导航:首页 > 装置知识 > 海森堡设计的实验装置

海森堡设计的实验装置

发布时间:2022-07-13 07:21:26

『壹』 美国生物学家米勒设计的实验装置

消毒和抽出空气是为了达到真空,清除原有的有机物。
沸水和电火花是为了模拟地球生命起源时的环境氨基酸,

『贰』 21世纪有什么新的发现与发明

网上只能找到这些的,比较权威吧,时间实在是找不到,见谅。其他也有很多什么其他500大重大发明之类的,但是感觉有点扯淡,还是这个网上认可的比较多。但是我觉得21世纪最重要的还是互联网吧,互联网已经融入了人们的生活,但这些发明之类的可能还是停留在实验室吧。

21世纪影响人类生活的五大发明:
1、修复手套 2、仿生心脏 3、神经转化 4、神经转化 5、耳朵看世界

21世纪,许多令人惊讶的技术创新将对人类的日常生活产生重大影响。凭借“修复手套”获得2004年度“尤利卡令人鼓舞科学奖”的科学家宣称,科幻小说的预言距离变成现实已经不远了。

●修复手套

“修复手套”是一种植入了能模仿人手生物力学的特殊致动器和传感器的装置。机械手研究实验室设计“修复手套”的目的是为了制造一种具有人工肌肉的“外衣”。这种“外衣”能够帮助人体重新运动。全世界的科学家、程序设计员、发明者都在开发复制、替代人体结构或者帮助人体的创新技术。

●仿生心脏

同位移植人工心脏 CATO 是一种能全面模仿人类心脏的装置,由血液室 心室 、阀 瓣膜 以及能把血液吸入肺动脉和主动脉的特殊致动装置组成。

科学家面临的最大挑战是要把包括电源在内的人工心脏装置移植到心脏通常所处位置的有限空间内。科学家曾经拿母牛做实验,并获得巨大成功,这也为他成功给同位移植人工心脏申请专利创造了有利条件。

●神经转化

一位澳大利亚程序设计员开发出一套系统。根据这套系统,遭受肌萎缩性侧索硬化疾病折磨的人今后可以不再受到自身残疾的限制,只要通过神经信号的提示便能与别人沟通。另一位科学家开发出一种新型的人机联结界面:一个人可以利用皮肤表面电极接收神经信号,然后在经过人工智能分析后,便能够达到交流的目的。两位科学家合作后,这套系统被称为神经转化技术。

●耳朵看世界

莱斯利·凯博士设计出一种声纳装置,这种装置能释放出超声波,还能发现其他物体和障碍物发出的反射。数据接着被转化成一连串能够听到的声音,这些声音在频率上与远处物体发出的声音相对应。经过少许的培训,人类大脑似乎能下意识地将这些声音转化为空间想像。

这项技术赢得了1998年度世界通信创新奖,如今全世界的盲人将利用这项技术自信地行走在他们不熟悉的区域。

●人造肌肉

研究人造肌肉的工作始于上个世纪40年代,但只是在最近的10年里才取得了较大发展,因为世界范围内的研究中心研制出了特种聚合体和智能材料。未来人类很有可能看到世界上最强壮的人和最强大的仿生胳膊进行较量。

谢谢!!

『叁』 超光速

光速不仅仅是光传播的速度。它是信息传递速度的绝对极限。
它不仅把时间与空间以一种根本的方式联系在一起,还保证未来
不会先于过去发生。因此,听说我们能够止住光的脚步,可能会
让人感到惊讶。

在你阅读这个句子的时间里,迈克尔·舒马赫可以驾着他的
法拉利跑出300米,而光则可以在地球与月亮之间走个来回。光
运动得如此之快,以至于在人类历史的大多数时间里,它被认为
是瞬时传播的。我们现在知道事实当然并非如此,还学会了控制
光的速度。我们可以使光的运动变慢甚至停止,然后轻轻按一下
开关使它重新运动起来。我们可以看到光在一场赛跑中打败它自
己,还可以利用光速来测量宇宙的年纪。它甚至能够决定你有多
高。

丹麦天文学家罗默(Ole Romer)在17世纪首次成功地计算
出光速。他使用木星的一颗卫星有规律的轨道运动作为计时器,
每次这颗卫星被巨大的行星(木星)所掩食,他便记录下一个
“滴答”。但他发现,从地球上观察,这些滴答的出现并不像预
想的那么规律,在一年之中会时而快几分钟,时而慢几分钟。

