导航:首页 > 装置知识 > 船舶动力装置轴系结构设计

船舶动力装置轴系结构设计

发布时间:2022-08-27 09:42:44

1. 现代轮船有哪些结构设计,可以增加船的牢固程度

保障船体强度。
船舶是一种主要在地理水中运行的人造交通工具。另外,民用船一般称为船,军用船称为舰,小型船称为艇或舟,其总称为舰船或船艇。
内部主要包括容纳空间、支撑结构和排水结构,具有利用外在或自带能源的推进系统。外型一般是利于克服流体阻力的流线性包络,材料随着科技进步不断更新,早期为木、竹、麻等自然材料,近代多是钢材以及铝、玻璃纤维、亚克力和各种复合材料。
现有的核动力装置都是采用压水型核反应堆汽轮机,主要用在潜艇和航空母舰上,而在民用船舶中,由于经济上的原因没有得到发展。核电池的出现,解决了这些问题,意味着可以批量的制造核电池为动力的船舶。
70~80年代,为了节约能源,有些国家吸收机帆船的优点,研制一种以机为主、以帆助航的船舶。用电子计算机进行联合控制。

2. 船舶结构设计常用的方法

如果您的问题能具体一点会更好!
设计分为基本设计,详细设计(送审设计),生产设计3种。
目前中国的设计模式是这样的:
国内的设计目前只有详细设计和生产设计,详细设计的做的也很少!
有的设计公司自称能做基本设计,那都是吹牛的!
国内的基本设计,和有的详细设计,都是拿原有的图纸的基础上,进行改进!
举个例子
有个船东想新造一个散货船,比如6W吨DWT的散货船,因为中国目前造散货船就跟玩似的了,有了很多成功例子,之后设计公司会找到以前设计过的5.8W的散货船作为母型船,在母型船的基础上,进行改进,从新进行计算,设计。然后送审。
这就是中国的基本设计与详细设计。其实真正的基本设计是从无到有,一点一点的设计船的每一个部位,基本设计,就是型线,肋位,加强筋的距离,等等,详细设计就是在基本设计的基础上,进行有计划的出图,把每一个部位细化,而且要计算每一个地方的强度,有些地方要做有限元分析,要做总体计算,包括稳性等等。轮机部分要做轴系设计,总布置图,等等。很多,细化到每一个地方。设计完成后,送到船级社进行审核,最后在生产设计,生产设计是在详细设计的基础上,进行加工设计,就是钢板要如何去焊接,焊接的角度是多少,焊缝为多大,这里主要是现场验船师去监督审查。
还有什么问题么?

3. 轮机工程是什么

机械制图:投影的基本知识,尺寸标准,零件图,装配图的绘制。
公差配合与技术测量:学习互换性与技术测量方面的基本知识,熟悉机械零件的公差配合及其运用,掌握常用量具和仪表的使用方法和范围,能正确运用有关国家标准。
工程力学:学习力学、动力学基本知识;拉伸、压缩、剪切、扭转、弯曲、交变应力、动荷应力、压杆稳定、强度理论等知识;掌握应变形分析及强度计算的一般方法。
机械设计基础:掌握常用机构的组成,运动特性和动力特性及机构设计的基本原理和方法,熟悉通用零件的工作原理和特点;选用及设计计算方法,通过对二级圆柱齿轮减速器的设计,使学生能综合运用本课程及有关先行课程的所学知识,熟练地运用有关设计手册、图表、图册、国家标准等技术资料,掌握一般机械设计的基本方法和步骤。
电工基础及船舶电气设备:学习交、直流电路、磁路、电子技术的基本知识,掌握交、直流电机、船舶电气系统、设备及船舶电站的基本结构及原理。
工程热力学、传热学及流体力学:力学基本概念,第一、第二定律及在轮机工程上的应用,水蒸汽、湿空气的性质及在轮机工程上的应用;热传递的基本概念,传热热阻、换热器的应用;液体的主要物理性质,伯努利方程及其在轮机工程上的应用,层流、紊流的概念及判别。
船舶柴油机:学习船舶柴油机结构、原理、各系统的组成、功用、性能分析;故障判断及一般拆除方法、性能、结构及特点。
舶辅助机械:学习水力机械、气体压送机械、甲板机械、制冷与空调机械、海水淡化装置、辅助锅炉、净化装置及防污染装置等的工作原理、性能、结构;掌握上述机械设备的选型、使用及管理的一般技术。
舶动力装置:学习船舶动力装置的组成,船舶轴系的结构设计,推进装置的传动方式与设备选型,船用推进装置的特性与配合,螺旋桨及舵的安装与调试,船舶管路系统,掌握动力装置设备选型及设计及船舶管路系统设计的基本知识。
船舶动力装置安装工艺:学习船舶轴系,主机、辅机的安装工艺,学会编制安装工艺规程的一般方法。学习管系放样的原则及方法;掌握管系放样图,分段或单元安装图及零件图计算机绘制及放样软件的使用方法。
轮机自动控制:学习基本控制理论,自动化仪表、主辅机自动控制设备。
计算机应用:学习计算机基本原理及应用,掌握计算机辅助设计及绘图,计算机编程的基本知识。
专业英语:学习并掌握一定数量的船舶动力机械,船舶柴油机及造船生产的有关专业词汇,学习专业英语资料的阅读理解技巧,具备翻译一般专业英文资料的能力。
一般上学之前就跟公司签好了委培合同,再签个5年工作协议,工作是非常有保障的。就是你也需要很多努力,要把七门大证都考过了(甲类的,丙类没有英语),在校学习的一次性通过率在15%左右,可能还要低,所以你要好好学。工作就是在一个漂泊的大海上,人际交往的范围有限,生活单调,枯燥,一般都是看看电影,打打朴克,每出去半年才能回家两个月。它也有很多诱人的地方,1、轮机学的都是些技术活,不管在船上还是厂里都是很受欢迎的人,因为他们需要这样的技术人才。2、高薪也是他诱人的特点,月工资三管10000,二管15000,大管20000左右,轮机长30000左右。3,面对现在人才市场的压力,面对如今大学生和农民工争岗位的现象,真让人揪心啊,而海员就成了不愁嫁的姑娘,,,兄弟啊,哥也是学轮机的,打字也不容易。

