Ⅰ 减速器课程设计
我刚刚设计完减速器,和你的这个题目很相似,具体的就不说了, 也数不清楚版,刚开始我也权是摸不着头脑, 顺着指导老师的方法, 然后跟这书上的步骤一步步去做就没问题了。
一般是这几个步骤:
第一:通过计算选择电动机,选择带和设计轮
第二:计算总传动比,分配各级传动比。
第三:设计从动齿轮、主动齿轮。
第四:设计从动轴、主动轴。选择联轴器,健、轴承。
第五:设计箱体,选择螺钉、螺栓、销
第六:绘制装配图,根据装配图更改错误设计和选择的配件。
在设计的时候仔细研究指导书上的各项要求,这样就不容易出错。
Ⅱ 减速器的工作原理
减速器在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,在现代机版械中应用极为广权泛。减速器按用途可分为通用减速器和专用减速器两大类,两者的设计、制造和使用特点各不相同。20世纪70-80年代,世界上减速器技术有了很大的发展,且与新技术革命的发展紧密结合。
减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。
选用减速器时应根据工作机的选用条件,技术参数,动力机的性能,经济性等因素,比较不同类型、品种减速器的外廓尺寸,传动效率,承载能力,质量,价格等,选择最适合的减速器。 减速器是一种相对精密的机械,使用它的目的是降低转速,增加转矩
Ⅲ 机械设计减速器的设计
唉,,看有没有那位雷锋出动啊
这么高深的问题
Ⅳ 减速器设计
当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。但这种减速器的轴向尺寸较大。圆柱齿轮减速器在所有减速器中应用最广。它传递功率的范围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。传动功率很大的减速器最好采用双驱动式或中心驱动式。这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸。设计双驱动式或中心驱动式齿轮传动时,应设法采取自动平衡装置使各对齿轮副的载荷能得到均匀分配,例如采用滑动轴承和弹性支承。圆柱齿轮减速器有渐开线齿形和圆弧齿形两大类。除齿形不同外,减速器结构基本相同。传动功率和传动比相同时,圆弧齿轮减速器在长度方向的尺寸要比渐开线齿轮减速器约30%。希望我的回答对您有所帮助。
Ⅳ 这个减速器该怎么设计
型号选择尽量选用接近理想减速比,减速比=伺服马达转速/减速机出力轴转速扭力计算:对减速机的寿命而言,扭力计算非常重要,并且要注意加速度的最大转矩值(TP),是否超过减速机之最大负载扭力。适用功率通常为市面上的伺服机种的适用功率,减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以以自己的需要来决定:要点有二: 1、选用伺服电机的出力轴径不能大于表格上最大使用轴径; 2、若经扭力计算工作,转速可以满足平常运转,但在伺服全额输出时,有不足现象时,可以在电机侧之驱动器,做限流控制,或在机械轴上做扭力保护,这是很必要的。通用减速机的选型包括提出原始条件、选择类型、确定规格等步骤。相比之下,类型选择比较简单,而准确提供减速器的工况条件,掌握减速器的设计、制造和使用特点是通用减速器正确合理选择规格的关键。规格选择要满足强度、热平衡、轴伸部位承受径向载荷等条件。选择规格:通用减速器和专用减速器设计选型方法的最大不同在于,前者适用于各个行业,但减速只能按一种特定的工况条件设计,故选用时用户需根据各自的要求考虑不同的修正系数,工厂应该按实际选用的电动机功率(不是减速器的额定功率);后者按用户的专用条件设计,该考虑的系数,设计时一般已作考虑,选用时只要满足使用功率小于等于减速器的额定功率即可,方法相对简单。通用减速器的额定功率一般是按使用(工况)系数KA=1(电动机或汽轮机为原动机,工作机载荷平稳,每天工作3~10h,每小时启动次数≤5次,允许启动转矩为工作转矩的2倍),接触强度安全系数SH≈1、单对齿轮的失效概率≈1%,等条件计算确定的。所选减速器的额定功率应满足 PC=P2KAKSKR≤PN 式中PC——计算功率(KW); PN——减速器的额定功率( KW); P2——工作机功率(KW); KA——使用系数,考虑使用工况的影响; KS——启动系数,考虑启动次数的影响; KR——可靠度系数,考虑不同可靠度要求。
Ⅵ 简述减速器的结构及原理