罗默计算出,这些时延是木星和地球在绕太阳运动时它们之
间的距离变化所引起的。通过计算一年里地球、木星及其卫星在
轨道上的相对位置,他算出了光穿过宇宙空间的速度。罗默于
1676年向法国科学院提交了他的结果,数值与目前被接受的值之
差不超过30%。

对光之本性的理论探讨也使人们对光速有所了解。19世纪60
年代中期,苏格兰科学家詹姆斯·克拉克·麦克斯韦创建了一组
方程,描述电磁场在空间中的行为。这个方程的一个解表明,电
磁波在真空中必须以约为每秒30万公里的速度传播,与罗默及其
后人的测量结果相当接近。

伦敦皇家研究院的迈克尔·法拉第用电场和磁场的概念解释
静电力和磁场力,并表明光会受到磁场影响。这证实了可见光事
实上是电磁波谱中的一部分。对电磁波谱其它部分——微波,红
外线,紫外线,X射线和γ射线——传播速度的直接测量表明,
它们在真空中都有相同的速度。

用于测量光速的实验不断地变得更精确。到20世纪50年代,
电子计时装置已经取代了古老的机械设备。20世纪80年代,通过
测量激光和频率(f)和波长(λ),运用c=fλ公式计算出了光
速(c)。这些计算以米和秒的标准定义为基础,就像现在一样,
1米定义为氪-86源产生的光的波长的1,650,763.73倍,1秒则定
义为铯-133原子超精细跃迁放出的辐射频率的9,192,631,770倍。
这使得c达到非常高的精度,误差只有十亿分之几。

1983年,光速取代了米被选作定义标准,约定为
299,792,458米/秒,数值与当时的米定义一致。秒和光速的定义
值,表示1米从此定义为光在真空中1/299,792,458秒内走过的距
离。因此自1983年以来,不管我们对光速的测量作了多少精确的
修正,都不会影响到光速值,却会影响到米的长度。你有多高事
实上是由光速定义的。

但光速还定义着比长度更加基本的东西。阿尔伯特·爱因斯
坦的工作表明了光速的真正重要性。由于他的功劳,我们知道,
光速不仅仅是光子在真空中运动的速度,还是连接时间与空间的
基本常数。

爱因斯坦年轻的时候曾经问自己,如果人运动的速度快到足
以跟上光的脚步,光看起来是什么样子的。理论上它看上去像是
你身边一个静止的峰,但爱因斯坦知道,麦克斯韦方程组不允许
这种结果出现。他得出结论认为,要么是麦克斯韦的理论不适用
于运动中的观察者,要么是相对运动力学需要更改。

爱因斯坦在他1905年发表的狭义相对论里解决了这个问题。
这一理论基于一个通用原则:相对任何以恒定速度运动的观察者
来说,不管这个速度是多少,物理原理及光速都是一样的。爱因
斯坦的狭义相对论使我们对时间和空间的观念发生了革命性的变
化,强调了光速在物理学中的根本地位。

想象你在一枚火箭里,与一道激光脉冲一同冲入宇宙空间。
地球上的观察者会看到这一脉冲以光速远去。无论你相对于地球
运动的速度为多少,譬如光速的99%罢,光线仍以光速超越你。
看起来似乎很荒谬,但这是真的。使这为真的唯一途径,就是你
火箭中的居住者和地球表面的观察者以不同方式衡量时间和空间。

时间与空间看上去当然是不同的,这依赖于你是在地球上还
是在宇宙空间里。爱因斯坦的广义相对论将引力描述为时空几何
结构的扭曲。这种说法的一个推论,就是始终沿可能的最短路径
穿越时空的光线,在大质量物体附近会弯曲。这在1919年日食期
间观测掠过太阳附近的星光被太阳的质量所弯曲而得到证明。这
一观测使爱因斯坦的理论最终得到接受,并为他赢得了世界性的
声誉。

但按照基本力学原理,如果光线偏转,它会被加速。这是否
将使光速发生变化,动摇相对论的根本原则?在某种意义上是对
的:我们从地球上观察到的光速,在它从太阳附近经过时确实会
变化。然而相对论和光速不变原理不能被抛弃。

