A. 液压传动装置由哪些基本部分组成
1.
动力装置:将机械抄能转换为液压能;
2.
执行装置:包括将液压能转换为机械能的液压执行器;
3.
控制装置:控制液体的压力、流量和方向的各种液压阀;
4.
辅助装置:包括储存液体的液压箱,输送液位的管路和接头,保证液体清洁的过滤器等;
5.
工作介质:液压液,是动力传递的载体。
B. 液压传动系统有哪几个部分组成各起什么作用
液压传动系统主要由五块组成,分别是:
1、动力元件
2、执行元件
3、控制元件
4、辅助元件
5、工作介质
各部分的功能分别是:
1、动力元件的作用是利用液体把机械能转换成液压力能;它是液压传动中的动力因素。
2、执行元件是将液体的液压能转换成机械能,和动力原件的作用互反。油缸-直线运动,马达-旋转运动。
3、控制元件是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。
4、辅助元件包含压力表、滤油器、蓄能装置、冷却器、管件各种管接头,高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,每个元件都用不同的功用。
5、工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。
C. 液压传动装置主要由( )装置( )装置( )装置和()装置四部分组成,其中()和()为能量转换元件。
1. 动力装置:将机械抄能转换为液压能;
2. 执行装置:包括将液压能转换为机械能的液压执行器;
3. 控制装置:控制液体的压力、流量和方向的各种液压阀;
4. 辅助装置:包括储存液体的液压箱,输送液位的管路和接头,保证液体清洁的过滤器等;
5. 工作介质:液压液,是动力传递的载体。
D. 液压传动装置由什么4部分组成
由动力源,各种控制阀,执行机构和各种辅助原件组成
在支路上安装溢流阀,溢流阀的设定压力低于主油路压力,也可安装一单向阀防止逆流
液压缸是执行原件
顺序阀可通过压力变化改变油路顺序
E. 液压传动的概念是什么
一、液压传动定义
液力传动是以油作为介质传递发动机的动力,代替传统的离合器和变速箱。具体来说就是:发动机的转动通过一个类似水泵的装置驱使传动油运动,传动油又驱使一个有点类似于水轮机一样的装置转动,这样就将发动机的动力传送到传动轴上。这种传动方式的优点是平稳,可以很容易地实现变速。但因为液体运动会消耗能量,所以液力传动的油耗比机械传动高。
二、使用液压传动的优点
1、液压传动装置和其它类型的传动装置相比,在同等功率条件下体积小、重量轻,因此惯性小、动作灵敏,可实现频繁启动和换向。
2、容易实现无级调速,调速范围较大。
3、容易实现过载保护,一般装有安全阀便可防止过载。运转平稳,容易吸收冲击和振动。
4、液压传动能在各种方位传动,容易实现往复传动。由于其体积小、传递的功率大,可在较小的空间内传递复杂的运动形式。这些特点使液压传动在组合机床和自动线中应用十分普遍。
5、操纵简单,便于实现自动化,特别是和电气控制系统组成电液复合系统时上述优点更明显。
6、液压元件易于标准化、系列化、通用化,便于推广使用。
三、使用液压传动的缺点
1、由于工作液体不可避免会有漏损、油液具有微小的可压缩性、管路会产生弹性变形,因此液压传动不宜用于传动要求严格的传动系统中。
2、要求制造的工艺水平较高。使用维护也要有较高的技术水平。
3、当油温和载荷变化较大时不易保持负载运动速度的稳定性。油液的污染对液压系统的性能影响非常显著。
4、油液在管路中流动会产生压力损失,当管路较长时压力损失较大、传功效率降低.因此液压传动不宜用于远距离传动。
F. 液力传动的液力传动装置
液力传动装置是以液体为工作介质以液体的动能来实现能量传递的装置,常见的有液力耦合器、液力变矩器和液力机械元件。
目前,液力传动元件主要有液力元件和液力机械两大类。液力元件有液力耦合器和液力变矩器;液力机械装置是液力传动装置与机械传动装置组合而成的,因此,它既具有液力传动变矩性能好的特点,又具有机械传动效率高的特征。
液力传动装置主要由三个关键部件组成,即泵轮、涡轮、导轮。
泵轮:能量输入部件,它能接受原动机传来的机械能并将其转换为液体的动能;
涡轮:能量输出部分,它将液体的动能转换为机械能而输出;
