❶ 高分求 与20万吨/年乙烯装置分离工段——脱乙烷系统工艺设计相关的英文文献
Section ethylene plant separation
Keywords: membrane, separation, ethylene, polyimide, polysulfone, synthesis.
ABSTRACT
The use of membranes for hydrogen separation has been applied commercially in recent years. Several new membrane materials, which are now commercially available, are seriously being considered for the separation of hydrogen both effectively and efficiently within the ethylene process. This study investigates the feasibility of
hydrogen separation from the cracked gas in an optimal manner before entering the low-temperature section of the
ethylene plant. This separation would consequently rece the refrigeration load as well as the equipment size of the cold-box section. Polyimide membrane materials are very selective for hydrogen transport as compared to other
hydrocarbons, such as methane and ethylene. Polysulfone has also proven to be selective for the separation of
hydrogen from hydrocarbons. This study evaluates two new commercial polyimide membranes as well as a new polysulfone membrane and determines the feasibility of hydrogen separation before entering the low-temperature
section of the ethylene plant. The performance of the membranes and their effects on the overall ethylene process are also presented.
INTRODUCTION
A quick review of the chemical literature indicates that ethylene is one of the most important as well as one of the largest volume petrochemicals in the world today and serves as a key building block in the petrochemical instry. Conventional ethylene proction involves the cracking of a hydrocarbon feed to form a mixture of hydrogen, methane, ethylene, ethane and heavier components that are separated by expensive cooling and distillation
processes. The realization that the separation and purification process steps in the ethylene proction consume more than 70% of the total energy required, provides a strong motivation for evaluating the impact of new technology on this part of the proction process.
Membrane technology has many advantages over other conventional technologies. These include lower capital
and operating costs, low maintenance cost and the ease of installation and operation [1]. Membrane technology for
hydrogen separation from other gases was successfully applied in the last few years to recover hydrogen from tail gases in oil refineries. The first-large commercial application for membrane-based hydrogen systems was the
separation of hydrogen from nitrogen in ammonia plants. Membrane technology is also used commercially for
hydrogen/carbon monoxide (synthesis gas) ratio adjustment.
The membrane-based hydrogen separation in the past was based on low selective materials such as cellulose
acetate polymers. However, new polymer membranes with improved selectivity and flux rate are now available in
the market. For example, polyimides (Ube, Praxair), brominated polysulfone (Permea) are new selective membranes. The selective membranes provide a major opportunity to improve the economics for different gas separation applications. This study investigates the use of membrane-based technology for hydrogen separation in a commercial ethylene process. The goal has been to study the feasibility of separating the hydrogen from the cracked gas in an optimal manner before it enters the cryogenic section, to further decrease the refrigeration load in the latter unit. Different membrane materials available from recent studies are evaluated for this separation to obtain the maximum selectivity and flux performance.
Method for preparing polymer grade low-carbon olefin through separation of methanol pyrolysis gas
Abstract: The present invention provides a method for preparing the polymer grade low-carbon olefin through separation of the methanol pyrolysis gas, including steps of the compression, impurity removal, and absorption and separation. In the absorption and separation step, the pyrolysis gas is sent to the front-end ethylene removing column, and then is, with the C4 absorbent, further absorbed and separated to proce polymer grade ethylene procts, polymer grade propylene procts, and C4 and C5 procts. The moderate-temperature and moderate-pressure separation without a cold box according to the present invention provides safer proction process, less investment in the equipment, as well as easier separation and lower energy consumption as a result of the front-end ethylene removing and C4 absorption and separation process.
