① 船舶动力装置的含义与组成
顾名思义,船舶动力装置就是为传播提供动力的装置.包括主机,中间轴系,尾轴,螺旋桨.以及为这些设备提供支持的各种辅助装置和各类泵浦.
② 船舶主机的辅助动力装置
为全船提复供电力、照明和其制他动力的装置,如发电机组、副锅炉等。发电机组是船上最重要的辅助动力装置。蒸汽机船上的发电机组由蒸汽机驱动(有时用小型汽轮机驱动),但容量较小,以供照明电源为主。在汽轮机船上,发电机组由汽轮机驱动,为全船电气设备提供电源。这种汽轮发电机组大部已系列化,容量从500千瓦到2500千瓦不等,可以自由选择。在柴油机船上,有2~3台发电机组,由单独设置的中速或高速柴油机驱动。容量据全船电动机械设备的数量确定,普遍采用440伏三相交流电,频率有50赫兹和60赫兹两种。副锅炉在蒸汽机船和汽轮机船上是供停泊时使用,在柴油机船上供平时取暖和加热用。柴油机船上的副锅炉的燃料可以是燃油,也可以利用柴油机排出的废气所产生的蒸汽。除发电机组和副锅炉外,由于现代船上液压机械设备的驱动需要,还设有液压动力装置,其主要部件为液压油泵,可以用电动机或单独的柴油机驱动。
③ 船舶轮机的船舶动力装置的组成
一般来说,船舶动力装置主要由推进装置、辅助动力装置、管路系统、甲板机械、防污染设备、应急设备和自动化设备七部分组成。
推进装置即为推动船舶航行的装置,包括主机、传动设备、轴系和推进器。辅助装置是指除推进装置以外的其他产生能量的装置,包括船舶电站、辅锅炉、液压泵站和空气压缩机,分别产生电能、热能、液压能和压缩空气供船舶生产和生活使用。管路系统由各种发件、管路、泵、滤器和热交换器等组成,用以输送各种流体工质,以维持船舶的各种机械正常运转。
甲板机械是为保证船舶航向、锚泊靠泊、装卸货物以及起落自身设备所设置的机械的统称,包括舵机、锚机、铰缆机、起货机、尾门尾跳收放系统、吊艇机及舷梯升降机等。
防污染设备是用来处理船上的含油污水、生活污水、油泥及各种垃圾的设备,包括油水分离装置(附设有排油监控设备)、生活污水处理装置及焚烧炉等。
应急设备包括为弃船求生或求助生命设置的设备、为机舱失去电力时设置的设备、为避免“瘫船”设置的设备等,包括救生艇、求助艇、应急发电机、应急消防泵、应急舵机和应急空压机等。
自动化设备是为改善船员的工作条件、减轻船员的劳动强度和维护工作量、提高工作效率以及减少人为操作错误所设置的设备,包括主、辅机的遥控单元,温度、压力、液位的自动调节单元、机舱各设备的工况监视、报警和打印等设备。
④ 军用船舶的动力推进系统有哪些不同形式
1柴油机推进装置:比较省油、,经济性比较好、有良好的操作性、启动方便、正倒车迅速, 但是不能做到很大的功率,一般用于低速巡航;2;燃气轮机:能较好的满足现代舰艇对动力装置提出的高速、高机动性和极低单位质量的战术、技术要求,但主机由于没有反转性,必须要设置专门的倒车设备;启动时必须借助启动电机或其他机械启动,所以燃气轮机的启动操作性较差;由于燃气的高温,叶片材料的工艺需具备良好的材料,且价格昂贵,工作可靠性差,且寿命短。燃气燃烧由于需要的空气流量很大,所以需要的管道尺寸较大,不利于舱内的布置。