4. 船舶主机配置及匹配的相关问题

1何为轴线?理论轴线是如何确定的?为什么有些船舶的轴线具有倾斜角和偏斜角?
答:(1)、轴线是指主机(或齿轮箱)输出法兰端面中心至螺旋桨桨毂端面中心间的连线。
(2)、先确定首尾基准,然后用下述方法确定:
拉线法:在规定的位置安装拉线架,并拉一根直径0.5—1.0mm的钢丝调整钢丝位置使其通过首尾基准点,此时钢丝就代表理论轴线。
光学法:利用光在均匀介质中直线传播的原理测定。先将光学仪器按两个基准光靶调好位置,使光轴同时通过光靶上的十字线中心,此时主光轴就代表理论轴线位置。
(3)、有时为保证螺旋桨浸入水中有一定的深度,而主机位置又不能放低,只能使轴线向尾部有一倾斜角,轴线与基线的夹角α,一般限制在0一5°之间。双轴线时除α角外,其与船舶纵中垂面偏角β,一般限制在0-3 °。从而保证轴系有较高的推力,不会因α、β角太大而使推力损失过多。
2中间轴轴承跨距的确定受哪些因素的影响?
答:不宜过小:对轴的弯曲变形、柔性和应力影响大(牵制多,附加负荷大);
不宜过大:(1)、轴系回旋振动和横向振动限制,若过大,易共振;
(2)、轴系间距过大,会使相应轴段的挠度因其重量的增加而增大,造成轴承负荷分配的不均匀性;(3)、轴承间距太大,受制造与安装工艺的限制。
2 赛龙轴承的特点
赛龙轴承具有耐磨性高、低摩擦、抗冲击性能好、加工性好安装简便的优点。
3 简述冷却管路的功用和形式。
答: 功用:冷却管路的功用是对船舶上需要散热的机械设备供以足够的液体(淡水、海水、江水和冷却油)进行冷却,以保证其正常工作。
形式:a.开式冷却管路:冷却液体为舷外水(海水、江水),舷外水由船外吸进,冷却机械设备后,仍排出船外,进行开式循环,又叫直接冷却。
b. 闭式冷却管路:由淡水泵吸入淡水对主辅机进行冷却,舷外水则通过淡水冷却器带走淡水的热量,又叫间接冷却。
c. 集中式冷却管路:用一个中央冷却器取代管路中服务于不同冷却对象的各分冷却器,进行海水和淡水的热量交换。
d. 舷外冷却管路:将淡水冷却器装在船舶水线以下船壳的外板上,利用舷外水进行自然冷却。
6 温度调节器的作用
答当温度调节器和淡水冷却器并连在柴油机的冷却水出口管路上时,就能够使柴油机出来的热水有一部分不经过冷却器,而直接排到淡水泵的进口。冷却水在某一温度时,波纹管内的蒸汽压力与弹簧压力平衡,调节阀处于一定位置。当水温升高时,波纹管内液体汽化蒸汽压力增高,推动调节阀上升,使流经冷却器的水量增加,旁通水量相应减少。反之,旁通水量增加。这样,通过温度调节器即可控制此旁通水量,从而控制冷却水在一定的温度范围内
8 船舶设计一般分为哪几阶段?画出其流程图。
答:报价设计→方案设计→技术设计→施工设计;
初步设计→详细设计→生产设计→完工文件编制。
7、船用锅炉的作用。
答:在一般干货船(散货船、杂货船、集装箱船)的蒸汽用途
寒冷季节的舱室取暖; 2)加热生活用热水;3)厨房各种需要;4)粘性油的加热;5)蒸汽灭火系统;6)制造淡水;7)特殊用途及杂用。
客船的蒸汽用途与干货船大致相同,只是生活用蒸汽量比重大。
油船的蒸汽用途
货油加热;2)蒸汽驱动的货油泵;3) 洗舱;4)锚机、绞盘等规范规定使用蒸汽动力机;5)货舱的蒸汽灭火系统
77 终结匹配设计 :已知主机的功率与转速、船舶的有效功率曲线、传动设备与轴系的传送效率ηs,、桨的收到功率Pd、船身效率ηh等,计算船舶所能达到的航速、螺旋桨的最佳要素(螺旋桨直径、螺距比及螺旋桨效率)
12.为什么柴油机要设最低稳定转速线? 答 a.调速器与柴油机的配合 随着曲轴转速的降低,调速器与柴油机在配合中可能出现较大的波动,最终导致柴油机不能稳定运行,或因不均匀度过大而不能正常工作。B.热力循环的正常运行 曲轴转速过低时,各缸供油的不均匀度加剧;供油压力下降,导致柴油雾化不良、混合质量较差;缸内温度偏低,柴油不能完全燃烧,且各缸燃烧情况差别很大,使转速波动加剧;缸壁温度偏低还会加速燃气对燃烧室组件特别是缸套的锈蚀
C.建立油膜的需要 在轴与轴承及活塞与缸套等有相对运动的机件之间建立保护油膜,相对运动速度是个决定因素。曲轴转速过低,就不能保证建立连续的油膜。通常,最低稳定转速nmin=(30%~50%)neb。
20.画出系泊工况的配合特性图,并加以说明。
在船舶系泊(不动)的情况下运转主机和螺旋桨的工况。
船速进速系数均为零,故推进特性较陡,即在同一n时将吸收较大的功率。I是设计状态下的推进曲线;II为系泊时的,OA为主机额定外部特性;A额定设计工况配合点;B为系泊工况的机桨配合点,在系泊时配合点B处的功率要不额定值Pmc小很多,其转速也比额定n低,故作系泊实验时不能把主机n开到额定值,否则将使主机超负荷运行
21.画简图说明船舶减速时的特性。
曲线I 为桨在某一等速航行工况时的推进特性曲线;II、 III 为加、减速时桨的推进曲线,曲线1、2为主机不同供油量时的外特性线;欲使船减速,要求减小桨推力,主机减油,假定以外特性2的b点为起始点,主机供油量减小后,外特性从2变为1,住机遇将的n都减小,而此瞬间,船速由于惯性尚未减小,使得Vp/n增大,故在b点以下的减速线III低于I,平衡点从b转向b’,在b’点出主机求大于供(供油少了,实际船速高),故使工作点沿曲线1到达a点才稳定下来。(加速情况反过来,从a-a’-b)
22.画简图说明推进装置附带负荷的配合特性。
推进装置附带负荷是指主机的功率除了用于带动螺旋桨外,还通过齿轮箱的功率分支轴或传动轴带动其它负荷(如发电机、泵等)。
这时主机的供给功率必须等于或大于螺旋桨和附带负荷的功率之和。
按标定转速选配时,OA’为主机额定外特性,OB’A为桨推进曲线,n(min)是主机最低运转转速。在配合点A’出,主机供给功率=桨吸收功率+附带负荷所需功率,面积A’ABB’为主机相对桨剩余功率,按这种方案设计时,在一般常用n内,均可带动附带负荷,且仍有剩余功率(ACB’);
按常用转速配合时,n0为常用转速,Ps为n=n0时主机剩余功率,好处是剩余功率应用好,但如果按额定航速运行时,主机功率不能附带负荷了,需要采取弥补措施。

