① 汽车制动传动装置的分类及组成
制动器可以分为摩擦式和非摩擦式两大类。
①摩擦式制动器。靠制动件与运动件之间的摩擦力制动。
②非摩擦式制动器。制动器的结构形式主要有磁粉制动器(利用磁粉磁化所产生的剪力来制动)、磁涡流制动器(通过调节励磁电流来调节制动力矩的大小)以及水涡流制动器等。
按制动件的结构形式又可分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器等;按制动件所处工作状态还可分为常闭式制动器(常处于紧闸状态,需施加外力方可解除制动)和常开式制动器(常处于松闸状态,需施加外力方可制动);按操纵方式也可分为人力、液压、气压和电磁力操纵的制动器。
按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
按制动能量的传输方式 制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。
② 汽车上的液压制动系统属于()式液压传动
选C,压力式。
液压制动系统是利用帕斯卡定律来工作的,总泵的压力传递到分泵来制动。
③ 液压式制动传动装置
液压制动传动装置类似于离合器液压控制装置。它以专用油为介质,将驾驶员施加在制动踏板上的踏板力放大后传递给车轮制动器,再将液压转化为制动蹄片开口的机械推力,使车轮制动器产生制动效果。它具有结构简单、制动滞后时间短、无摩擦部件、制动稳定性好、对各种车轮制动器适应性强等优点,因此被广泛应用于中小型汽车。
液压传动装置的主要部件如下
1.制动主缸
主缸可以将制动踏板输入的机械力转化为液压。大部分制动缸由铸铁或合金制成,其中一些与储油室成一体,形成一个整体的主缸,另一些相互分离,然后通过油管连接,这是一个分离的主缸。分体式总泵的储油室多采用透明塑料成型,部分配有防溅浮子或低液位报警灯开关。根据工作室的数量,主缸可以分为单室和双腔。单线液压制动传动装置采用单室主缸,现已淘汰。双腔制动总泵应用广泛。下面简单介绍一下双腔制动总泵。
1)结构组成
双腔制动总泵一般是串联的,如图17.5所示。主要由主缸、前活塞及回位弹簧、前活塞弹簧座、前活塞杯、限位螺栓、后活塞及杯等组成。主缸体中的工作面精度高、光滑。缸体上有进油孔和补偿孔,有两个活塞。后活塞9为主活塞,右端凹槽与推杆之间有一定间隙。前活塞6位于气缸中部,将主缸内腔分为前腔B和后腔A两个工作腔,两个工作腔分别与前后液压管路连接,前腔B产生的液压通过出油口11和管路与后轮制动器连接,后腔A产生的液压通过出油口10和管路与前轮制动器连接。
2)工作条件
当踩下制动踏板时,推杆推动主活塞9向左移动,直到杯8盖住补偿孔,后腔A内的液压上升,建立起一定的液压。一方面,机油通过后机油出口流入前制动管路,另一方面,机油推动前活塞6向左移动。在后腔A中的液压和弹簧的作用下,前活塞向左移动,前腔B中的压力也随之增加。油通过空腔内的出油口进入后制动管路,这样两条制动管路制动汽车车轮制动器。
当持续踩下制动踏板时,前腔B和后腔A中的液压会继续增大,从而加强前后轮制动器的制动。
当制动器松开时,活塞在弹簧的作用下复位,高压油从制动管路流回制动总泵。如果活塞复位过快,工作室的容积会迅速增加,油压会迅速下降。由于管路阻力的影响,制动管路中的油将无法充分回流到工作腔,从而在工作腔内形成一定的真空度,这样储液腔内的油将通过进油口和活塞上的轴向孔将垫片和杯体推入工作腔内。当活塞完全复位时,补偿孔打开,制动管路中回流到工作室的多余油通过I补偿孔流回储液室。
如果连接到前室B的制动管路损坏漏油,踩下制动踏板时,只有后室A能积聚一定的液压,但前室B中没有液压,此时,在液压压差的作用下,前活塞6迅速被推向底部,直到接触到油缸的顶部。前活塞被推到底部后,后室A的液压可能会上升到制动所需的值。
如果连接到后室A的制动管路损坏漏油,当踩下制动踏板时,起初只有主活塞9向前移动,但前活塞6不能被推动,因此后室A中的液压无法建立。然而,当主活塞的顶部接触前活塞6时,推杆的力可以推动前活塞,从而可以在前室中建立液压。
可以看出,在双管路液压系统中,当任何一条管路损坏漏油时,另一条仍能工作,只是增加了所需的管路。