减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要。减速器结构紧凑,效率较高,传递运动准确可靠,使用维护方便,可以成批生产,因此应用非常广泛。
减速器的工作原理
减速器一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。
减速器的基本构造:
减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成。其基本结构有三大部分:(1)齿轮、轴及轴承组合;(2)箱体;(3)减速器附件;
齿轮、轴及轴承组合小齿轮与轴制成一体,称齿轮轴,这种结构用于齿轮直径与轴的直径相关不大的情况下,如果轴的直径为d,齿轮齿根圆的直径为df,则当df-d≤6~7mn时,应采用这种结构。而当df-d>6~7mn时,采用齿轮与轴分开为两个零件的结构,如低速轴与大齿轮。此时齿轮与轴的周向固定平键联接,轴上零件利用轴肩、轴套和轴承盖作轴向固定。
箱体是减速器的重要组成部件,它是传动零件的基座,应具有足够的强度和刚度。箱体通常用灰铸铁制造,对于重载或有冲击载荷的减速器也可以采用铸钢箱体。
减速器附件
为了保证减速器的正常工作,除了对齿轮、轴、轴承组合和箱体的结构设计给予足够的重视外,还应考虑到为减速器润滑油池注油、排油、检查油面高度、加工及拆装检修时箱盖与箱座的精确定位、吊装等辅助零件和部件的合理选择和设计。
大多数减速器的箱体采用中等强度的铸铁铸造而成,重型减速器则采用高强度铸铁和铸钢,单件少量生产时也可用钢板焊接而成。减速器箱体的外形要求形状简单、表面平整。为了便于安装,箱体常制成剖分式,剖分面常与轴线平面重合。
常用减速器的特点
▲一级斜齿圆柱齿轮减速器
▲一级圆柱蜗杆减速器
▲二级斜齿圆柱齿轮减速器
▲二级圆柱齿轮电动机减速器(同轴式)
减速器装配一般步骤
安装底座→输入轴轴部装配→中间轴轴部装配→输出轴轴部装配→安装各轴→啮合旋转→上盖部装装配→上盖装配→螺栓装配→端盖装配 ;
二、变速器
变速器是用来改变来自发动机的转速和转矩的机构,它能固定或分档改变输出轴和输入轴传动比,又称变速箱。变速器由变速传动机构和操纵机构组成,有些汽车还有动力输出机构。传动机构大多用普通齿轮传动,也有的用行星齿轮传动。如果变速器输出轴的转速可以连续变化,则称为无级变速器,否则称为有级变速器。
变速器的工作原理
机械式变速箱主要应用了齿轮传动的降速原理。简单的说,变速箱内有多组传动比不同的齿轮副,而汽车行驶时的换档行为,也就是通过操纵机构使变速箱内不同的齿轮副工作。如在低速时,让传动比大的齿轮副工作
Ⅶ 减速器的设计步骤
1、仔细阅读和研究设计任务书,明确设计要求,分析原始数据和工作条件,拟定传动;
2、装专置的总体方案属;
3、选择电动机,确定其形式、转速和功率;
4、计算传动装置的总传功比和分配各级传动比;
5、计算各轴的转速、功率和扭矩;
6、通过汁算确定开式传动(三角带传动、链传动或齿轮传动)的主要参数和尺寸;
7、通过计算确定闭式传功(齿抢传幼或蜗杆传功〕的主要参数和尺寸;
8、初算各轴的直径,据此进行各轴的结钩设计;
9、初定轴承的型号和跨距,分析物上的载荷,计算支点反力,通过轴承的寿命计算 ;
10、最后确定其型号;
11、选择联轴器和链联接;
12、验算轴的复合强度和安全系数;
13、绘制减速机装配图和零件工作图;
14、整理和编写设计计算说明书。
Ⅷ 什么是减速器的设计理念
1.结构简单,可靠性高,维护简单。
2.体积小,热功率高,安装方便。
3.运行平稳,加油量少,环保。
4.模块化设计,互换性高(不管卧式安装还是立式安装箱体通用)
Ⅸ 减速器设计过程
1、仔细阅读和研究设计任务书,明确设计要求,分析原始数据和工作条件内,拟定传动;
2、装容置的总体方案;
3、选择电动机,确定其形式、转速和功率;
4、计算传动装置的总传功比和分配各级传动比;
5、计算各轴的转速、功率和扭矩;
6、通过汁算确定开式传动(三角带传动、链传动或齿轮传动)的主要参数和尺寸;
7、通过计算确定闭式传功(齿抢传幼或蜗杆传功〕的主要参数和尺寸;
8、初算各轴的直径,据此进行各轴的结钩设计;
9、初定轴承的型号和跨距,分析物上的载荷,计算支点反力,通过轴承的寿命计算 ;
10、最后确定其型号;
11、选择联轴器和链联接;
12、验算轴的复合强度和安全系数;
13、绘制减速机装配图和零件工作图;
14、整理和编写设计计算说明书。