) 固体除杂剂(不加热) 固体除杂剂(加热)
适用
范围
装 置
示意图
(3)气体的净化剂的选择
选择气体吸收剂应根据气体的性质和杂质的性质而确定,所选用的吸收剂只能吸收气体中的杂质,而不能与被提纯的气体反应。一般情况下:①易溶于水的气体杂质可用水来吸收;②酸性杂质可用碱性物质吸收;③碱性杂质可用酸性物质吸收;④水分可用干燥剂来吸收;⑤能与杂质反应生成沉淀(或可溶物)的物质也可作为吸收剂。
(4)气体干燥剂的类型及选择
常用的气体干燥剂按酸碱性可分为三类:
①酸性干燥剂,如浓硫酸、五氧化二磷、硅胶。酸性干燥剂能够干燥显酸性或中性的气体,如CO2、SO2、NO2、HCI、H2、Cl2 、O2、CH4等气体。
②碱性干燥剂,如生石灰、碱石灰、固体NaOH。碱性干燥剂可以用来干燥显碱性或中性的气体,如NH3、H2、O2、CH4等气体。
③中性干燥剂,如无水氯化钙等,可以干燥中性、酸性、碱性气体,如O2、H2、CH4等。
在选用干燥剂时,显碱性的气体不能选用酸性干燥剂,显酸性的气体不能选用碱性干燥剂。有还原性的气体不能选用有氧化性的干燥剂。能与气体反应的物质不能选作干燥剂,如不能用CaCI2来干燥NH3(因生成 CaCl2•8NH3),不能用浓 H2SO4干燥 NH3、H2S、HBr、HI等。
气体净化与干燥注意事项
一般情况下,若采用溶液作除杂试剂,则是先除杂后干燥;若采用加热除去杂质,则是先干燥后加热。
对于有毒、有害的气体尾气必须用适当的溶液加以吸收(或点燃),使它们变为无毒、无害、无污染的物质。如尾气Cl2、SO2、Br2(蒸气)等可用NaOH溶液吸收;尾气H2S可用CuSO4或NaOH溶液吸收;尾气CO可用点燃法,将它转化为CO2气体。
五、常见物质的分离、提纯和鉴别
1.常用的物理方法——根据物质的物理性质上差异来分离。
混合物的物理分离方法
方法 适用范围 主要仪器 注意点 实例
固+液 蒸发 易溶固体与液体分开 酒精灯、蒸发皿、玻璃棒 ①不断搅拌;②最后用余热加热;③液体不超过容积2/3 NaCl(H2O)
固+固 结晶 溶解度差别大的溶质分开 NaCl(NaNO3)
升华 能升华固体与不升华物分开 酒精灯 I2(NaCl)
固+液 过滤 易溶物与难溶物分开 漏斗、烧杯 ①一角、二低、三碰;②沉淀要洗涤;③定量实验要“无损” NaCl(CaCO3)
液+液 萃取 溶质在互不相溶的溶剂里,溶解度的不同,把溶质分离出来 分液漏斗 ①先查漏;②对萃取剂的要求;③使漏斗内外大气相通;④上层液体从上口倒出 从溴水中提取Br2
分液 分离互不相溶液体 分液漏斗 乙酸乙酯与饱和Na2CO3溶液
蒸馏 分离沸点不同混合溶液 蒸馏烧瓶、冷凝管、温度计、牛角管 ①温度计水银球位于支管处;②冷凝水从下口通入;③加碎瓷片 乙醇和水、I2和CCl4
渗析 分离胶体与混在其中的分子、离子 半透膜 更换蒸馏水 淀粉与NaCl
盐析 加入某些盐,使溶质的溶解度降低而析出 烧杯 用固体盐或浓溶液 蛋白质溶液、硬脂酸钠和甘油
气+气 洗气 易溶气与难溶气分开 洗气瓶 长进短出 CO2(HCl)
液化 沸点不同气分开 U形管 常用冰水 NO2(N2O4)
2、化学方法分离和提纯物质