5. 船舶结构设计

一 概述
船舶结构设计是在满足船舶功能及总体性能要求的前提下,通过结构设计使船舶在寿命期间强度、刚度、稳定性等均能满足使用的要求。船舶结构设计的内容决定了其设计计算任务的繁重。随着世界船舶市场对高技术含量、高附加值船舶需求的加大,各国船舶业间的能力竞争日趋激烈。现代造船技术正朝着高度机械化、自动化、集成化、模块化、计算机化方向发展。为了缩短船舶产品研制开发周期、降低开发费用,提高船舶结构设计计算效率已提上日程。
技术的推动和需求的牵引使计算数值仿真技术得以迅速发展,在船舶结构设计中,以有限元为核心的CAE(Computer Aid Engineering)技术——计算辅助工程技术,越来越受到重视,各种各样的仿真方法和仿真工具正逐步得到应用。CAE技术已成为船舶结构设计中不可或缺的有力工具,是解决大量工程优化问题的基础。为适应船舶工业的迅速发展,解决实际工程问题,迫切需要开展CAE在船舶结构设计中的应用及开发。
二 船舶结构设计的特点及CAE发展的现状
船舶经常运营于高速、强水流、强气流等环境条件下,船舶设计结构不仅要考虑船舶总纵强度、局部强度、结构稳定性,还需要考虑振动、冲击、噪声等。由此可见,船舶结构设计是一门技术含量高、设计难度大的学科领域。船舶结构设计的困难的另一个重要方面是由于船舶体积庞大,在很多场合下无法象汽车、飞机等一样做整体试验。传统船舶结构设计是通过母型船改进,结合经验开展简化结构的定性分析计算完成,其结构设计、计算和分析包含大量的经验成分。船舶结构试验开展的困难,加大了船舶结构设计对数值仿真技术的依赖性,CAE技术成为船舶结构设计的重要工具。
CAE从字面上讲是计算机辅助工程,其概念很广,可以包括工程和制造业信息化的所有方面。但传统的CAE主要是指工程设计中的分析计算和分析仿真,其核心是基于现代计算力学的有限单元分析技术。CAE起始于20世纪50年代中期,而真正的CAE软件诞生于70年代初期,到80年代中期,逐步形成了商品化的通用和专用CAE软件。近40年来,CAE技术结合迅速发展中的计算力学、计算数学、相关的工程科学、工程管理学与现代计算技术,从低效检验到高效仿真,从线性静力求解到非线性、动力仿真分析、多物理场耦合,取得了巨大的发展与成就。在日趋全球化的市场氛围中,企业间的竞争将表现为产品性能和制造成本的竞争。而CAE在产品研发及创新设计中所显示出的无与伦比的优越性,使其成为现代化工业企业在日趋激烈的市场竞争中取胜的重要条件。利用CAE软件,可以对工程和产品进行性能与安全可靠性分析,并对其未来的工作状态和运行行为进行虚拟运行模拟,及早发现设计缺陷,实现优化设计;在实现创新的同时,提高设计质量,降低研究开发成本,缩短研究开发周期。CAE与CAD/CAM等软件一起,已经成为支持工程行业和制造企业信息化的主要信息技术之一。
CAE软件技术的发展,促使CAE在各行各业得到了极为广泛的应用。目前,CAE软件已在国外广泛应用于核工业、铁道、石油化工、机械制造、汽车交通、电子、土木工程、生物医学、轻工、日用家电等工业和科学研究领域。CAE在船舶行业也正迅速发展,目前各大舰船科研院所均引进CAE软件开展日常设计研究工作、各大船级社均采用CAE有限元软件进行自行规范计算的设计与研究。
三 CAE技术在船舶结构设计中的应用
目前CAE技术在船舶结构设计中已使用非常广泛,已渗透到船舶结构设计计算中的每一个领域,下面分别介绍CAE在船舶结构各计算领域中的应用。
3.1 强度
强度是船舶结构设计首先要考虑的问题。船舶结构强度计算主要包含全船总纵强度计算和局部强度计算。总纵强度是校核船体的纵弯曲计算波浪条件下船体各横剖面内纵向结构构件的应力,并将它与许用应力进行比较以判定船体的强度。传统的船舶总纵强度计算常常仅对典型横剖面进行计算,通常需要进行多次近似计算才可以得到最终结果,而采用全船有限元建模的方式,船舶总纵强度的计算变得较为容易。图1是某船在六级海况总纵强度中垂状态计算结果。在全船有限元模型CAE计算下,全船的每一个模剖面任意构件的应力情况都可以在计算结果中反映。目前由于全船总纵强度有限元计算需要耗费大量机时进行三维模型的建立,要开展全船总纵强度CAE计算需要较长周期,但如果全船三维CAD模型已经存在,船舶CAE计算将变得十分方便。
船体结构局部强度计算主要包括对底部结构强度计算、舷部结构强度计算、球鼻首结构强度计算、甲板结构强度计算、舱壁结构强度计算、主要设备基座强度计算等。传统计算方法对船舶局部结构的计算通常建立在简化的梁系结构和板架结构来计算,计算模型也通常是平面模型,空间复杂结构常常无法完成计算。而运用CAE技术任意复杂的船舶局部结构,其强度问题都能迎刃而解,并且计算结果非常详实。图2为船舶底部结构局部强度有限元计算结果。

图1 全船总纵强度计算 图2 底部结构强度有限元计算

运用CAE技术进行船舶结构强度计算目前应用非常广泛,CAE已成为实际船舶结构强度计算的不可缺少的工具。
3.2 刚度
在船舶结构强度满足的条件下,船舶结构设计的另一个重要指标就是刚度,即在预定的载荷下船舶结构的变形必须在许用的范围内。如规范规定全船在波浪下的静变形不大于船长的五百分之一。图3是对典型船舶双臂尾轴架结构刚度CAE计算结果。
利用先进CAE计算软件,可以真实的反映结构的实际承载情况,能考虑传统方法不能计算的复杂结构的变形问题,而且结果更准确可靠。

图3双臂尾轴架结构刚度计算 图4 甲板板架板架结构稳定计算

3.3 稳定性
船舶结构的稳定性分析,即船舶结构的失稳计算,属于船舶结构计算的重要组成部分。船舶结构稳定性计算常常包括对支柱结构的失稳欧拉力的校核计算、甲板纵骨带板结构失稳欧拉应力计算和甲板板架、底部板架结构失稳计算。图4是对典型甲板架板架结构稳定计算结果。传统计算方法对结构失稳计算通常仅能对支柱、简单板架结构进行计算。运用CAE方法可以快捷的计算复杂结构的失稳问题。
3.4 振动
船舶结构的振动计算对于船舶结构设计十分重要。规范要求,船舶总振动固有频率应避开主机频率、轴频、螺旋浆叶频等,尾部板及板架结构振动固有频率要避开螺旋浆激励频率;机舱区板及板架要避开主机频率。