上海 桑塔纳 ( 查成交价 | 车型详解 )使用的制动总泵也是串联双腔制动总泵。主缸用两个螺母连接在真空助力器前面,主缸上有两个橡胶头与储液罐连接。制动液通过进油孔供应至前后工作室。主缸前后有两个对称的M10 X1 出油螺孔,相互成100度角,通过制动管路与四轮制动器的轮缸交叉布置连接。
当踏板松开时,活塞和推杆分别在回位弹簧的作用下回到初始位置。由于回程速度快,在制动管路中很容易生成 tru e空。因此,前活塞和后活塞的头部有三个l.4毫米的小孔,相互间隔120度,制动液可以通过小孔流回两个工作室,从而减少负压。
为了保证主缸活塞完全回位,推杆与制动主缸活塞之间有一定的间隙,这种间隙体现在制动踏板的行程上,称为制动踏板自由行程。
制动踏板的自由行程对制动效果和行车安全有很大影响。如果自由行程过大,制动踏板有效行程减小,制动过晚,导致制动不良或失效。如果自由行程过小或过小,刹车不能及时完全释放,造成刹车拖滞,加速刹车磨损,影响动力传递效率,增加汽车油耗。
制动踏板的自由行程可以通过推杆的长度来调节。
2.制动轮缸
制动轮缸将来自主缸的液压转换成机械推力,以打开制动蹄。由于车轮制动器的结构不同,轮缸的数量和结构也不同,通常分为双活塞制动轮缸和单活塞制动轮缸。
1)双活塞制动轮缸
双活塞制动轮缸的结构如图17所示。6.缸体用螺栓固定在制动底板上。气缸里有两个塞子。具有相对切削刃的密封杯分别被弹簧压靠在两个活塞上,以保持杯之间的进油孔畅通。防护罩用于防止灰尘和湿气进入气缸。2)单活塞制动轮缸
单活塞制动轮缸的结构如图17所示。7.顶块压在单活塞制动轮缸活塞外端凸台孔内的制动蹄上端。排气阀安装在缸体上方,用于排出气体。为了减小轴向尺寸,安装在活塞导向面上的橡胶圈用于密封液腔,进油间隙由活塞端面的凸台保持。
单活塞制动轮缸多用于单向助力平衡轮制动器,目前趋于淘汰。
单活塞制动轮缸的活塞直径大于主缸的直径,并且与前后轴上的实际负载分布成比例。这样,作用在前制动器和后轮轴制动器上的制动力应该是踏板力和制动踏板杠杆与活塞直径之比。3.制动管路
制动管路用于输送和承受一定压力的制动液。制动管路有两种:金属管和橡胶管。由于主缸和轮缸的相对位置经常变化,除了金属管外,有些制动管有相对运动的截面,用高强度橡胶管连接。
4.制动液
要求制动液具有冰点低、高温老化低、流动性好的特点。制动液对普通金属和橡胶有腐蚀性,制动系统中所有与制动液接触的零件都由耐腐蚀材料制成。因此,为了保证可靠的制动性能,在修理和更换相关零件时,必须使用原装零件或认证零件。桑塔纳用的制动液是D0T4。 @2019
④ 桑塔纳轿车的转向系统分别是什么类型的助力系统
早期汽车所装配的由于是纯机械式转向系统,因此当车速较低时转动方向盘需要很大的力量,随着车速的加快则会逐渐变轻。但为了让更多用户能轻松的操作车辆,助力转向系统也随之开始出现,其通过使用液压或电机来辅助方向盘的转向动作,将驾驶者的力量放大,从而降低操作方向盘转向的对力量的需求。
事实上最早的机械液压助力系统诞生于1902年,美国GM(通用)汽车早在50年代就开始在自家的轿车产品上采用液压助力转向系统,不过由于这套系统的助力输出力度固定,因此无法兼顾低速时转向轻便和高速转向稳定两个诉求。
因此在1983年,日本Koyo推出了带车速感应功能的电控液压助力转向系统,可以通过电子控制调节,做到随车速变化而改变助力大小。但直到1988年,日本Suzuki(铃木)开始采用Koyo研发的转向柱助力式电动助力转向系统。而在1990年,Honda(本田)在其NSX车型上搭配了自主研发的齿条助力式电动助力转向系统。
那么今天我们就来和大家谈一谈,各种助力转向系统之间有哪些不同点。
机械液压助力系统
由于机械液压转向助力系统出现得最早,因此技术成熟可靠且成本低廉,所以在车辆上的普及率相当高,至今也依然还有不少车型在使用。主要组成部分包括液压泵、油管、压力流体控制阀、V型传动皮带、储油罐等,其再工作时将引擎的部分动力输出转化成液压泵压力,对转向系统施加辅助的作用力。
机械液压助力转向系统是由液压泵及管路和油缸组成,但为保持住压力不下降,所以无论车辆是否进行转向动作,液压系统均需始终都保持工作状态,而当车速较低时则需要液压泵输出更大的功率来提供更大助力。因此液压系统随时都在消耗引擎的动力,特别是低速转向时液压泵需要输出更大功率,所以此时对于引擎动力的消耗也会更多。