❷ Dean-Stark装置的工作原理
随着反应温度的上升,含有反应中所用溶剂和需要除去组分的混合蒸气从反应器中蒸出,沿支管进入外层通有冷却水的回流冷凝器,冷凝成液体,滴入Dean-Stark分离器下方接的收集管。在收集管中,无法混溶的各种液体组分发生分层。通常溶剂密度小于水,下层是水,上层是密度较小的溶剂,如甲苯,己烷等烃类。随着反应进行,上层的液体逐渐增多到支管连接处时,就会沿支管流回到反应器中继续充当溶剂,而下层的水则留在了收集装置中。等到水收集到一定体积,就可以通过打开收集管底部的的旋钮收集装置来放出收集的水,以防止水量过多后沿支管流回反应器。比较少见的情况是反应使用的溶剂大于水的密度。这种情况下,会在装置的收集部分底部增加一个玻璃管使得可以通过旋钮控制来让处于下层的溶剂流回到反应器中。
❸ 工业中常用气体分离方法和原理
常用工业气体包括氧气、氮气、氩气、二氧化碳、液氨、液氯、乙炔气、氢气等。工业气体的生产方法较多,现择要简介一些常见的生产方法。
一、氧气
工业氧气的生产方法主要有空气液化分离精馏法( 简称空分法)、水电解法和变压吸附法等。 空分法生产氧气的工艺流程大体是:吸收空气→二氧化碳吸收塔→压缩机→冷却器→干燥器→冷冻机→液化分离器→油分离器→气体储槽→氧气压缩机→气体充装。其基本原理是将空气液化后,利用空气中各组份沸点的不同在液化分离器进行分离精馏,制取氧气。大型制氧机组的研究开发投用,使得制氧能耗不断降低,并易于同时生产多种空分产品(如氮气、 氩气及其它惰性气体等)。为了便于储存和运输, 经液化分离器分离后的液氧,用泵输入低温液体储槽,再经槽车运至各深冷液化永久气体充装站。液氮、液氩也采用此法储存、运输。
二、氮气
工业氮气的主要生产方法有空分法、变压吸附法、膜分离法和燃烧法等。
空分法制取的氮气纯度高,能耗低。变压吸附法制氮技术是采用5A碳分子筛对空气中的组份进行选择性吸附,将氧、氮分离制取氮气,氮气产品压力高、能耗低,产品纯度能达到国家标准要求:工业氮≥98.5%,纯氮≥99.95%。
三、氩气
氩气是大气中含量最多的惰性气体,其制取方法主要有空分法。在制氧工艺中,将沸点为-185.9℃左右的馏分从液化分离器中分出即得液氩。
四、二氧化碳
二氧化碳的制取方法主要有:生产石灰副产二氧化碳,酿酒发酵过程副产二氧化碳,重油、焦炭等燃烧产生二氧化碳,合成氨工业副产品二氧化碳等。目前,合成氨工业的原料大都为燃气、炼厂气、焦炉气和煤,其主要成份都是由不同氢碳比的烃类和元素碳构成,在高温下与水蒸汽作用生成以氢气和一氧化碳为主体的合成气,一氧化碳经变换成为二氧化碳。二氧化碳的提纯方法有:吸收法、变压吸附法、吸附精馏法和膜分离法。
五、氨气
氨的制取方法主要采用直接合成法。合成氨工艺流程是:在水煤气发生炉中往红热的焦炭上吹入空气和水蒸气,先得到氮气、氢气混合气体,然后用洗涤热交换、凝缩二氧化碳和吸收二氧化碳等生产工序制备原料气体。精制的混合气体经过过滤器、冷却器、氨分离器以及加热器送至合成反应器经分离器分离出液氨。
六、氯气
工业上用的氯气主要制取方法是电解饱和食盐水。纯度较高的氯气由电解熔融氯化物制备活泼金属时取得。利用空气或氧气可催化有机合成工业的副产品氯化氢,使之氧化而转化为氯气。
七、乙炔气
乙炔的制取方法主要有电石水解法、甲烷或烃类的高温燃烧裂解法和等离子体裂解法。电石水解法工艺流程短,产品纯度高,但能耗较大。大多数溶解乙炔生产采用此法。根据乙炔的溶解特性,将乙炔气压缩充入溶剂中,并被储存在充满多孔填料的钢瓶内。丙酮作为一种极好的溶剂,在钢瓶内被填料吸附用于溶解和释放乙炔,它的作用是增大钢瓶的有效容积和降低乙炔气的爆炸性能。整体硅酸钙多孔填料的作用是均匀地吸附丙酮和阻止乙炔分解爆炸的传播。推广使用溶解乙炔气瓶,既方便使用和提高工效,又改善环境,节约电石消耗,但应保证钢瓶内多孔填料不受损伤或污染,丙酮溶剂的充装量应满足乙炔气充装所需要,这样才能保证安全可靠。溶解乙炔生产充装工艺流程是:粗乙炔气发生后经过化学净化,去除硫、磷等杂质,再经压缩和干燥,充装进入溶解乙炔气瓶内。
八、氢气