导轮:液体导流部件,它对流动的液体导向,使其根据一定的要求,按照一定的方向冲击泵轮的叶片。 下图a是液力变矩器的实物模型图,图b是其结构原理简图。它主要由泵轮、涡轮、导轮等构成。泵轮、涡轮分别与主动轴、从动轴连接,导轮则与壳体固定在一起不能转动。当液力变矩器工作时,因导轮D对液体的作用,而使液力变矩器输入力矩与输出力矩不相等。当传动比小时,输出力矩大,输出转速低;反之,输出力矩小而转速高。它可以随着负载的变化自动增大或减小输出力矩与转速。因此,液力变矩器是一个无级力矩变换器。
下面以目前广泛使用的三元件综合式液力变矩器来具体说明其工作原理。
如图4所示,泵轮与变矩器外壳连为一体,是主动元件;涡轮通过花键与输出轴相连,是从动元件;导轮置于泵轮和涡轮之间,通过单向离合器及导轮轴套固定在变速器外壳上。
发动机启动后,曲轴通过飞轮带动泵轮旋转,因旋转产生的离心力使泵轮叶片间的工作液沿叶片从内缘向外缘甩出;这部分工作液既具有随泵轮一起转动的园周向的分速度,又有冲向涡轮的轴向分速度。这些工作液冲击涡轮叶片,推动涡轮与泵轮同方向转动。
从涡轮流出工作液的速度可以看为工作液相对于涡轮叶片表面流出的切向速度与随涡轮一起转动的圆周速度的合成。当涡轮转速比较小时,从涡轮流出的工作液是向后的,工作液冲击导轮叶片的前面。因为导轮被单向离合器限定不能向后转动,所以导轮叶片将向后流动的工作液导向向前推动泵轮叶片,促进泵轮旋转,从而使作用于涡轮的转矩增大。
随着涡轮转速的增加,圆周速度变大,当切向速度与圆周速度的合速度开始指向导轮叶片的背面时,变矩器到达临界点。当涡轮转速进一步增加时,工作液将冲击导轮叶片的背面。因为单向离合器允许导轮与泵轮一同向前旋转,所以在工作液的带动下,导轮沿泵轮转动方向自由旋转,工作液顺利地回流到泵轮。当从涡轮流出的工作液正好与导轮叶片出口方向一致时,变矩器不产生增扭作用(这时液力变矩器的工况称为液力偶合工况)。
液力耦合器其实是一种非刚性联轴器,液力变矩器实质上是一种力矩变换器。它们所传递的功率大小与输入轴转速的3次方、与叶轮尺寸的5次方成正比。传动效率在额定工况附近较高:耦合器约为96~98.5%,变矩器约为85~92%。偏离额定工况时效率有较大的下降。根据使用场合的要求,液力传动可以是单独使用的液力变矩器或液力耦合器;也可以与齿轮变速器联合使用,或与具有功率分流的行星齿轮差速器(见行星齿轮传动)联合使用。与行星齿轮差速器联合组成的常称为液力-机械传动。
液力传动装置的整体性能跟它与原动机的匹配情况有关。若匹配不当便不能获得良好的传动性能。因此,应对总体动力性能和经济性能进行分析计算,在此基础上设计整个液力传动装置。为了构成一个完整的液力传动装置,还需要配备相应的供油、冷却和操作控制系统。
G. 液压与气压传动系统主要由什么组成
液压传动系统由五个部分组成:动力元件、执行元件、控制元件、辅助元件和液压油(工作介质)。
1、动力元件
即液压泵,其职能是将原动机的机械能转换为液体的压力动能(表现为压力、流量),其作用是为液压系统提供压力油,是系统的动力源。
2、执行元件
指液压缸或液压马达,其职能是将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可完成回转运动。
3、控制元件
指各种阀利用这些元件可以控制和调节液压系统中液体的压力、流量和方向等,以保证执行元件能按照人们预期的要求进行工作。
4、辅助元件
包括油箱、滤油器、管路及接头、冷却器、压力表等。它们的作用是提供必要的条件使系统正常工作并便于监测控制。
5、工作介质
即传动液体,通常称液压油。液压系统就是通过工作介质实现运动和动力传递的,另外液压油还可以对液压元件中相互运动的零件起润滑作用。
液压传动优点:
1、液压传动可以输出较大的推力或大转矩,可实现低速大吨位的运动,这是其它传动方式所不能比的突出优点。
2、液压传动能很方便地实现大范围的无级调速(调速范围达2000:1),调速范围大,且可在系统运行过程中调速。
3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4、 液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
气压传动优点:
1、工作介质是空气,来源于大自然中的空气,取之不尽,用之不竭,使用后直接排入大气而无污染,不需要设置专门的回气装置。
2、空气的粘度很小,所以流动时管道压力损失较小,节能,高效,适用于集中供应和远距离输送。
3、气动动作迅速,反应快,适合于高速往复运动;维护简单,调节方便,特别适合于轻型设备的控制。
4、工作环境适应性好,防火防爆。特别适合在易燃、易爆、潮湿、多尘、强磁、振动、辐射等恶劣条件下工作,外泄漏不污染环境,在食品、轻工、纺织、印刷、精密检测等环境中采用最适宜。