图5 某舰总振动计算

图6 船舶尾部振动计算

船舶结构总振动传统计算方法是将全船简化为二十站变截面的空心梁,然后用经验公式计算得附连水质量附加到总船质量上进行振动计算。这样计算方法能在相当简化的程度上得出计算结果,但会把实船会遇到的横向总振动、扩张收缩等的振动形态给忽略掉。全船CAE振动计算能精确的建立全船有限元模型,并根据船体外板的空间形状考虑水对总振动的影响,而不必用人工经验公式计算的方式加附连水质量。全船CAE计算的结果可以全面的仿真全船在水中振动的情况。图5为某船总振动模态。
船舶尾部结构振动是船舶结构振动的一个难题,该问题不但涉及到船舶结构本身的固有频率,还涉及到船体结构与周围流场的流固耦合振动,要详细研究船舶尾部结构振动问题,传统方法仅能做定性分析,CAE技术为其提供技术解决方案。图8为某船尾部振动计算结果。文献[4]也利用SESAM有限元程序船舶尾部振动进行响应预报。
尾轴架结构的振动问题也是船舶局部振动经常要面对的问题,传统计算方法也只能对其做相当的简化求出近似的结果。文献[5]运用有限元法建立尾轴架结构的真实实体模型,并进行了详细的干湿模态计算。
3.5 冲击
船舶抗冲击性是目前越来越受相关专业人员重视的学科领域,对于军舰来说尤为重要,因为舰船结构抗冲击性是舰船生命力的重要保障。设计军舰结构时,舰船结构不但要经受强大的风浪载荷,还需要考虑舰船结构承受炸药爆炸的冲击载荷。该领域分两大类研究范畴:舰船结构抗水下非接触爆炸计算研究和舰船结构抵御接触爆炸穿甲研究,统称舰船结构抗冲击研究。舰船抗冲击性在传统方法中无法计算。近些年来,随着计算硬件的发展及CAE技术的发展,从船局部结构到整舰的CAE抗冲击评估计算逐步可以在微机上开展。文献[6]运用MSC.DYTRAN对加筋板架爆炸载荷下动态响应进行了数值分析,文献[7]对某型水面舰船全船结构在水下爆炸冲击波载荷作用下的动态响应进行了MSC.DYTRAN数值模拟。图7为某舰整舰水下爆炸冲击计算有限元模型。图8为某柴油机基座抗冲击计算结果。

图7整舰水下爆炸冲击计算

图8 某柴油机基座抗冲击性计算

整舰结构抗冲击CAE计算规模一般较大,有限元模型的网格质量、单元选择、材料选择、外载荷的施加方法及计算算法的选择对计算结果有重要影响。整舰CAE计算仍是技术含量很高的领域,亟需投入大量力量去研究和开发。
3.6 噪声
舰船结构的噪声主要包含舰船舱室内噪声研究和舰船结构水下噪声研究。船舶噪声的治理一直以来和舰船结构振动密不可分,但又与船舶结构振动很不相同。船舶结构振动常常只需要解决低频问题,而船舶结构噪声问题常常频段范围很宽,从几赫兹到几十万赫兹。CAE技术中的有限元法显得力不从心,因为声学问题如果要用有限元的方法来进行计算,随着频率的加大,网格的密度要非常之大,就算是简单的结构其计算模型也非常巨大,以致于现有的计算机无法完成计算。故在噪声领域有限元法常用于低频、中低频的计算,中高频以上问题需要采用其它CAE技术,包括统计能量法、边界元技术、无限元技术等。图9为运用AUTOSEA软件,对简化的全舰船结构进行声幅射计算的例子。

图9 全舰声幅射计算

四 船舶结构CAE技术应用的特点
CAE技术正应用到船舶结构设计算的每一个领域。CAE在船舶结构设计中有如下几个优点:
1. 可视性 采用CAE进行船舶结构计算,可以从图像上看到分析结构的大小、材料、边界条件、载荷条件等,大多数CAE软件均提供了良好的人机交互环境。
2. 真实性 运用CAE技术对船舶结构建模能反映船舶结构的真实几何情况。无论是板架结构还是实体结构,无论是简单平面结构还是复杂空间结构,CAE的建模功能都能根据问题的需要,作适当简化,建模反映结构的真实情况,为精确计算打下基础。
3. 详实性 运用CAE工具进行船舶结构计算,可以根据模型参数情况、加载的条件及计算参数的设定,详实求得计算结果。根据设计人员的需要求得任意部位需要的计算结果,可根据设计人员提供参数的准确程度,详实反映结构物理情况。
4. 强数值运算能力 目前通用的CAE软件,都采用多种高效的数值计算方法,大量线性、非线性问题均有解决方案。不同CAE软件常常是功能侧重点不一样,如MSC.NASTRAN和ANSYS在有限元线性力学领域十分成熟;ABAQUS软件则在有限元非线性接触、摩擦领域有特长;ANSYS-LSDYNA、MSC.DYTRAN由于采用显示动力学算法,强于冲击穿甲相关计算;SYSNOISE则是声-振分析专业工程软件,它拥有声场有限元、无限元、直接 /间接边界元法等多种声学解决方案;AUTOSEA软件是基于统计能量分析方法的结构振动、声学设计工具;HYPERMESH强于网格划分,并是目前很适合于做结构力学优化设计的软件。
尽管运用CAE技术开展船舶结构设计计算有上述优点,但目前仍有以下问题:
1. 如何快速建模是船舶结构CAE设计的一个重要任务。由于船舶行业自身特点,船舶结构二维CAD设计在相当长一段时内还将存在,并在工程中发挥重要作用。目前从二维CAD图纸设计到三维CAE模型的生成,需要花费大量时间。
2. CAE目前使用难度仍然较大。由于有大量CAE软件的存在,并且各CAE软件均有很强的专业背景,要想使用好特定的CAE软件,设计使用人员必须具备相当的相关领域的专业知识。CAE软件目前仍停留在少数专业人员的使用范畴内。
3. 修改设计CAE计算工作量较大。由于CAE的计算过程复杂,做一次设计修改相当于重新开始做一次CAE计算。很多情况下网格划分、边界条件的定义等都要重新进行。对于一个小规模问题,重新计算工作量增加不明显,如果对一个大规模计算,则需要耗费大量机时。
4. 目前船舶结构CAE计算尚不存在质量控制标准。虽然CAE在船舶行业的应用已有很长时间,并且大量任务已采用CAE分析计算,但CAE建模的简化程度、网格的质量、边界条件的设定、外载荷加载方式都和具体分析计算的人员的经验有很大关系,其计算结果的准确程度也很不一样。常常出现不同人员对同一问题进行计算而得到不同结果的现象。
五 总结及展望
随着船舶结构设计技术的深入开展船舶强度、刚度、稳定性、振动、冲击和噪声各领域的CAE应用将越来越广泛和深入。CAE不仅可以解决船舶结构传统经典力学问题,新兴的学科领域如爆炸冲击领域问题也有解决方案;CAE不仅在现有结构的力学计算上发挥巨大作用,在船舶结构设计创新,新材料、新结构形式的使用上也将发挥不可替代的作用。
展望未来船舶结构设计中CAE技术将有如下特点:
1. 船舶结构CAE计算领域更加扩大。在船舶结构CAE计算将在更加精确的基础上扩大计算的学科领域,如流体与固体的耦合计算、振动与声学的耦合计算、高速冲击下的结构力学与热力学计算等。
2. CAD设计与CAE计算更紧密结合。由船舶结构二维、三维图纸设计方案均能方便的转化为CAE分析的几何模型。
3. CAE软件操作的更简便实用化。CAE技术将成为更大范围内工程技术人员的实用工具,而不仅仅停留在少数专业人员手中。更人性化、智能化的CAE工具将帮助大多数船舶结构设计技术人员解决日常设计问题。
4. 特定问题CAE计算参数化。产品的型号系列化一直以来是设计人员的工作内容,在船舶结构设计中有很多领域都需要对结构相似的类似问题进行计算,特定问题CAE参数化将大大方便设计人员的结构优化设计工作。
5. 船舶结构CAE计算的规范化。针对不同的船舶结构设计计算领域,将制定规范标准化CAE计算过程,使CAE船舶结构设计计算的正确性有保障。