3蒸气轮机:能提供较大的功率,机组振动小、噪音少‘工作可靠性大、蒸汽轮机使用的低劣燃油料,对滑油的消耗率较低;但是蒸汽轮机的总质量及尺寸很大。占据了船体许多的排水量及空间;燃油的消耗量也大,装置效率低下,续航力降低;蒸汽轮机的机动性较差,启动速度慢,一般在舰艇上为保证立即起锚的要求,一般以暖机状态停泊(不熄火),从而增加停泊时的燃料消耗。
4联合动力装置:即蒸汽轮机与燃气轮机结合方式、柴油机与燃气轮机结合方式、燃气轮机与燃气轮机结合方式。
5核动力装置:以极少的燃料获得巨大的能量,保证舰艇能以较高的航速航行极远的距离;核动力装置能发出极大的功率;核动力装置工作时不需要消耗空气而获得能量,这就不需要进、排气装置。(所以一般潜艇使用较多);但是由于核反应堆需要加装多层屏蔽系统,使得装置质量显著增加,操作管理检查系统比较复杂,另外在核动力装置舰船上还必须设置专门的机器设备,用以装卸核燃料和排除反应堆中载有的放射性排泄物;核动力装置使用的高技术含量使得装置的造昂贵。
⑤ 船舶动力装置的组成结构
主动力装置,又称推进装置,是为船舶提供推进动力,保证船舶以一定速度巡航的各种机械设备,包括主机及其附属设备,是全船的心脏。主动力装置包括主机、传动设备、轴系、推进器等。当启动主机,即可驱动传动设备和轴系,使推进器工作。当推进器,通常是螺旋桨,在水中旋转时就能使船舶前进或后退。
主动力装置以主机类型命名,主要有蒸汽机、汽轮机、柴油机、燃气轮机和核动力装置等五类。现代运输船舶的主机以柴油机为主,在数量上占绝对优势。蒸汽机曾经在船舶发展史上起过重要作用,但已经几乎全被淘汰。汽轮机在大功率船上长期占有优势,但也日益为柴油机所取代。燃气轮机和核动力装置仅为少数船舶所试用,尚未得到推广。 联合动力
为满足军用舰艇的需要,将蒸汽、柴油、燃气三种动力联合加以采用,作为船舶的推进装置成为联合动力装置。联合动力装置的型式有蒸燃联合、柴燃联合、燃燃联合等。这几种联合动力装置在商船上应用极少。此外还有一种联合动力装置型式-----电力推进装置。这种装置是船舶柴油机驱动发电机将电力产生并提供给船舶电站。
核动力
以反应堆代替普通燃料来产生蒸汽的汽轮机装置。反应堆中核裂变产生的大能量,被不断循环的冷却水吸收,后者又通过蒸汽发生器将热量传给第二个回路中的水,使之变为蒸汽后到汽轮机中作功。
核动力装置主要用于大型军舰和潜艇。1959年美国在客货船“萨凡那”号上试用功率20000马力核动力装置成功;1960年苏联在破冰船“列宁”号上采用核动力装置,功率44000马力。此后,联邦德国和日本也分别建造了核动力商船。这些船在试航一段时间后,出于法律和民意上的原因停驶。人们担心放射性物质污染航道、港口和城市环境,因此很多港口拒绝核动力船进港。对核燃料使用后的核废料也还缺乏妥善处理办法。这些民用核动力船都已改装为常规动力装置船。 辅助动力装置是用于提供除推进装置以外的各种能量,供船舶航行、作业和生活需要的装置,包括为全船提供电力、照明和其他动力的装置,如发电机组、副锅炉等。
发电机组是船上最重要的辅助动力装置。蒸汽机船上的发电机组由蒸汽机驱动(有时用小型汽轮机驱动),但容量较小,以供照明电源为主。在汽轮机船上,发电机组由汽轮机驱动,为全船电气设备提供电源。这种汽轮发电机组大部已系列化,容量从500千瓦到2500千瓦不等,可以自由选择。在柴油机船上,有2~3台发电机组,由单独设置的中速或高速柴油机驱动。容量据全船电动机械设备的数量确定,普遍采用400伏三相交流电,频率有50赫兹和60赫兹两种。副锅炉在蒸汽机船和汽轮机船上是供停泊时使用,在柴油机船上供平时取暖和加热用。柴油机船上的副锅炉的燃料可以是燃油,也可以利用柴油机排出的废气所产生的蒸汽。除发电机组和副锅炉外,由于现代船上液压机械设备的驱动需要,还设有液压动力装置,其主要部件为液压油泵,可以用电动机或单独的柴油机驱动。 随着运输船舶性能上的不断完善,船上的辅机和设备也日趋复杂,最基本的有:
船舶甲板机械,有舵机、锚机、起货机等辅助机械。这些机械在蒸汽机船上用蒸汽作为动力,在柴油机船上先是采用电动,现多数已改用液压驱动。
各种管路系统,有为全船供应海水和淡水的供水系统;为调节船舶压载用的压载水系统;为排除舱底积水用的舱底水排出系统;为全船提供压缩空气用的压缩空气系统;为灭火用的消防系统等等。这些系统所采用的设备如泵和压缩机等绝大部分是电动的,并能自动控制。
机舱自动化设备,用于保证实现动力装置远距离操纵与集中控制,以改善工作条件,提高工作效率。机舱自动化设备包括有自动控制与调节系统,自动操纵系统,集中监测系统。
全船系统,用于保证船舶生命力和安全,为船员和旅客生活服务的取暖、空调、通风、冷藏等系统。这些系统一般都自动调节和控制。
⑥ 船舶动力装置的类型及特点
船舶动力装置的分类:
一、蒸汽机动力装置。
特点:蒸汽机动力装置结构简单,造价低廉,管理使用方便,制造工艺要求不高;缺点是热效率低,本身重量大,特别是大功率蒸汽机的活塞、连杆等运动部件运转惯性很大,很难平衡,且低压缸尺寸过大,不能获得有效的真空度。因此,自从汽轮机动力装置和柴油机动力装置在船上试用成功以后,蒸汽机动力装置即逐渐被淘汰。
二、汽轮机动力装置。
特点:汽轮机的单机功率大,使用可靠,运转平稳,无振动和噪声,检修工作量小,锅炉可燃用劣质油。但汽轮机油耗比柴油机高,即使采用再热循环的汽轮机装置,每马力小时的油耗仍达180~190克,比低速柴油机高40%左右。柴油机由于单机功率、燃烧劣质油的能力和可靠性的提高,逐渐取代了汽轮机.
三、柴油机动力装置。
特点:柴油机动力装置的最大优点是热效率高,燃料消耗明显地低于蒸汽机动力装置。经过不断的改进,柴油机动力装置日臻完善,它的燃料消耗量最低,能使用廉价的渣油,可靠性较高,检修期间隔长达30000小时以上。热效率接近50%,因此成为目前应用最广的船舶动力装置。
四、燃气轮机动力装置。
特点:燃气轮机动力装置在50年代开始用于船舶。目前主要用于军用舰艇。燃气轮机同柴油机和汽轮机比较单机功率大、体积小、重量轻、加速性能好,能随时起动并很快发出最大功率。燃气轮机在高温、高压下工作,对燃油质量要求很高,热效率也比柴油机低得多,因此在民用运输船舶上应用不多。仅在某些气垫船上用于驱动空气螺旋桨。
五、核动力装置。
特点:以反应堆代替普通燃料来产生蒸汽的汽轮机装置。反应堆中核裂变产生的大能量,被不断循环的冷却水吸收,后者又通过蒸汽发生器将热量传给第二个回路中的水,使之变为蒸汽后到汽轮机中作功。
⑦ 船舶联合动力装置的介绍
一般联合动力装置是指不同的动力系统联合,用两台柴油机或两台燃气轮机并车的严格地说都不是联合动力装置.
最常见的是柴油机+燃气轮机.这中动力装置在中小型水面舰艇上应用很广泛,因为这种联合动力装置容易实现并车而且并车后的性能非常稳定.从单独由柴油机驱动到单独由燃气轮机驱动也比较容易.