对物质的分离可一般先用化学方法对物质进行处理,然后再根据混合物的特点用恰当的分离方法(见化学基本操作)进行分离。
用化学方法分离和提纯物质时要注意:
①最好不引入新的杂质;
②不能损耗或减少被提纯物质的质量
③实验操作要简便,不能繁杂。用化学方法除去溶液中的杂质时,要使被分离的物质或离子尽可能除净,需要加入过量的分离试剂,在多步分离过程中,后加的试剂应能够把前面所加入的无关物质或离子除去。
对于无机物溶液常用下列方法进行分离和提纯:
(1)生成沉淀法 (2)生成气体法 (3)氧化还原法 (4)正盐和与酸式盐相互转化法 (5)利用物质的两性除去杂质 (6)离子交换法
常见物质除杂方法
序号 原物 所含杂质 除杂质试剂 主要操作方法
1 N2 O2 灼热的铜丝网 用固体转化气体
2 CO2 H2S CuSO4溶液 洗气
3 CO CO2 NaOH溶液 洗气
4 CO2 CO 灼热CuO 用固体转化气体
5 CO2 HCI 饱和的NaHCO3 洗气
6 H2S HCI 饱和的NaHS 洗气
7 SO2 HCI 饱和的NaHSO3 洗气
8 CI2 HCI 饱和的食盐水 洗气
9 CO2 SO2 饱和的NaHCO3 洗气
10 炭粉 MnO2 浓盐酸(需加热) 过滤
11 MnO2 C -------- 加热灼烧
12 炭粉 CuO 稀酸(如稀盐酸) 过滤
13 AI2O3 Fe2O3 NaOH(过量),CO2 过滤
14 Fe2O3 AI2O3 NaOH溶液 过滤
15 AI2O3 SiO2 盐酸`氨水 过滤
16 SiO2 ZnO HCI溶液 过滤,
17 BaSO4 BaCO3 HCI或稀H2SO4 过滤
18 NaHCO3溶液 Na2CO3 CO2 加酸转化法
19 NaCI溶液 NaHCO3 HCI 加酸转化法
20 FeCI3溶液 FeCI2 CI2 加氧化剂转化法
21 FeCI3溶液 CuCI2 Fe 、CI2 过滤
22 FeCI2溶液 FeCI3 Fe 加还原剂转化法
23 CuO Fe (磁铁) 吸附
24 Fe(OH)3胶体 FeCI3 蒸馏水 渗析
25 CuS FeS 稀盐酸 过滤
26 I2晶体 NaCI -------- 加热升华
27 NaCI晶体 NH4CL -------- 加热分解
28 KNO3晶体 NaCI 蒸馏水 重结晶.
29 乙烯 SO2、H20 碱石灰 加固体转化法
30 乙烷 C2H4 溴的四氯化碳溶液 洗气
31 溴苯 Br2 NaOH稀溶液 分液
32 甲苯 苯酚 NaOH溶液 分液
33 己醛 乙酸 饱和Na2CO3 蒸馏
34 乙醇 水(少量) 新制CaO 蒸馏
35 苯酚 苯 NaOH溶液、CO2 分液
3、物质的鉴别
物质的检验通常有鉴定、鉴别和推断三类,它们的共同点是:依据物质的特殊性质和特征反应,选择适当的试剂和方法,准确观察反应中的明显现象,如颜色的变化、沉淀的生成和溶解、气体的产生和气味、火焰的颜色等,进行判断、推理。
检验类型 鉴别 利用不同物质的性质差异,通过实验,将它们区别开来。
鉴定 根据物质的特性,通过实验,检验出该物质的成分,确定它是否是这种物质。
推断 根据已知实验及现象,分析判断,确定被检的是什么物质,并指出可能存在什么,不可能存在什么。