引力的恶作剧——眼见不为实

爱因斯坦认识到,引力是无法自由运动的观察者们经历的某
种幻象。想象从一堵墙上跳下。在自由落体的过程中,你不会感
动周围的引力作用,但任何在地面上瞧着你落下来的人,都会解
释说你的运动是引力的作用所致。同样的说法对空间站中的宇航
员也适用:他们被提及时总是说成时处在“零重力”环境里,但
从地球的表面往上看,我们会用引力吸引来解释他们绕地球的轨
道运动。所以当我们从地球上观察时,经过太阳附近的光线看上
去弯曲、加速了,但如果我们自由落体地落向太阳,光线看上去
会以恒速沿直线经过我们身边。对任何自由落体的观察者来说,
经过他的光线都以恒定速度运动。不过,它在掠过扭曲其附近时
空的大质量物体时,看上去会弯曲和加速。

相对论另一个奇怪的推论是,没有任何物体能加速到光速。
不和我们建造动力多么强劲的火箭飞船,它们也永远不能到达光
速。这是因为物体运动得越快,其动能越大,惯性也越大。爱因
斯坦在他的E=mc2公式中指出,能量和质量或者说惯性相关联。
因此一个物体的动能增加,它的惯性也增加,从而越来越难继续
加速。这是一个收益递减原理:你对一个物体做的功越多,它就
变得越重,加速的效果也越微弱。

把单一电子加速到光速,就需要无限的能量,粒子物理学家
们对这一限制深有感触。质子进入美国伊利诺伊州Batawia费米
实验室的Tevatron加速器时,它们的速度已经达到光速的99%。
加速器的最后阶段使质子的能量提高了100倍,但速度仅增加到
光速的99.99995%,与它们进入加速器的速度相比,提高不足1%。

不过,一直与相对论有冲突的量子理论看上去是允许物质以
大于光速的速度运动的。在20世纪20年代,量子论显示一个系统
相隔遥远的不同组成部分能够瞬时联系。例如,当一个高能光子
衰变成两个低能光子时,它们的状态(例如,是顺时针或逆时针
自旋)是不定的,直到对它们中间的某一个作出观察才确定下来。
另一个粒子看上去感知到它的同伴被进行了一次观测,结果是任
何对第二个粒子的测量总会得到与对第一个粒子的测量相一致的
结果。这样远距离的瞬时联系,看起来像是一个讯息以无限大的
速度在粒子之间传递了。它被爱因斯坦称为“幽灵式的超距作
用”,听起来难以置信,但却是真实的现象。

1993年,加利福尼亚大学伯克利分校的Raymond Chiao表明,
量子理论还允许另一种超光速旅行存在:量子隧穿。想象朝一堵
坚实的墙上踢一个足球,牛顿力学预言它会被弹会,但量子力学
预言它还有极小的可能出现在墙的另一面。考虑这种情况的一种
途径,是想象它能“借”到足够的能量穿越墙壁,并在到达另一
面之后立即将能量归还。这并不违反物理定律,因为最终能量、
动量和其它属性都得到了保存。德国物理学家维纳·海森堡的测
不准原理表明,在一个系统中,总有某些属性——在这一情况中
是能量——的值是不能确定的,因此量子物理学原理允许系统利
用这种不确定性,短时间借到一些额外的能量。在隧穿的情况中,
粒子从障碍物的一面消失又从另一面重现的需要几乎可以忽略不
计,障碍物可以任意的厚——不过随着厚度增加,粒子隧穿的几
率也就迅速地朝零的方向递减。

Chiao通过测量可见光光子通过特定过滤器的隧穿时间,证
明了隧穿“超光速”隧穿效应的存在。为此,他让这些光子与在
相似时间内穿过真空的光子进行比较。结果隧穿光子先到达探测
器,Chiao证明它们穿越过滤器的速度可能为光速的1.7倍。

1994年,维也纳技术大学的Ferenc Kraus表明,隧穿时间有
一个不依赖于障碍物厚度的上限,这表示光子隧穿障碍物的时间
没有上限。德国科隆大学的Gunter Nimtz也用微波实现了这种
“超光速”。他甚至把莫扎特第40号交响曲调制在信号上,以
4.7倍光速的速度将它传输通过12厘米厚的障碍物。

全速前进——信息传递的极限

上述这些想法看上去都动摇了禁止超光速的相对论原理。然
而它们都没有,因为相对论所禁止的实际上是信息的超光速传输。
实验已经表明两个量子物体之间的“瞬时联系”不能用来传递信
息。隧穿效应也受到同样的限制。这是由于量子理论是一种内在
统计规律,它依赖于大量粒子群体的性质。因此几个光子超越时
间是不能用于传递信息的。隧穿效应使输入的波形变形,使之产
生一个可能比预期时间更早被接收到的波峰。然而,信息不是由
单一波峰携带的,而是由整个波包传送,后者不会运动得比光快。
对隧穿效应的谨慎分析结果,似乎支持信号的信息内容仍受到光
速限制的说法,尽管这仍是一个有争议的话题。