还有就是蒸汽轮机和燃气轮机结合的方式,这在大型水面舰艇上应用很广泛,因为蒸汽轮机单机功率很大,但机动性差,而燃气轮机机动性强,但燃油系统复杂.两者结合起来正好发挥各自的优势.但蒸汽轮机和燃气轮机的动力系统都过于复杂,且两者的燃料完全不能共享.所以现在一般都用大功率的柴油机(常常是低速机)来代替燃气轮机.
还有一种比较常见的就是电动机和柴油机的结合方式,这种方式在潜艇中应用较广泛.但电动机在水下维持时间短,且功率过小导致潜艇机动性能过差,特别是对现代的大型潜艇,这个问题非常严重.随着核动力技术的发展,这种动力系统已经逐步为单一的核动力系统所取代.
值得注意的是核动力联合常规动力从本质上说是蒸汽轮机和柴油机的联合,不是新的联合动力系统.
⑧ 船舶主机配置及匹配的相关问题
1何为轴线?理论轴线是如何确定的?为什么有些船舶的轴线具有倾斜角和偏斜角?
答:(1)、轴线是指主机(或齿轮箱)输出法兰端面中心至螺旋桨桨毂端面中心间的连线。
(2)、先确定首尾基准,然后用下述方法确定:
拉线法:在规定的位置安装拉线架,并拉一根直径0.5—1.0mm的钢丝调整钢丝位置使其通过首尾基准点,此时钢丝就代表理论轴线。
光学法:利用光在均匀介质中直线传播的原理测定。先将光学仪器按两个基准光靶调好位置,使光轴同时通过光靶上的十字线中心,此时主光轴就代表理论轴线位置。
(3)、有时为保证螺旋桨浸入水中有一定的深度,而主机位置又不能放低,只能使轴线向尾部有一倾斜角,轴线与基线的夹角α,一般限制在0一5°之间。双轴线时除α角外,其与船舶纵中垂面偏角β,一般限制在0-3 °。从而保证轴系有较高的推力,不会因α、β角太大而使推力损失过多。
2中间轴轴承跨距的确定受哪些因素的影响?
答:不宜过小:对轴的弯曲变形、柔性和应力影响大(牵制多,附加负荷大);
不宜过大:(1)、轴系回旋振动和横向振动限制,若过大,易共振;
(2)、轴系间距过大,会使相应轴段的挠度因其重量的增加而增大,造成轴承负荷分配的不均匀性;(3)、轴承间距太大,受制造与安装工艺的限制。
2 赛龙轴承的特点
赛龙轴承具有耐磨性高、低摩擦、抗冲击性能好、加工性好安装简便的优点。
3 简述冷却管路的功用和形式。
答: 功用:冷却管路的功用是对船舶上需要散热的机械设备供以足够的液体(淡水、海水、江水和冷却油)进行冷却,以保证其正常工作。
形式:a.开式冷却管路:冷却液体为舷外水(海水、江水),舷外水由船外吸进,冷却机械设备后,仍排出船外,进行开式循环,又叫直接冷却。
b. 闭式冷却管路:由淡水泵吸入淡水对主辅机进行冷却,舷外水则通过淡水冷却器带走淡水的热量,又叫间接冷却。
c. 集中式冷却管路:用一个中央冷却器取代管路中服务于不同冷却对象的各分冷却器,进行海水和淡水的热量交换。
d. 舷外冷却管路:将淡水冷却器装在船舶水线以下船壳的外板上,利用舷外水进行自然冷却。
6 温度调节器的作用
答当温度调节器和淡水冷却器并连在柴油机的冷却水出口管路上时,就能够使柴油机出来的热水有一部分不经过冷却器,而直接排到淡水泵的进口。冷却水在某一温度时,波纹管内的蒸汽压力与弹簧压力平衡,调节阀处于一定位置。当水温升高时,波纹管内液体汽化蒸汽压力增高,推动调节阀上升,使流经冷却器的水量增加,旁通水量相应减少。反之,旁通水量增加。这样,通过温度调节器即可控制此旁通水量,从而控制冷却水在一定的温度范围内
8 船舶设计一般分为哪几阶段?画出其流程图。