由于纯机械式结构让路面状况能够更为准确的传递到方向盘上,因此采用这类系统的车辆路感会更加清晰,对于轮胎的抓地情况能更好掌握。并且因为液压泵由引擎驱动,所以转向动力充沛,技术成熟可靠且制造成本较低。但其缺点也同样明显,由于液压泵需要持续工作,所以一定程度上会带来油耗的增加;同时液压管路中的压力很高,也使得其使用寿命会受到相应的影响,此外转向时不可长时间将方向盘打到底,否则会容易损害整个液压系统。
电子液压助力转向系统
机械液压助力系统工作时需要消耗引擎的动力,对于燃油经济性方面有着负面影响,因此能耗更低的电子液压助力转向系统此后也已经出现。液压助力转向系统与其所不同的,是这套系统的转向油泵使用电机驱动,将不再消耗引擎的动力,而且通过加装电控系统可以让转向辅助力大小随着转向角度和车速一起变化,因此在性能方面表现也更加优异。
电子液压助力转向系统主要是由动力转向器、转向助力传感器、车速传感器、储油罐、电动液压泵和动力转控制器组成,其工作原理基本则与机械液压助力系统相同。但主要区别则在于油泵改由电机进行驱动,同时厂商可以根据不同需要来设定助力参数,让车辆具有不同的驾驶感受。
由于这套系统是基于机械液压助力系统改进而来,因此在继承大部分优点d情况下,还解决了油耗增加的问题。不过这套系统因为增加了很多电子控制装置和传感器,也使得其制造和维修的成本会增加,不过随着技术的成熟,目前电子液压助力系统已成为现阶段主流家用车上的标配。
电动助力转向系统
电动助力转向系统则与前面两种有所不同,其直接依靠电机来提供辅助转向,不再需要液压系统的参与,同时还继承了转向辅助力大小能随着转向角度和车速变化的特性,并且这一系统还具有结构简单,调整容易和维修简单等特点。
结构方面,这一系统主要由扭矩传感器、车速传感器、电动机、减速机构和电子控制单元等部件组成。当方向盘转动时,其转矩传感器会检测转向及转矩的大小,电子控制单元此时结合车速和转动方向等数据控制电机输出相应大小和方向的助力,并且因为车辆不转向时电动机并不工作,因此也能大大极大的减少能耗。
电动助力转向系统由于使用电力驱动,因此可以独立于引擎工作,几乎也不会增加引擎的燃油消耗。此外由于不再使用液压系统,因此也不存在泄露和容易因高压而损坏的问题,并且通过修改电控系统的参数就能方便的调教出车辆转向的不同手感,可提供更好的操控和舒适性。
⑤ 制动系统的工作原理及结构组成是怎样的
一般制动系的工作原理可用一种简单的液压制动系示意图(图3-114)来说明。一个以内圆柱面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上又装有一般是非金属的摩擦片。制动底板上还装有液压制动轮缸,用油管与装在车架上的液压制动主缸相连通。主缸中的活塞可由驾驶员通过制动踏板机构来操纵。
图3-122 驻车制动操纵结构
1.拉绳 2.拉绳导套 3.操纵杆 4.操纵杆导套 5.棘爪 6.操纵杆手柄
操纵杆上制有棘齿。当操纵杆被拉出到制动位置后,装在操纵杆导套上的棘爪即在卷簧作用下与棘齿条啮合,使操纵杆固定在制动位置,制动器处于制动状态。欲解除制动,以便车辆起步,应先将手柄连同操纵杆顺时针转过一个角度,使棘齿条与棘爪脱离啮合,棘齿只压在操纵杆的光滑圆柱面上,然后再将操纵杆推入到原始位置。于是摇臂、制动杠杆、推杆、制动蹄都在回位弹簧作用下回位,制动器回到非制动状态。放开手柄后,操纵杆即在弹簧作用下转回原始位置,棘爪重又将操纵杆锁住。
⑥ 液压制动系统原理
一、汽车液压制动系统解析
一般家庭轿车的液压制动系统主要由制动踏板、真空助力泵、制动总泵(也称为制动主缸)、制动液(也称为刹车油)、制动油管、ABS泵总成、制动分泵(也称为制动轮缸)和车轮制动器组成。
⑦ 桑塔纳轿车的制动系统由哪些主要部件组成
制动系统一般由制动操纵机构和制动器两个主要部分组成。制动操纵机构产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,以及制动轮缸和制动管路。制动器是产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。