信息传递的这一速度限制保护了因果律,即一个事件的结果
不能比该事件更早发生。如果不是这样,以不同速度运动的观察
者将永远不会对一系列特定相关事件的顺序得出相同的结论。有
的人可能打了一个茶杯,看到它的碎片四散开来,另一个观察者
却可能先看到碎片,然后才看到茶杯落下。如果没有信息传递速
度的这个限制,宇宙看起来会非常的古怪。

尽管在真空里不可能使一个有质量的粒子运动得比光更快,
在“折射率”超过1的物质内部,就不是这样。例如在水里,光
运动的速度是其真空速度的60%。光在不同的透明材料里速度会
放慢,这一事实在300年前就被人发现。它能够解释光的折射和
散射,这也是所有光学仪器背后的原理。折射的产生,是因为光
子——组成光的独立能量单位——与原子内部的电子产生相互作
用。光子在原子之间以全速运行,但在穿过材料的过程中反复地
被吸收和重新释放,因此它们所携带的信息传播的速度会下降。
于是,像高能电子这样的粒子在水中完全可能比光在同一介质中
运动得快。这种情况下,它们产生电磁波,后者的运动速度没有
粒子快,就会沿运动方向聚集形成一个剧烈的冲击波,这与超音
速飞机产生音爆的机理相同。物质介质中运动得比光快的粒子产
生的这种辐射称为切伦科夫辐射,常用于检测其它运动得比光快
的不可见粒子,例如在东京宇宙线研究所神岗宇宙粒子研究设施
中装满水的巨大探测器里寻找中微子。

大多数物质不会使光速明显变慢,在一般物质里,光速可下
降的幅度不超过50%左右。然而,1998年美国哈佛大学的Lene
Vestergaard Hau宣布,她把光速降到了每秒17米。2001年,她
使光完全停止了。当然,她的研究小组所用的不是普通材料,而
是处于所谓(继固态、液态、气态和等离子态之后的)第五种物
质状态:玻色-爱因斯坦凝聚态的物质。

这种非同寻常的物质由一团原子云组成,这团原子云冷却到
绝对零度以上百万分之一度,从而形成玻色-爱因斯坦凝聚。它
实质是一个单一的量子物体,有点像一个巨大的原子,其中所有
的原子都处在同一量子态上,以同样方式运动,仿佛它们就是一
个物体。

使光速变慢的技巧,在于用两束垂直相交的光速照射玻色-
爱因斯坦凝聚体。其中一束携带信息,称为探测光;另一束称为
耦合光。耦合光照射到凝聚体上时,会使它变得完全透明,从而
使探测光能够穿过。

钠原子的最外层轨道上有一个电子,探测光与这个电子之间
的相互作用对这一过程非常关键。当一个原子从探测光速吸收一
个光子时,外层电子跳到一个较高的能级。很短一段时间之后,
它又跌回到原来的能级,释放出一个光子。不走运的是,这个过
程完全是随机的,因此原有光束中所有的信息都丢失了。

探测光脉冲频率不同的组成部分在穿过凝聚物时速度不同,
这样的结果是一个输入脉冲在钠原子云中聚成一团,缓缓通过,
其间原子的自旋受脉冲的影响发生变化。如果耦合光在此时被撤
去,光脉冲(或至少是其中的信息)就被束缚在原子的自旋方式
里,光束实质上停止了。耦合光再次亮起,凝聚物就重新释放出
光脉冲。

放慢或停止光的脚步,可能在运算方面获得实际应用。物理
学家长久以来一直想制造光计算机,利用光速而非电子来传递信
号、执行运算。他们还希望造出量子计算机,利用原子的量子态
和奇异的量子原理来制造运算能力超强的处理器。Hau对付光的
技巧还可能帮助科学家们模拟光在黑洞附近的行为。实际上,研
究光速也许是解开宇宙最深奥秘——那些由光速帮助决定的奥秘
——的最佳途径。

补充1:光的恶作剧和空间中的幻觉

存在许多物体看上去运动得比光快的例证。但实际上它们并
不违背相对论原则。例如扫过电视屏幕的电子束所绘出的线,理
论上可以运动得比光快,这种现象的原因是屏幕上位置连续的荧
光像素由不同的电子激发。因此实质上并没有什么东西以比光更
快的速度从一点运动到下一点,仅仅是因为它们以某种顺序发出
亮光,所以看上去是那样。