答:报价设计→方案设计→技术设计→施工设计;
初步设计→详细设计→生产设计→完工文件编制。
7、船用锅炉的作用。
答:在一般干货船(散货船、杂货船、集装箱船)的蒸汽用途
寒冷季节的舱室取暖; 2)加热生活用热水;3)厨房各种需要;4)粘性油的加热;5)蒸汽灭火系统;6)制造淡水;7)特殊用途及杂用。
客船的蒸汽用途与干货船大致相同,只是生活用蒸汽量比重大。
油船的蒸汽用途
货油加热;2)蒸汽驱动的货油泵;3) 洗舱;4)锚机、绞盘等规范规定使用蒸汽动力机;5)货舱的蒸汽灭火系统
77 终结匹配设计 :已知主机的功率与转速、船舶的有效功率曲线、传动设备与轴系的传送效率ηs,、桨的收到功率Pd、船身效率ηh等,计算船舶所能达到的航速、螺旋桨的最佳要素(螺旋桨直径、螺距比及螺旋桨效率)
12.为什么柴油机要设最低稳定转速线? 答 a.调速器与柴油机的配合 随着曲轴转速的降低,调速器与柴油机在配合中可能出现较大的波动,最终导致柴油机不能稳定运行,或因不均匀度过大而不能正常工作。B.热力循环的正常运行 曲轴转速过低时,各缸供油的不均匀度加剧;供油压力下降,导致柴油雾化不良、混合质量较差;缸内温度偏低,柴油不能完全燃烧,且各缸燃烧情况差别很大,使转速波动加剧;缸壁温度偏低还会加速燃气对燃烧室组件特别是缸套的锈蚀
C.建立油膜的需要 在轴与轴承及活塞与缸套等有相对运动的机件之间建立保护油膜,相对运动速度是个决定因素。曲轴转速过低,就不能保证建立连续的油膜。通常,最低稳定转速nmin=(30%~50%)neb。
20.画出系泊工况的配合特性图,并加以说明。
在船舶系泊(不动)的情况下运转主机和螺旋桨的工况。
船速进速系数均为零,故推进特性较陡,即在同一n时将吸收较大的功率。I是设计状态下的推进曲线;II为系泊时的,OA为主机额定外部特性;A额定设计工况配合点;B为系泊工况的机桨配合点,在系泊时配合点B处的功率要不额定值Pmc小很多,其转速也比额定n低,故作系泊实验时不能把主机n开到额定值,否则将使主机超负荷运行
21.画简图说明船舶减速时的特性。
曲线I 为桨在某一等速航行工况时的推进特性曲线;II、 III 为加、减速时桨的推进曲线,曲线1、2为主机不同供油量时的外特性线;欲使船减速,要求减小桨推力,主机减油,假定以外特性2的b点为起始点,主机供油量减小后,外特性从2变为1,住机遇将的n都减小,而此瞬间,船速由于惯性尚未减小,使得Vp/n增大,故在b点以下的减速线III低于I,平衡点从b转向b’,在b’点出主机求大于供(供油少了,实际船速高),故使工作点沿曲线1到达a点才稳定下来。(加速情况反过来,从a-a’-b)
22.画简图说明推进装置附带负荷的配合特性。
推进装置附带负荷是指主机的功率除了用于带动螺旋桨外,还通过齿轮箱的功率分支轴或传动轴带动其它负荷(如发电机、泵等)。
这时主机的供给功率必须等于或大于螺旋桨和附带负荷的功率之和。
按标定转速选配时,OA’为主机额定外特性,OB’A为桨推进曲线,n(min)是主机最低运转转速。在配合点A’出,主机供给功率=桨吸收功率+附带负荷所需功率,面积A’ABB’为主机相对桨剩余功率,按这种方案设计时,在一般常用n内,均可带动附带负荷,且仍有剩余功率(ACB’);
按常用转速配合时,n0为常用转速,Ps为n=n0时主机剩余功率,好处是剩余功率应用好,但如果按额定航速运行时,主机功率不能附带负荷了,需要采取弥补措施。