(7)桑塔纳汽车液压制动传动装置布置形式是扩展阅读
制动系统可分为如下几类
1、按制动系统的作用
制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
2、制动操纵能源制动系统
可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
3、按制动能量的传输方式
制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。
⑧ 汽车液压制动系统原理
汽车液压制动系统是指刹车系统,刹车系统工作原理是制造出巨大的摩擦力专,将车辆的属动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失;
它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。
一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。
小型车采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力;
液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。
先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否 提供足够的刹车力。其实完全不必为此担心,因为刹车系统运用了”帕斯卡定律“。
⑨ 汽车的传动形式是什么
1、机械式传动系
机械式传动系结构简单、工作可靠,在各类汽车上得到广泛的应用。与发动机配合,保证汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。
2、液力传动系
液力传动系组合运用液力和机械来传递动力。在汽车上,液力传动一般指液传动,即以液体为传动介质,利用液体在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。
动液传动装置有液力偶合器和液力变矩器两种。液力偶合器只能传递扭矩,而不能改变扭矩的大小,可以代替离合器的部分功能,即保证汽车平稳起步和加速,但不能保证在换档时变速器中的齿轮不受冲击。
3、静液式传动系
静液式传动系又称容积式液压传动系。主要由油泵、液压马达和控制装置等组成。发动机的机械能通过油泵转换成液压能,然后由液压马达再又转换为机械能。
4、电力式传动系
电力式传动系主要由发动机驱动的发电机、整流器、逆变装置(将直流电再转变为频率可变的交流电的装置)、和电动轮(内部装有牵引电动机和减速器的驱动轮)等组成。
电力式传动系的性能与静液式传动系相近,但电机质量比油泵和液压马达大得多,故只限于在超重型汽车上应用。
(9)桑塔纳汽车液压制动传动装置布置形式是扩展阅读
车辆动力传递时,需要具备反复将动力切断、连接的功能。车辆从静止状态到将发动机驱动力传递给变速箱输入轴,车辆开始行驶的过程中,驱动力要在两个不同转速的旋转半轴之间传递,这种功能被称为起步功能。
车辆用起步装置分为摩擦离合器装置和液力传递装置。摩擦离合器装置分为两种:一种是与手动变速器组合使用的干式离合器;另一种是在润滑油环境中使用的湿式离合器。
发动机实现最佳输出特性的转速范围与实现最佳油耗特性的转速范围是不同的。而且车辆行驶状态中的低速、高速、加速、减速等由于受周围环境与驾驶者的意图影响而有很大的变化。
起步加速和高速巡航时,如果不改变发动机转速和车轴转速的比例,很难高效率地利用发动机的输出功率。这种对转速比,即驱动力比进行变换的装置称为变速器。变速器分为驾驶员手动操作的手动变速器和根据运行状态自动判断最佳转速的自动变速器。
自动变速器一边由具有起步、变速两个功能的液力变矩器和能够根据行驶状态自动选择不同多速比的液压式自动选择不同多速比的液压式自动变速装置组成。
⑩ 桑塔纳轿车的传动形式是发动机后置后驱动
你好,不是的是前置前驱的,希望可以帮助你。【汽车有问题,问汽车大师。4S店专业技师,10分钟解决。】