6. 船舶主机安装应注意哪些问题

船舶主机安装应注意哪些问题?

第一、注意安全。安全工作是重中之重!安全第一,任何时候都不得马虎,需要高度重视!

第二、熟练掌握所有设备的有关参数与全部的安装工艺技术等,熟练把握现场安装经验,有关情况分章节说明如下:

第一章船舶主机的安装

学习目标

知识目标

1.掌握主机安装的工作内容;

2.学习基座准备的内容和方法;

3.学习主机吊装的方法;

4.掌握主机定位的方法:根据轴系法兰定位;按轴系理论中线定位;

5.学习土机固定的方法;

6.掌握大型低速柴油机的安装方法。

能力目标

1,会准备基座;

2,能吊运主机;

3.会定位主机;

4.能固定主机;

5.能进行大型低速柴油机的解体和部件组装:机座、主轴承和曲轴、机架、气缸体、活

塞装置及缸盖。

第一节概述

船舶主机是船舶动力装置的核心,其安装质量的优劣将直接关系到动力装置的正常运行和船舶的航行性能。

主机的类型主要有柴油机、汽轮机和燃气轮机,不同类型的主机,有着不同的结构特点和工作方式,在船上安装时应按不同的机型而采用相应的工艺方法。柴油机是目前应用最广泛的一种主机,本章主要讨论柴油机主机的安装工艺。

主机发出的功率通过轴系传递给推进器,主机与轴系相连接,主机、轴系和推进器组成一个有机的整体,因而主机的安装应与轴系的安装一并考虑。造船时,主机与轴系的安装顺序无外乎有三种:先安轴系再安主机;先安主机再安轴系;主机和轴系同时安装。在船台上先安装轴系,船舶下水后,再以轴系为基准安装主机,这是长期以来一直沿用的一种安装工艺。因为这种方法容易使主机的输出轴回转中心与轴系的回转中心同轴,同时避免了船舶下水后船体变形的影响。这种方法的缺点是生产周期较长。在船台上,以轴系理论中心线为基准,安装主机和轴系,可以先安装主机,然后再根据主机的实际位置确定轴系的位置并进行轴系的安装。也可以主机和轴系同时安装。这种方法,在主机定位后,可以进行管系和各种附属设备的安装,扩大了安装工作面,缩短了生产周期。但是这种方法往往难以避免船舶下水后船体变形带来的影响,而在安装轴系时由于主机已固定,尾轴也已固定,两者固定所产生的偏差必然要由轴系来消化,约束增加,安装难度较大。在工程实践中,究竟采取哪种安装顺序,要视造船总工艺、工厂的实际条件和工期而定。

主机安装后,必须保证主机与轴系的相对位置正确,并且在运转时保持这种相对位置关系。为了防止其他因素对主机安装质量的影响,在主机安装之前,必须完成下列工作:

(1)主机和轴系通过区域内船舶结构,上层建筑等重大设备调运安装工作基本完成。

(2)机舱至船尾的所有隔舱及双层底舱的试水工作均应结束。

主机安装的工作内容可归纳为如下几个方面:

(1)主机基座(底座)的准备。

(2)主机的定位(校中)。

(3)主机的固定。

(4)质量检验。

第二节主机基座(底座)的准备

主机是通过垫片或减振器安装在船体基座上的,基座是与船体直接相连的支承座。根据不同的机型,基座一般有两种形式。对于大型低速柴油机,没有单独的墓座,机舱双层底是由加厚的钢板焊接而成,主机的机座就落位在此加厚的钢板上。中小型柴油机,通常带有凸出的油底壳,因此在双层底上,还需焊接一个由型钢和钢板焊接起来的金属构件。在面板上,为了减少加工面而焊有固定垫片,固定垫片与柴油机机座之间配有活动垫片,用以调整主机的高度,主机与基座用螺栓固定在一起。

第二章船舶轴系的安装

学习目标

知识目标

1.掌握轴系的作用和组成及典型结构的安装要求;

2,掌握轴系零部件制造与装配的技术条件;

3.掌握轴系安装工艺的主要内容;

4.学习确定轴系理论中心线的方法:钢丝拉线法、光学仪器法;

5.学习轴系孔的镗削:加工圆线及检验圆线的确定、镗孔的技术要求、镗排装置、镗

排机在船上的安装、镗孔工艺;

6.学习尾轴管装置的安装;

7.掌握轴系校中的含义和方法:轴系按直线性校中、轴系按轴承上允许负荷校中、船

舶轴系合理校中;

8.学习轴系安装的方法:轴系的连接、中间轴承的紧固、安装质量的检验。

能力目标

1.会确定轴系理论中心线;

2.会镗削轴系孔;

3.能安装尾轴管装置;

4.能校中轴系;