⑨ 军舰使用的各种动力的特点及优劣各是什么
燃气轮机动力装置的发展方向是提高单机功率、热效率和使用寿命,改善低负荷性能,使用低质液体燃料、燃气和天然气。
核动力装置利用原子核的裂变能通过工作介质(蒸汽或燃气)推动汽轮机或燃气轮机以带动螺旋桨的一种动力装置。已获得实用的唯一装置是压水堆-汽轮机推进装置。以铀235为主的核燃料在压水堆内进行裂变并放出大量热能。
压力较高的冷却水在反应堆与蒸汽发生器之间进行循环,一方面使反应堆冷却,同时在蒸汽发生器中将热量传给水,产生蒸汽供给汽轮机作功。核动力装置的特点是核燃料的消耗很少,续航力很大,这对远航军舰和破冰船是很有利的。此外,它不需要空气助燃,发动机无需进气和排气,能为潜艇提供在水下长期航行的可能,同时大大提高潜艇的隐蔽性和水下作战能力。
它的缺点是必须备有质量和尺寸较大的防护屏装置和一整套安全防护设施,而且造价昂贵,操纵管理技术复杂,换料和核废物处理等都很麻烦,所以主要是在潜艇和大型水面舰上应用,而在民用船舶中尚难以推广。
性能要求:为推进船舶和供应船上所需的各种能量,要求船舶动力装置可靠性高、机动性和操纵性好、燃料消耗费用低、振动小、噪声低。对于军舰,还要求耐冲击和有核防护。
可靠性:动力装置应在规定的航行环境(如风浪盐雾、冰区)和航行状态(如规定风浪下的摇摆、纵倾、横倾等)下安全可靠的运行,这是船舶最重要的性能要求。为此,对动力装置的设计、制造、安装和试验均有专门的船舶建造规范和章程予以规定。可靠性还取决于正确的操纵管理和设备的配置。对重要辅助设备的配置需要考虑到有部分损坏时不致影响动力装置的正常运行。|
机动性:包括启动、加速、换向、倒车持续能力和低速稳定工作能力等性能。机动性对于军舰和经常变负荷、变工况的船舶(如拖船、破冰船、渔船和救助船等)尤为重要。
各种动力装置的机动性各有优缺点。柴油机和燃气轮机的启动性能好,但低速稳定性较差。汽轮机低工况稳定性好,但启动性较差。双机双桨动力装置能提高船舶的转向能力。调距桨在加速、急停、倒航等机动性能方面较定距桨优越。电力传动虽然两次能量损失较大,但由于有较好的操纵性能而在某些船上得到应用。
燃烧消耗费用:燃料消耗费用与燃料的种类、价格和消耗率等有关。柴油机的燃料消耗率最低,低速柴油机已达163克/(千瓦??时)以下。蒸汽动力装置可使用包括煤在内的各种燃料,而其他装置尚只能使用液体和气体燃料。
低速柴油机已能普遍燃用较高粘度的燃料油(即重油),甚至已有试用高粘度劣质燃料油的。某些中速柴油机也能使用燃料油,因此可降低燃料费用。高速柴油机和航空派生型燃气轮机用轻柴油,而工业型燃气轮机和大部分中速柴油机则使用重柴油。进一步降低燃料消耗率和采用劣质燃料是动力装置的一个发展方向。军舰因长时间低负荷运行,还应考虑低负荷时的经济性。
建造成本:建造成本往往与热经济性有矛盾。例如利用废热可以节约燃料,但要增加设备而使造价相应增加。因此在采用新型动力装置和某种节能措施时必须考虑建造成本。采用标准化、系列化产品,简化施工过程等都能降低建造成本。