H. 液压传动具体有哪些用途
与其它传动方式相比,液压传动具有以下优缺点。
一、液压传动的优点
1)
液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点。
2)
液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3)
在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4)
液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
5)
操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6)
液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7)
液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。
二、液压传动的缺点
1)
油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比。
2)
对油温的变化比较敏感,不宜在很高或很低的温度条件下工作。
3)
能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。
4)
系统出现故障时,不易查找原因。
综上所述,液压传动的优点是主要的、突出的,它的缺点随着科学技术的发展会逐步克服的,液压传动技术的发展前景是非常广阔的。
I. 液压与气压传动系统的基本组成有那些
1、工作介质液体--液压传动,气体--气压传动。组成部分:动力源(泵)、执行元件(缸、版马达)、控制元件(阀)权、辅助元件、工作介质。
2、国际单位是帕斯卡pa,由于实际应用中帕斯卡单位比较小,因此常用单位为mpa,bar。
3、在液压系统中,功率(能量)=流量x压力。
4、液压与气压传动中力传递依据是帕斯卡原理:压力x面积=作用力。
5、流体的流动状态不仅与管内的平均流速有关,还与管道内径和流体的运动粘度有关。在圆管中,雷诺数=平均流速x管道内径/运动粘度。雷诺数的物理意义表示了液体流动时惯性力与粘性力之比。
6、伯努利方程物理意义:在管内作稳定流动的理想流体具有压力能、势能和动能三种形式的能量,在任意截面上这三种能量可以相互转换,但其总和不变,即能量守恒。
以上内容参考:液压与气压传动
普通高等教育“十一五”国家级规划教材
J. 一般的液压传动系统由哪几部分组成,基本工作原理是什么
液压传动系统由液压动力元件(液压油泵)、液压控制元件(各种液压阀)、液压执行元件(液压缸和液压马达等)、液压辅件(管道和蓄能器等)和液压油组成。
基本工作原理:
电动机带动液压泵从油箱吸油,液压泵把电动机的机械能转换为液体的压力能。液压介质通过管道经节流阀和换向和阀进入液压缸左腔,推动活塞带动工作台右移,液压缸右腔排出的液压介质经换向阀流回油箱。换向阀换向之后液压介质进入液压缸右腔,使活塞左移,推动工作台反向移动。
1、液压泵是将原动机的机械能转换为液体的压力动能(表现为压力、流量),为液压系统提供压力油,是系统的动力来源。
2、液压缸或液压马达将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可实现回转运动。
3、各种液压阀可以控制和调节液压系统中液体的压力、流量和方向等,保证执行元件能按照要求进行工作。
4、液压辅件提供必要的条件使系统正常工作并便于监测控制。
5、液压油,液压系统就是通过液压油实现运动和动力传递的,液压油还可以对液压元件中相互运动的零件起润滑作用。
(10)iy系列液压传动装置扩展阅读:
液压传动系统的优点
1、液压传动可以输出大的推力或大转矩,可实现低速大吨位运动。
2、液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4、液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
5、操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6、液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7、液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。