天文学家在宇宙空间中看到了超光速的幻觉:类星体有时喷
出看上去速度比光速快得多的喷流。为了测量这些喷流的速度,
天文学家需要对其位置进行两次测量,以这两次测量之间的时间
来推算喷流的速度。但如果这速度比光速快得多,其间是有充分
理由的:因为喷流是直接朝向观察者喷发的。这样,接下来的观
察就必须考虑到气流离观察者更近了,它发出的光到达地球所需
的时间减少了。这使得在两次观察的间隔中,喷流运动的距离看
上去比实际距离要远。

两位美国天文学家——埃德温·哈勃和维斯托·斯里弗在20
世纪20年代发现过另一个幻觉。他们发现宇宙在膨胀,星系就像
爆炸产生的残骸一样在彼此远离。不过在这一事例中,星系之间
距离越远,互相分离的速度越大。如果星系之间足够远,它们退
行的速度就比光还快。因此如果这种显而易见的扩展是由于星系
在空间中奔行所致,相对论关于没有物体能运行得比光快的原则
就被打破了。但事实上这也是幻觉。星系的超光速运动事实上是
星系之间的空间在扩张所致。不管人们认为他们看到的是什么,
光速仍未被超越。

补充2:均匀宇宙中的不均匀光速?

在宇宙学中,有一个问题称为“视界问题”(Horizon
Prolem)。光速可能并非一直是它现在这么大。如果它会随时间
变化,并且在过去曾经比现在快得多,就可能帮助解开这个宇宙
学之谜。

如果光速就是任何信号传递速度的上限,宇宙中相距遥远的
区域就没有理由达到热平衡。简单地讲,就是因为没有任何东西
——包括热——能够在大爆炸发生以后的时间里走完这段距离。
而如果两个区域不能交换热量,它们也就不会达到相同温度。

然而,宇宙在大尺度上是相当均匀的,因此过去其中必然存
在某种联系,对此听起来最合乎情理的解释称为暴胀理论。该理
论认为,在非常早的时候,在哈脖发现的那种从容不迫的扩张开
始之前,宇宙曾经历了一段指数扩张的时期。

但这种迅速的暴胀面临着它自己的光速问题,这促使物理学
家们想到,早期宇宙中的光速可能与现在不同。如果光速过去曾
比现在快得多,就会允许“视界”扩散得更远,从而可以达成热
平衡。

这一大胆理论是否能被融进其它物理理论,现在还不清楚。
不过它仍表明,在我们对宇宙的理解中,光速占据着核心地位。

『肆』 米勒设计的实验装置示意图中含有机物的溶液中有机物是什么

(1)由图可知,米勒实验装置中的1里的气体相当于原始大气,有水蒸气、氨气、甲烷等内,米勒提出的问题是:容原始地球条件下能否形成有机小分子物质.
(2)图中2装置里是用来产生水蒸气的沸水,因此装置2模拟的是原始海洋.
(3)此实验结果:积聚在仪器3底部的溶液中共有20种有机物.其中11种氨基酸中有4种(即甘氨酸、丙氨酸、天冬氨酸和谷氨酸)是生物的蛋白质所含有的.即:容器中产生了原先不存在的各种氨基酸等有机小分子.
(4)图中装置2里是用来产生水蒸气的沸水.2内的液体相当于原始海洋.加热产生沸水是为了获得水蒸气,下部连通的冷凝管让反应的产物和水蒸气冷凝形成液体,模拟降雨过程.
故答案为:(1)原始地球条件下能否形成有机小分子物质
(2)原始海洋
(3)氨基酸等有机小分子物质
(4)降雨

『伍』 什么是拉曼效应

拉曼效应的发现

1922年9月,拉曼的《光的分子衍射》一书由加尔各答大学出版社出版。该书集中介绍了这一时期的研究成果,最后提到,如果散射过程能被看作是光量子和散射分子之间的碰撞,它将有与经典电磁理论所预期的不同的结果。这一想法的提出,比康普顿效应的发现(1923年)早了一年。正如拉曼自己所说,“这个课题的意义远远超出了我的工作的特定目的,它为研究打开了非常广阔的领域。”