5.能正确安装轴系。

第一节船舶轴系概述

一、轴系的作用及组成

船舶轴系的作用是将主机发出的功率传递给螺旋桨;螺旋桨旋转后产生的轴向推力通过轴系传给推力轴承,再由推力轴承传给船体,使船舶前进或后退。因此,船舶轴系是船舶动力装置中的重要组成部分之一。轴系工作的好坏将会直接影响船舶的正常航行,并对主机的运转有直接关系。所以,对轴系的制造与安装都有较高的技术要求,都要符合技术标准的有关规定。

船舶轴系,通常指从主机曲轴末端(或减速齿轮箱末端)法兰开始,到尾轴(或螺旋桨轴)为止的传动装置。其主要部件有:推力轴及其轴承,中间轴及其轴承,尾轴(或螺旋桨轴)及尾轴承,人字架轴承,尾轴管及密封装置,各轴的联轴节。有些船舶还另有短轴,用来调整轴系长度。此外,还有隔舱壁填料函和带式制动器等。

轴系的结构种类很多,有常用型螺旋桨推进装置轴系;可调螺距螺旋桨推进装置轴系;正反转螺旋桨推进装置轴系;可回转式螺旋桨推进装置轴系等。它们相互之间区别很大,各不相同。但就目前我国民用船舶来看,除工程船舶与内河某些小船之外,大多数属于常用型螺旋桨推进装置轴系。因此,本书仅介绍常用型螺旋桨推进装置轴系的制造与安装工艺。

在民用船舶中,通常采用单轴系或双轴系,而客轮一般为双轴系。单轴系位于船中纵剖面上,而双轴系则位于船的两侧,并相互对称。双轴系船舶的操纵性能比较好,动力装置的生命力比较强,用于内河船舶居多,但双轴系船舶的结构复杂,建造的工作量大,成本也高。

根据主机及螺旋桨布置的要求,有时轴线与基线成倾斜角。或与纵剖面成偏斜角β。轴系的倾斜使主机处于不良的工作状态,降低了螺旋桨的有效推力。为了使螺旋桨的有效推力不致显著下降,以及保证主机工作的安全可靠,一般α角限制在0°~5°之间,而β角限制在0°~3°之间。对于一般快艇,由于条件的限制,α角可达12°~16°,但很少超过16°。对于单轴系船舶,通常轴系与垂线(或龙骨线)是平行的,即。α=0°,但双轴系船舶则很少能满足无倾斜角的要求。

在船舶总休设计时,机舱可以布置在中部,也可以布置在尾部。当机舱布置在中部时,轴系就比较长;当机舱布置在尾部时,轴系就比较短。—般来说,具有两根或两根以上中间轴的轴系.称为长轴系,中机刑的大型船舶的轴系长度有的达100m,其中间轴多达十余根;只有一根,其长度可短至7~8m,或者没有中间轴的轴系称为短轴系。长轴系的柔性比较好,比较容易凋整,但调整、安装的工作量大。短轴系的刚性比较大,安装的要求也就高一些。双轴系船舶,左右主机回转方向必须相反,当船舶在正车前进时,右舷主机一般为右转,而左舷主机为左转。如果主机回转方向一致,则可通过换向机构来实现。当一台主机驱动左右两套轴系时,也可安装换向机构来使左右轴系反向旋转。

当主机或减速箱内部设有推力轴承时,轴系就可以不必设置独立的推力轴承了。推力轴及其轴承的作用有两点:一是承受螺旋桨所产生的轴向推力,并传递给船体,使船舶产生运动;二是防止螺旋桨产生的轴向推力直接推动主机曲轴,使曲轴发生移动及歪斜,而损坏主机的机件。

常见的推力轴承有两种结构形式,一种是旧船上常见的马蹄片式推力轴承;另一种是单环推力轴承(又称米歇尔式推力轴承),前者已被淘汰。

隔舱壁填料函的作用是在轴系通过舱壁时,使舱壁保持水密,以保证船舶的抗沉性。当机舱布置在尾部,就不用隔舱壁填料函。

在双轴系船舶中,轴系一般带有制动机构,这是为了在航行中需要停下某一套动力装置时,就用制动机构把它制动住,使轴系不因水流影响而转动。此外,制动机构也可以帮助主机缩短换向时间。

尾轴管一般都有前后两个轴承,前轴承短,后轴承较长。有的大型船舶尾轴管比较短,因此只设置一个尾管轴承。这时,尾轴首端往往共设置一个中间轴承式的前轴承,便于维护管理。也有些船舶的尾轴管较长,设有三个尾管轴承。尾管轴承绝大多数采用滑动轴承。当尾管轴承采用铁梨木、橡胶、层压板和尼龙等材料时,则用水作为冷却润滑剂。这时,尾轴通常都用铜质保护套或玻璃钢保护层来保护尾轴轴颈,以防止海水对尾轴的锈蚀。在老式船上多采用舷外水自然冷却,这种冷却方式容易造成水流不畅的“死角”,又往往由于泥沙进入尾轴管而造成轴和轴承的急剧磨损。因此,现代的船舶都已采用压力水强制润滑冷却,以克服上述缺陷。

第三章船舶轴系零部件的装配

学习目标

知识目标

1.掌握可拆联轴节的种类及其安装工艺;

2.掌握轴系配对的工艺方法;

3.掌握尾轴管装置的装配方法。

能力目标

1.会装配可拆联轴节;

2.会对接平轴;

3.会装配尾轴管装置。

第一节可拆联轴节的装配

在安装滚动轴承的轴系中,或尾轴必须从船体外部进行安装的船舶,广泛使用可拆联轴节。船舶轴系可拆联轴节的形式很多,主要有法兰可拆联轴节、夹壳形联轴节、液压法兰联轴节及液压可拆套筒联轴节等。

一、法兰式可拆联轴节的加工和装配

法兰式可拆联轴节常被用于尾轴与中间轴的连接,它是属于刚性联轴节的一种形式。根据连接法兰上螺栓孔的形状,它又可分为圆柱形螺栓可拆联轴节及圆锥形螺栓可拆联轴节两种。

圆柱形螺栓可拆联轴节,这种联轴节是带有法兰边的,因此称为法兰式可拆联轴节。

1,联轴节加工的技术要求

(1)联轴节的外表面及法兰端面均应先粗加工,并留有3~5mm余量,而内孔则与轴的锥体部分配合加工(加工时可采用锥度样板测量)。联轴节与轴的锥体部分研配装妥后,将尾轴上车床,再精加上联轴节外圆及法兰端面。联轴节的粗糙度和其他技术要求与整体式法兰相同。

(2)联轴节上键槽的宽度、高度及与轴线的平行度都与轴上键槽的加工要求相同。

2.联轴节的装配技术要求

(1)联轴节锥孔与轴锥体接触应良好,接触面积要求在75%以上,用色油检查,每25mm×25mm内,不得少于三点。厚薄规检查锥体大端时,0.03mm的厚薄规插入深度应不超过3mm。接触面上允许存在1~2处面积不大的空白区,但总面积应小于锥体表面积的15%,最大的长度及宽度不超过该处锥体直径的1/10,且不得分布在同一轴线或圆周线上。