重量和尺寸:安置动力装置的机舱是船的非生产性容积,应尽量减小,因而对动力装置的重量和尺寸大小就有一定的限制。军舰航速高、功率大,对动力装置的重量和尺寸有更高的要求。例如,高速驱逐舰汽轮机动力装置的比重量通常只有13.5~20千克/千瓦,但动力装置的重量却占去军舰标准排水量(指军舰空载排水量加上额定人员、淡水、粮食、弹药、供应品、给水、锅炉和凝汽器内常用水位的水、机器内的润滑油,但不包括燃料、备用润滑油和备用锅炉水时的排水量)的1/6~1/4。在各种动力装置中,航空派生型燃气轮机装置重量最小,而低速柴油机和蒸汽机装置重量最大。低速柴油机装置重量虽大,但耗油少,故燃料储量也少,对总重量仍然有利。
振动:振动影响船员和旅客的舒适性,对于军舰还影响其隐蔽性。严重的振动会导致设备、仪表和船体局部结构损环。振动主要来源于往复式机器和螺旋桨。柴油机运转时,其动力是不平衡的,因此在设计和制造时应采取适当的平衡措施,如装设平衡质量、平衡装置。在发动机与机座之间安放弹性隔振器可以减少和隔离机器振动向船体传递。螺旋桨因机械不平衡和工作在不均匀流场中而引起的船舶振动,在制造时可通过精细的平衡和采用合适的桨叶叶梢与船体之间的间隙来解决。
发动机与螺旋桨的激励力会使推进轴系发生振动,包括扭转振动、回旋振动和纵向振动。推进轴系的扭转振动是由发动机和螺旋桨的不均匀扭矩引起的,它会导致轴系断裂和传动齿轮损坏。划定转速禁区、改变推进系统的自振频率(如加大轴径、采用弹性联轴节)、降低干扰力矩和采用减振器等,可减少以至消除扭转振动。回旋振动又称横向振动,是由轴系设备的制造和安装误差、材质不均匀、螺旋桨的干扰力引起的,它会导致艉管密封漏水或漏油、轴承磨损、轴承座松动,甚至破裂。调整中间轴承位置和数目和改变螺旋桨叶数,可减少回旋振动。纵向振动是由螺旋桨推力不均匀引起的,它严重时会使推力轴承严重磨损和烧坏、曲柄箱破裂、传动齿轮损坏。改变桨叶数、加强推力轴刚度、对轴系进行中校核等,可减少纵向振动。
噪声:中速柴油机、高速柴油机、燃气轮机、减速齿轮箱、通风机、增压器、空压机和齿轮泵等设备是最强的噪声源。为降低机舱噪声级、改善工作环境,一般采取下列措施:①减少噪声的传出,如装设消声器和隔声罩;②吸收噪声的能量,如装设吸声屏板和敷设吸声材料;③设置隔声效果好的集中控制室,使轮机员和机器设备分开
⑩ 联合动力装置的形式
目前主要有三种形式的联合动力装置:即汽轮机+加速燃气轮机(COSOG或COSAG), 柴油机+加速燃气轮机(CODOG或CODAG), 燃气轮机+加速燃气轮机(COGAG或COGOG).
由不同机种或相同机种的推进主机、并车齿抡传动装置构成的动力装置。舰船推进动力的选择一般是以满足舰船最大航速要求为前提条件的,然而舰船的绝大部分时间是在巡航航速以下工况运行。巡航工况所需的主机功率只占全速航行时总功率的20 %左右。因此,采用单机单桨满足舰艇全速航行的主机,其绝大部分时间将处于低工况运行状态,运行性能差,耗油率高,难以满足舰船续航力的要求。联合动力装置是利用不同功率等级的不同型号或不同种类的主机分别作巡航机和加速机使用,使它们在各自的工况范围内都处于较理想的运行状态,以获得较好的经济性。对于用相同型号主机组成的联合动力装置,当部分主机投入运行时可满足舰船巡航工况的需求,当全部主机同时投人运行时可满足舰船最大航速的要求。现已应用的联合动力装置主要有全柴联合型、柴燃联合型、全燃联合型、燃蒸联合型、柴电燃联合型等。由异型机组成的联合动力装置,主机及控制系统比较复杂,给使用、训练、维护、备品备件供应带来不便。随着燃气轮机和柴油机自身性能的提高,有可能采用由单一机型构成的模式。大功率联合动力中后传动装置趋于复杂,大型化的问题值得重视。