随后,拉曼和他的助手于1923年发现了一种荧光效应。当时他们用太阳光作光源,观察它穿过蒸馏水的散射线。他们发现,若在入射线的光路中放置一个紫色滤色镜,则射出的散射线退极化现象明显增加。然后他们进一步观察可见光被多种物质、特别是一些液体散射的情况,结果观察到一种较通常的散射线波长有微弱变化的第二次射线。他们当时将此种微弱射线归结为某种“荧光”现象。

在此期间,康普顿发现X射线散射新效应的论文发表了。拉曼在于当年游学美国时,有机会与康普顿当面切磋了他的新发现。这对拉曼拓宽思路,引发某种联想是有很大帮助的。

拉曼与他的助手对“荧光”现象不敢轻易下什么结论,这是因为这种二次射线太微弱了,要对它进行任何深入的研究,首先得把它提纯或分离出来。经过长时间的努力,他们逐渐找到了把这种“荧光”效应分离出来的实验手段;他们用实验室屋顶上的定日镜把太阳光送进实验室,经汇聚后入射到实验样品(液体或固体材料)上,在入射和出射光路中分别放置一对互补滤色镜(他们常用的是一对蓝一紫和绿色滤色镜)。结果发现,穿过样品的蓝色散射光,经过绿色滤色镜后并未完全消失,还能观察到一点相当暗淡的光线。按照实验设置的特性,可以认定这种射线的波长应不同于入射的蓝光,但可以把它解释为由于样品中含有某些杂质,从而激发出的荧光。

这种解释后来经过大量实验被否定了。因为:(1)该现象在80多种不同的、经过精心提纯的液体样品中无一例外地都存在着;这些样品不会都含有杂质;(2)特别是在丙三醇(甘油)样品的实验中,不但这种现象较明显,而且最后的出射线已被极化,成了完全不同于自然光的偏振光。这就说明原来以为是荧光的射线实际上是一种特殊的二次辐射,并且这种效应是一种普遍的效应。拉曼和助手们将此现象与克拉姆斯—海森堡的射散理论相联系,并将它命名为“分子散射”。经过5年多时间的探索研究,在1928年2月,取得了突破性进展。而且只用了几天,应了那句“水到渠成”的老话。1928年2月16日,拉曼用电报向《自然》杂志发出了第一个报告,简要地描述了这项新发现及其实验和理论解释。此后的两篇论文都是用电报的形式发往《自然》杂志的。后来的事实证明他的这番苦心不无道理。

拉曼和他的助手一起抓紧改进实验装置,最后用大孔径聚光器、汞弧灯及滤光片获得了较强的单色光。1928年2月28日下午,当他们用改进了的装置观测液体散射光的光谱时,清楚地观察到了汞弧光中没有的若干谱线,在拍摄的光谱照片上还证实了散射光不仅有红移,而且还有紫移。经过长期深入的研究,拉曼效应最终被发现了。

『陆』 海森堡测不准原理

不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)
测不准原理
德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物 。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。
海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△q∝1/λ。再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。所以,位置要测得越准确,所需波长就要越短,单个量子的能量就越大,这样粒子的速度就被扰动得更厉害。简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确。如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置。换而言之,对粒子的位置测得越准确,对粒子的速度的测量就越不准确,反之亦然。经过一番推理计算,海森伯得出:△q△p≥ħ/2。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”=
海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森伯得到△E△T≥h/4π,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”

『柒』 二战时德国先于美国制造出原子弹吗

美国最先制造出原子弹
德国作为一个在本世纪初在物理学领域曾遥遥领先,特别是在核物理研究方面拥有象海森堡、盖革、博特和在放射化学上有象哈恩这样优秀人才的国家;作为一个最先在实验室里分离出铀235,首先发现核裂变和具有强大的化学工业,并占有很好的铀资源的国家;作为一个具有良好的组织传统,而且即使是盖世太保这样的特务组织也对科学研究有一定兴趣的国家,德国却未能在世界上首先制造出原子弹,其中的原因是很复杂的。