(2)平键与轴上键槽两侧面的接触面积不少于75%,与联轴节键槽相配合时,在85%长度上应插不进0.05mm的厚薄规,其余部分应插不进0.1mm的厚薄规。平键与键槽底应接触;接触面不少于30%~40%。

(3)联轴节法兰螺栓装妥后,在接合面90%的周长上应插不进0.05mm的厚薄规,其接触面积不少于75%。

(4)轴的锥体部分的螺纹,当联轴节装好后应缩进锥孔内一个距离α。

二、夹壳形联轴节的加工和装配

夹壳形联轴节由两个钢制半圆筒组成,靠夹壳与轴之间的摩擦力及键来传递力矩。夹壳联轴节的横截面尺寸比较小,拆卸时不必移动轴,因此可以安装在不易进入的狭窄地方,但因重量大,使用受到限制。

1.联轴节的加工技术要求

(1)夹壳形联轴节加工后,其内圆的圆度和圆柱度应符合表3-1的要求。

(2)当夹壳长度每超出轴颈一倍时,则锥度误差允许增加0.01mm。其内圆直径应较轴颈大0.04~0.08mm。两半联轴节的间距应为轴颈的3%~5%。

(3)内圆表面粗糙度Rα不大于3.2μm。

2.联轴节的装配技术要求

(1)轴向键必须进行修配,其装配质量要求与法兰式可拆联轴节的平键要求相同。

(2)夹壳联轴节的推力环应经修配,使内圆与轴槽紧密配合,接触面积要求在60%以上。两侧面轴槽或壳槽配合处应插不进0.05mm的厚薄规。

(3)装配后推力环外圆与夹壳内孔之间允许有0.2~0.4mm的间隙。

第四章螺旋桨的装配与安装

学习目标

知识目标

1.学习螺旋桨的加工方法;

2.学习螺旋桨的装配方法;

3.学习螺旋桨的安装方法。

能力目标

1.会加工螺旋桨;

2.能进行螺旋桨的装配;

3.能安装螺旋桨。

第一节螺旋桨的加工与装配

一、螺旋桨的概况

1.基本概念

螺旋桨是最常见的船舶推进装置,它一般有3~6个叶片,大部分螺旋桨叶片是与桨壳一起铸出的,但也有制成可拆卸的,并用螺栓将叶片固定在桨壳上,称为组合式螺旋桨。中小型船舶常为3~4个)个叶片,大型船舶常为4~5个叶片,螺旋桨的作用是将船舶主机所发出的功率转变为推动船舶运动的推力。它的加工和装配质量直接影响到船舶的航行性能和安全。螺旋桨几何形状的正确性是保证质量的主要因素,其中以螺旋桨直径和螺距尤为重要。

三叶螺旋桨。它与尾轴相连接的部分称为桨壳。由船尾向船首看,所见到的叶片面称为压力面,是一个螺旋面,其反面称为吸力面。压力面又称叶面,吸力面又称叶背;当主机正转时,叶片上先入水的叶边称为导边,同一叶片上相对应的另一边称为随边。

由螺旋桨中心至叶片边缘距离最远的一点为半径,所作出的圆的直径称为螺旋桨直径,以D表示。叶面上任何一点环绕螺旋桨轴线一周后升高的距离称为螺旋桨的螺距H。螺旋桨按其螺距来分可以分为等螺距螺旋桨和变螺距螺旋桨两种。前者在它的叶面上各半径截面上的螺距都是相等的,后者则不是都相等的,往往在一定的半径范围内螺距随半径的增大而增大。变螺距螺旋桨效率较高,但制造和加工叶面较麻烦。另外还有一种可调螺距螺旋桨,它的叶片是活络安装在桨壳上的,并可通过内部传动机构驱动叶片转动,以使螺距变化来改变航速。

自尾向首看,正车转动时,螺旋桨沿顺时针方向转动的称右旋螺旋桨,沿逆时针方向转动的称左旋螺旋桨。对双桨船,正车时向舷外方向转动的称外旋螺旋桨,反之称内旋螺旋桨,通常双桨船采用外旋,以防止水中漂浮物被卷入而卡住。由于桨叶承受推力,故叶面与叶背间必须有一定的厚度,桨叶切面形状有两种:机冀形与弓形,切面两端点间的距离b称弦宽,两端点间的连线称弦线。切面最大厚度以t表示。弓形切面的t,在弦宽的中点(b/2)处,机翼形切面的t约在距第五章船舶辅机和锅炉的安装

学习目标

知识目标

1.了解辅机一般的用途、种类;

2.了解甲板机械的用途、种类;

3.了解锅炉的用途、种类;

4.叙述船舶辅机和锅炉在船上的一般安装工艺及注意事项。

能力目标:

1.会进行一般辅机在船上的安装工艺;

2.会进行甲板机械在船上的安装工艺;

3.会进行锅炉在船上的安装工艺;

4.会对常用粘结剂进行调和及使用。

船舶辅机即船舶辅助动力机械,是为舶的正常运行、作业、生活和其他需要而提供能量的成套动力设备。

第一节一般辅机在船上的安装

一般辅机在船上的种类很多,常见的有船用泵如离心泵、螺杆泵、喷射泵等,船用空压机、通风机、船舶制冷装置、船舶空气调节装置、油分离机、船舶防污装置、海水淡化装置等;这些辅机在船亡安装质量的好坏,直接影响着船舶的正常运行。

一、船舶辅机运往船上安装的形式

现代船舶辅机主要是以两种形式运到船上安装。

(1)将辅机组合安装成机组。即将动力部分与工作部分安装在一公共底座上,如3S100D型螺杆泵(图5-1所示),或在一机壳上装有动力部分,如3LU45型螺杆泵等。

(2)将辅机组合安装成功能性单元。DRY-5型油分离机就是一例。这种形式较前者更为先进,在船上安装时,只需将其定位紧固后,将管路、电源接通即可使用,甚是方便,国内有些船厂已经使用,效果甚佳。

以上所述两种形式较之单个机械上船安装具有如下较好的经济技术效果:

(1)将大部分钳工装配工作从船上移到车间进行,这样可以充分利用车间的设备和有利空间条件以提高安装质量和劳动生产率;

(2)由于有定型的产品供应或事先装配,造船时只需要整台吊装即可,这样可大大缩短造船周期;3)由于辅机本身有公共底座或有一个机壳,这样町使与之相结合的船体基座上平面的加工要求降低,垫片甚至可以不刮磨,大量减少了繁重的钳工劳动,而且便于安装减振器(这对军用产品尤为重要,因为舰艇上的辅机很多都是安装在减振器上的)。