工业氢气的生产方法主要有:矿物燃烧转化制氢、水电解制氢、通过半水煤气法制得氢。水电解制氢方法技术可靠、操作简单、维护方便、不产生污染、制氢纯度高,唯其电能消耗大,成本较高,生产发展受一定制约,主要供应氢气纯度要求高且用量不太大的用户使用。但随着新技术的应用,促进了水电解技术的改进,使水电解制氢技术的成本不断降低,电耗不断下降,有望成为“清洁能源”的最主要生产方法。目前,正在研究开发的制氢方法有:电化学分解水制取氢气,光催化作用制取氢气等。
❹ 烃类裂解为什么要加稀释剂,应选择什么样的稀释剂
添加稀释剂可降低烃分压,这样设备仍可在常压或正压操作,而烃分压则可降低。采用水蒸气做稀释剂。裂解反应后通过急冷即可实现稀释剂与裂解气的分离,不会增加裂解气的分离负荷和困难。
烃类热裂解法
是将石油系烃类原料天然气、炼厂气、轻油、柴油、重油等经高温作用,使烃类分子发生碳链断裂或脱氢反应,生成分子量较小的烯烃、烷烃和其它分子量不同的轻质和重质烃类。β-环糊精是常用的片剂稀释剂。
水蒸气热容量大,使系统有较大热惯性,当操作供热不平稳时,可以起到稳定温度的作用,保护炉管防止过热,抑制裂解原料所含硫对镍铬合金炉管的腐蚀,脱除积炭,炉管的铁和镍能催化烃类气体的生碳反应。
❺ 请大虾们耐心看完下面的题目(本题是用aspen plus进行设计),然后回答问题
我们做的是乙烯装置托甲烷。具体条件例如进料温度,压力等等,我们到乙烯厂参观了一次,在控制机房的DCS操作台上记下了。要的话留个邮箱把他们厂的工艺参数和操作规程发给你,里边比较详细。
❻ 怎么用化学方法分离烃类物质和胺类物质
有机胺属于碱性物质,能与盐酸作用生成溶于水的铵盐。而烃类是不溶于水的。分液就可以了。
❼ 在工业大生产中怎么分离四氢呋喃和丙酮
从我本身的概念上讲,比较难。如果不用蒸馏法的话,分离酮与醚的办法,看下面。
分馏绝不是个好办法,因为,我不清楚四氢呋喃和丙酮会不会形成共沸物
给你查到了,分离丙酮的办法。
中性混合物(非酸非碱)用饱和的亚硫酸氢钠溶液处理,能得到犬类和甲基酮类(包括丙酮)形成亚硫酸氢钠的加成物,并以洁净洗出后,滤出后,再用过量的碳酸钠溶剂加热处理,重新生成原物(丙酮),令醛类和甲基酮与其他中性化合物分离。
此外酮类能与氯化三甲铵乙酸肼(Girard-T试剂)反应生成一个水溶性季铵盐,从而能与非水溶性的中型化合物分开。
以上绝对管用
至于其中的任何一个组分与水分开的方法么,加石灰蒸馏就可。
单提走四氢呋喃的办法没有。因为醚类只能与什么官能团都没有的烃类分离的特殊方法(+浓硫酸后蒸),加浓硫酸后,丙酮大概也能形成酸性正离子,蒸不出去,所以,这个应该没用。
有个文献你要能搜得着的话,看看,工业上很粗的分离还是能够做到的
丙酮、四氢呋喃、三乙胺和水混合物分离的研究
田庆来 谢全安 王洪有 周荣琪
【摘要】:对丙酮、四氢呋喃、三乙胺、水混合物的分离进行了工艺流程设计和实验研究。针对流程做了丙酮、四氢呋喃二元溶液间歇普通精馏实验,丙酮、四氢呋喃、三乙胺、水混合物的萃取精馏实验和萃取精馏脱水实验以及丙酮、四氢呋哺混合物萃取精馏实验。结果表明,采用本工艺可得质量分数为99.7%的丙酮。
【作者单位】: 河北理工学院化工系 河北理工学院化工系 清华大学化学工程系 清华大学化学工程系
【关键词】: 丙酮;四氢呋喃 萃取精馏 三乙胺 水混合物分离 复合分离剂 塔顶产品 萃取精馏塔 回流比 相对挥发度 二元混合物
【分类号】:X787
【DOI】:cnki:ISSN:0253-4320.0.2002-S1-031
【正文快照】:
制药厂生产头孢曲松钠的过程中产生含有丙酮和四氢呋喃的废液,例如某制药厂的废液中主要含有丙酮77%、四氢呋喃10%、三乙胺2%、水1l%(质量分数)。而丙酮、四氢呋喃用途非常广泛,主要用作工业溶剂和有机合成的原料。若能回收废液中的丙酮和四氢呋喃,不仅可实现资源的再生,
❽ 烃类蒸汽热裂解过程中,为什么要采取高温短停留时间,低烃分压的操作条件
加任何物质(气体)都是可以降低烃类的分压。 首先,得是惰性物质,不能影响挺累的热裂解。 其次,方便后续的分离工序。 最后,分离后的物质,便于回收、处理和利用。 水蒸气变成水后,方便分离和处理,比较常用。