一:纳粹对现代科学、尤其是抽象科学的反对,使得核物理研究失去了基础当现代物理学的一些概念与经典物理学发生冲突时,德国物理学界的保守势力和亲纳粹分子,无形中接受和应用了纳粹的理论宣传,而将这种学术上的冲突归并为政治和民族观念上的冲突。1905年诺贝尔物理学奖获得者勒纳和1919年诺贝尔物理学奖获得者斯塔克,从20年代起就致力于所谓“日耳曼物理学”的研究和分类,企图为经典物理学找到“日耳曼血统“的原因。勒纳攻击相对论为“犹太人的诡计”,斯塔克宣称量子力学是“徒劳的形式主义”。他们不断地晋见包括希特勒在内的纳粹高级领导人,并在纳粹主管宣传的罗森堡的支持下,不断地在报纸和杂志上发表文章,攻击爱因斯坦、普朗克、索末菲、海森堡和他们的学说,企图将自己的“日耳曼物理学”强加于德国社会。
二:纳粹对犹太科学家的迫害,使大量优秀科学家逃离德国,导致核研究方面的人才匮乏,同时也成全了美国的核计划。1933年,希特勒上台后,哥廷根的4个物理和数学研究所的所长中有3个离职,爱因斯坦等科学家也离开了柏林。这一年共有20位诺贝尔奖金获得者辞职而去,其中包括11位物理学家。在战争前夕,有40%的大学教授失去了职务,这些职务大多落到了不学无术的纳粹分子手里。在索末菲的领导下,慕尼黑大学曾经是一个很出色的原子研究中心。1935年,索末菲准备退休时,他与其他学者想请海森堡作为接班人,但纳粹分子拒绝了这一要求。经过3年的较量,最后还是由一名纳粹分子占据了这个职务,从而断送了这个中心。纳粹在青年学生中进行煽动并征兵,还使德国的核研究失去了一批年轻的研究人员和学生。对于研制原子弹这样大规模和复杂的科学研究,一支有志献身于研究,精力旺盛,反应灵敏的年轻研究队伍是必不可少的,但德国恰恰缺少这样一支队伍。
三:纳粹对核研究的组织工作不得力。希特勒将科学研究和人的品德对立起来,他强调:“德国教育需要的是个人为团体的牺牲精神,而不是由科学助长起来的物质利己主义。”尽管德国邮电部长奥尼索格在1940年就对希特勒讲过原子弹,斯皮尔在1942年又向他汇报过,但至今没有发现任何记载希特勒在这个问题上曾采取行动的文件。1942年以前,希特勒完全把赌注押在闪击战上,认定战争会很快结束,认为不需花费大力气去研制尚无把握的新式武器,没有原子弹照样可以取胜。纳粹头目们还从发动战争的实用需要出发,一开始就把研制火箭武器放在首要地位,仅从1937年到1940年,德国陆军在发展大型火箭方面就花费了5.5亿马克,而德国军备部长施佩尔批准给予“铀计划”的经费,只有100多万马克。这与美国的“曼哈顿工程”相比,还不到千分之一。
四:德国人对原子弹的研究发生了偏差。制造原子弹离不开反应堆,有了反应堆才能摸清形成大量核裂变的规律,而制造反应堆必须有能够使中子裂变速度变慢的物质,即减速剂。德国科学家最初找到了两种控制中子裂变的物质,一是重水,二是石墨。德国科学家开始采用的反应堆是石墨沸水堆,石墨有减慢中子的作用。布雷格根据自己的理论推断和计算的结果,很有预见地认为最理想的减速剂是石墨。于是他提出需要100块长3米、宽0.6米的石墨片进行深入的研究。生产任务交给了位于拉齐步日的一家工厂,由于石墨片的规格特殊,数量大,加上紧迫的交货期限,引起了总工艺师埃尔温·施密特的猜测,他断定这是用于军事目的,于是,他设法使生产出来的石墨片中含有二氧化铁、钙和硫等杂质。布雷格不知其中缘由,他用这些含杂质的石墨片进行试验,结果屡试屡败,最后不得不怀疑是自己的理论或计算出了问题,布雷格只得另从其他途径寻找新的减速剂,原以接近制造原子弹的日期便大大推迟了。而著名物理学家费米在美国芝加哥设计的用石墨作减速剂的原子反应堆,却于1942年12月2日试验成功,打开了可控核裂变的大门,为美国制造原子弹铺平了道路。正如美国原子弹之父奥本海默在1954年为《纽约时报》著文所说的那样:“本来布雷格教授是会比美国早两年造出原子弹的,只是由于他的一个差错,才使得人类免遭一场全面的浩劫。”布雷格面对失败,不得已另找途径,经过多次试验分析,德国科学家们最后确认重水可以充当减速剂。
五:英国特工对挪威重水工厂的破坏使得德国的原子弹研制计划几乎陷入停滞。重水由氘和氧化合而成,天然水中的重水含量只有六千分之一左右。德国重水的主要来源是被占领的挪威的“努尔斯克”重水工厂,它是当时世界上最大的重水生产工厂。英国突击队和当地挪威的地下抵抗组织联合起来,欲图摧毁这个重水工厂。第一次突击以失败告终,但是德军在抓获了这些突击队员后,未经审判就把他们处决了,但并没有提高警惕,有效地加强对工厂的保护,以至工厂最后被完全摧毁。后来,重水的供应一直卡着德国核研究的脖子。1942年,德国全部的科研计划归戈林管理,一批科研人员也从前线返回实验室,但在这一年虽然有2500万马克的科研经费没有用完,却没有对急需资金的核研究提供更多的帮助,以后,重水工厂和铀工厂相继遭到破坏,加上前线告急,德国的工业再也负担不起核反应堆的建造和原子弹的研制任务了。
六:德国科学家内部的思想混乱和失误部分参加德国核研究的人是很消极的,并没有全心全意投入研究工作,大多数科学家都是带着像海森堡那样的复杂心情参加核研究的。其时,德国“铀计划”的核心人物海森堡已认识到许多原子弹的关键技术问题,如,他认识到了制造原子弹的核心部分——反射器和临界质量问题。他在德国战败之时,曾对哈恩说过:一个直径54厘米、重约1吨的球状铀235,能够利用“极快的中子“维持链式反应,并产生大量的中子,但是,如果铀235材料外面包有一种“反射器”的话,那么有250公斤的铀235就能起爆了……通过临界质量以下的两小块铀235压到一起的方法,就能控制起爆时间。海森堡等德国科学家在战争期间故意避开了对原子弹的研究,转而研究反应堆和回旋加速器,这是使德国原子弹研制工作没有突破的一个重要原因。海森堡对他的行为曾这样解释道:“在专制政权统治下,只有那些表面上与政府合作的人才能进行有效的积极抵抗。”另一位科学家罗伯特·容克对此作了补充:“海森堡和他的朋友们之所以原因从事德国原子弹的研制工作,这首先是为了使另外一些缺乏觉悟的物理学家无法把他们决心使之失败的事业推向成功。”而一直与纳粹作顽强斗争的劳厄,在评论德国失败时说:“如果一个人没有作出新发现的愿望,他就作不出新发现。”