二、辅机安装有关工艺项目

1.基座的准备

辅机一般都是通过垫片或减振器安装在甲板或船体的基座上的。对甲板支承部分不要加工,而对基座的支承表面的加工要求也不高,一般说来,舰艇比民用船舶丘的要求稍高一些。对机座面板的要求如下:

(1)基座面板的不平度,1m长度内不得大于3mm,但全长或全宽中均不得超过6mm;

(2)基座面板的长度及宽度公差为+10~-5mm;

(3)在基座面板上作对角线检查时,两对角线应相交,其不相交度应符合有关规定。

7. 船舶轴系主要有哪些呢

由于来船的任务和要求不同源,使得船体型线和动力装置型式不同,轴系所包括的具体组成部件也不完全一样。一般情况下,从主机曲轴法兰起,到螺旋桨止,主要包括:弹性联轴节、减速齿轮箱、推力轴、推力轴承、中间轴、中间轴承、、联轴节、艉轴和艉轴管等,另外还有离合器和隔舱填料函等总称为轴系.

8. 1 船舶动力装置由哪些系统或装置所组成它们各自的主要任务是什么

船舶动力装来置包括三个主要部分自:主动力装置、辅助动力装置、其他辅机和设备.
1.
主动力装置,又称推进装置,是为船舶提供推进动力,保证船舶以一定速度的各种机械设备,包括主机及其附属设备,是全船的心脏.主动力装置包括主机、传动设备、轴系、推进器等.当启动主机,即可驱动传动设备和轴系,使推进器工作.当推进器,通常是螺旋桨,在水中旋转时就能使船舶前进或后退.
2.
辅助动力装置是用于提供除推进装置以外的各种能量,供船舶航行、作业和生活需要的装置,包括为全船提供电力、照明和其他动力的装置,如发电机组、副锅炉等.

9. 船上的主要部件都是

船体部位:船体由甲板、侧板、底板、龙骨、旁龙骨、龙筋、肋骨、船首柱、船尾柱等构件组成。

船或船舶,指的是:举凡利用水的浮力,依靠人力、风帆、发动机等动力,牵、拉、推、划、或推动螺旋桨、高压喷嘴,使能在水上移动的交通运输手段。另外,民用船通常称为船、船舶、轮机、舫,军用船称为舰、舰艇,小型船称为艇、 舢舨、筏或舟,其总称为舰艇或船舶。

船舶动力设备

船舶必须配置一整套符合规范要求的动力装置和辅助设备后,才能在水上航行。这些动力装置包括有船舶主动力装置、辅助动力装置、蒸汽锅炉、制冷和空调装置、压缩空气装置、船用泵和管路系统、造水装置和自动化系统等。这此机电动力设备主要集中于机舱,专门管理这些设备的技术部门是轮机部。

1、主动力装置

船舶主动力装置又称"主机",它是船舶的心脏,是船舶动力设备中最重要的部分,主要包括:

(1)船舶主机

能够产生船舶推进动力的发动机的一种俗称,包括为主机服务的各种泵和换热器、管系等。目前商船的主机是以船舶柴油机为主,其次是汽轮机。

(2)传动装置

把主机的功率传递给推进器的设备,除了传递动力,同时还可起减速、减震作用,小船还可利用传动设备来改换推进器的旋转方向。传动设备因主机型式不同而略有差异,总的来说由减速器、离合器、偶合器、联轴器、推力轴承和船舶轴等组成。

(3)轴系和推进器

船舶推进器中以螺旋桨应用最为广泛,大多采用固定螺距或可调螺距的螺旋桨推进器;船舶轴系是将主机发出的功率传递给螺旋桨的装置。船舶主机通过传动装置和轴系带动螺旋桨旋转产生推力,克服船体阻力使船舶前进或后退。

2、辅助动力装置

船舶辅助动力装置又称"辅机",是指船上的发电机,它为船舶在正常情况和应急情况提供电能。由发动机组、配电盘等机电设备构成了船舶电站。

10. 船舶轮机的船舶动力装置的组成

一般来说,船舶动力装置主要由推进装置、辅助动力装置、管路系统、甲板机械、防污染设备、应急设备和自动化设备七部分组成。
推进装置即为推动船舶航行的装置,包括主机、传动设备、轴系和推进器。辅助装置是指除推进装置以外的其他产生能量的装置,包括船舶电站、辅锅炉、液压泵站和空气压缩机,分别产生电能、热能、液压能和压缩空气供船舶生产和生活使用。管路系统由各种发件、管路、泵、滤器和热交换器等组成,用以输送各种流体工质,以维持船舶的各种机械正常运转。
甲板机械是为保证船舶航向、锚泊靠泊、装卸货物以及起落自身设备所设置的机械的统称,包括舵机、锚机、铰缆机、起货机、尾门尾跳收放系统、吊艇机及舷梯升降机等。
防污染设备是用来处理船上的含油污水、生活污水、油泥及各种垃圾的设备,包括油水分离装置(附设有排油监控设备)、生活污水处理装置及焚烧炉等。
应急设备包括为弃船求生或求助生命设置的设备、为机舱失去电力时设置的设备、为避免“瘫船”设置的设备等,包括救生艇、求助艇、应急发电机、应急消防泵、应急舵机和应急空压机等。
自动化设备是为改善船员的工作条件、减轻船员的劳动强度和维护工作量、提高工作效率以及减少人为操作错误所设置的设备,包括主、辅机的遥控单元,温度、压力、液位的自动调节单元、机舱各设备的工况监视、报警和打印等设备。

阅读全文

与船舶动力装置轴系结构设计相关的资料

热点内容
为什么仪表盘不显示电瓶电量 浏览:838
深沟球轴承体积重量怎么算 浏览:622
恒温装置里的浮球作用 浏览:521
机械设备长用什么字母表示 浏览:87
德东五金机电 浏览:383
正品瓦房店轴承怎么分别 浏览:929
医用防护器材有哪些 浏览:784
机械基础课如何上好 浏览:861
电动工具改发电机 浏览:507
王牌战争自动追踪装置怎么破 浏览:163
暖气阀门是什么样 浏览:33
轴承内外圈是怎么加工的 浏览:668
世达有哪些好用的工具箱 浏览:305
如何禁止qq显示其他设备登录 浏览:370
什么仪器可以体验疼痛等级 浏览:747
集线设备包括什么 浏览:229
360工具箱不见了 浏览:113
海信变频空调制冷剂压力多少 浏览:91
山西有哪些比较大的机械工业企业 浏览:493
电力系统信息自动传输装置 浏览:788