『捌』 薛定谔的猫是一个有趣的理想实验,常在网络上被人们玩梗,那么实验的内容究竟是什么

薛定谔的猫是奥地利著名物理学家薛定谔提出的一个思想实验,试图从宏观尺度阐述微观尺度的量子叠加原理的问题,巧妙地把微观物质在观测后是粒子还是波的存在形式和宏观的猫联系起来,以此求证观测介入时量子的存在形式。随着量子物理学的发展,薛定谔的猫还延伸出了平行宇宙等物理问题和哲学争议。



影响及意义:量子力学作为20世纪最有突破的科学成就之一,也是最具争议的科学之一。“薛定谔的猫”很好的阐述了这一现状。人们不能接受量子力学是因为它的不确定性。对于传统的物理学来说,只要找到了事物之间相关的联系,就能在每时每刻确定,事物之间相关的物理数据,比如说,物体运行距离等于物体的速度乘以物体运行的时间,只要知道物体的速度,你每时每刻都能计算出物体运行了多远,然而海森堡提出的量子不确定性原理使得你无法预知一个微观粒子未来的状态。正如爱因斯坦所说的:上帝不玩骰子,但是量子力学让我们不得不相信,上帝似乎是玩骰子的。

阅读全文

与海森堡设计的实验装置相关的资料

热点内容
为什么现代化学仪器需要玻璃吹制 浏览:566
空调三通阀门坏有什么症状 浏览:468
材料和设备应当如何存储 浏览:170
镇海森林城堡儿童游乐设备哪个好 浏览:6
宝马阀门排气有什么用 浏览:296
天语sx4仪表盘灯不亮怎么回事 浏览:802
超达维修阀门厂 浏览:964
王牌战争封设备如何解封 浏览:485
粗食盐提纯需要什么仪器 浏览:229
蔚领机械钥匙怎么开门视频 浏览:249
面盆水龙头阀门漏水怎么办 浏览:363
什么情况下选择铸造生产零件 浏览:713
机床刚性攻丝有什么参数 浏览:670
蒸汽阀门上用什么填料 浏览:309
如何天正快速连接设备与水管 浏览:263
如何安装仪表小灯 浏览:317
水阀门脱口怎么办 浏览:449
汽车制冷机启动没有反应什么故障 浏览:623
bestdon机械表怎么上发条 浏览:94
清河市五金机电城 浏览:544