导航:首页 > 装置知识 > 设计一个发电装置海洋

设计一个发电装置海洋

发布时间:2022-07-04 19:31:21

㈠ 各个国家发明了哪些装置进行海浪发电

1964年,日本制成了世界上第一个供航标灯照明用电的海浪发电装置,发电量很小,仅够一盏灯使用,但它开创了海浪发电的先河。

挪威的科技人员克服重重困难,在1985年建成了两座海浪电站,地点在这个国家的南部大西洋沿岸的卑尔根市附近。

挪威的海浪发电技术已经出口国外。他们首先在印度尼西亚的巴厘岛承建了一项海浪发电工程,电站的装机容量为1000千瓦。接着又在汤加王国建造一座2000千瓦的海浪电站,1990年竣工。

不仅可以利用海浪上下垂直运动的力量来发电,也可以利用海浪的左右横向运动把海浪能转换成机械旋转或摆动运动的能量。

英国人索尔特研制了一种“点头鸭”式的海浪发电装置,它的外形像个大凸轮,凸轮尖的一头绕凸轮轴转动,另一头是个中空的圆筒,圆筒上有向内向外的叶片。“点头鸭”连成一串,浮在海面上,海浪一来,它们就绕着凸轮轴左右摇摆,而圆筒上的叶片也跟着来回转动,把水赶进涡轮机,转动涡轮发电机发电。

瑞典人与英国人异曲同工,开发出一种海浪叶轮发电装置。这种发电装置由一串叶轮组成,当海浪迎面涌向叶轮时,海水进入叶轮,转动叶轮上的叶片,最后通过变速机构带动发电机旋转发电。

新型的海浪发电装置还有一种叫环礁式海浪电站,是由美国人开发设计的。这种电站是模仿海上圆环形礁石的产物,从海面上只能看到一个直径10米的圆圈,可水下的人工环礁却是个庞然大物,底部直径76米,有一个足球场那么大。人工环礁的圆形壁是个导流罩,用来引导海浪向环礁中心流动。当海浪冲向环礁式电站时,海水将沿着环礁壁从四面八方按螺旋形路线涌向环礁中心,并在那里形成旋涡,转动水轮机发出电来。

㈡ 人们在海底建立发电站,它是如何发电的

随着人们科学技术在不断的更新,而且时代也在不断的发展,人们发现地球上的一些资源是可以利用的,比如说太阳能功,水能,潮汐能等等。这些资源人们可以利用起来减少人们对于石油资源的一个使用,这样地球就可以进入可持续的发展,而且人们也不必要面对自然枯竭而带来的问题。最近这些年人们在海底建立了发电站,而其中的发电原理有以下几点。

三、在海底还有许多可以人类利用的可燃冰。

最后还有一个原因,就是在海底里面还有许多人类尚未发掘的一个可以利用的资源,例如人们在最近这些年在海底中发现了可燃冰。这种可燃冰它的一个燃烧起来的一个热熔比远比我们现在熟知的石油煤炭要更加的持久,温度更高。用这种东西来发电的话,从另外一方面就丰富了人们多资源可利用的局面。

㈢ 如何利用海浪进行发电

要利用海浪发电,关键是要探索海浪运动变化的规律,及时准确地将海浪能“收集”起来,加以利用。这就要求人们设计和试验的波力发电装置必须能充分地将大面积的波浪能加以吸收,并集中转换成机械能,再带动发电机运转发出电来。同时要求发电装置坚固结实,以抗御海浪的冲击。为研究这种装置,许多海洋科学家进行了长期反复的探索和实验。早在1799年法国人就开始设计研制波能转换装置,通过100多年的试验,终于在1911年建成了世界上第一个波浪发电装置。1965年,波能发电装置作为导航及灯塔的工作用电开始在实际中运用。

㈣ 海浪电站的工作原理是什么

“海明”号海浪发电装置利用海浪上下的力量工作。它是一个巨大的像油轮一样的浮体,长80米,高5米,宽12米,重约500吨,浮体的底部有20个“洞”,这些“洞”实际上是一个个空气室。当海浪不停地上下运动的时候,空气室中的空气不断地受到压缩和扩张,就像风箱一样,空气来回地冲向空气涡轮机的叶片并使它快速旋转,从而带动发电机发出电来。

在这里,海浪的升降运动起着一般发动机活塞的作用,它使海浪缓慢的升降运动变成高速气流冲动涡轮机后形成的快速旋转运动。由于装置结构简单,“海明”号能把27%的海浪能转变成电能。

第一座海浪电站的工作原理与“海明”号完全一样,一根12米高、40吨重的钢制圆筒竖立在海边峭壁的裂缝中,当海浪通过管道进出圆筒时,圆筒里的水面跟着升降涨落,就像强力的活塞一样,使得圆筒顶部的空气排出或吸入,从而驱动涡轮机转动而发电。这个电站每年发电120万千瓦小时;如果把沿岸几个圆筒连接起来一道工作,就能利用海浪产生更多的电力。

第二座海浪电站的工作原理与第二座完全不同,它修建了一个锥形隧道,让海浪从几十米宽的隧道口进入,随着隧道越来越窄,涌来的海浪越升越高,最后在比海平面高3米的地方通过隧道出口流进一个小水库。水库的出口安装有水轮发电机,结果就像普通的水力发电一样,当水库里的海水从3米高处通过出口流回海洋的时候,就会推动水轮发电机发电。

挪威的海浪发电技术已经出口国外。他们首先在印度尼西亚的巴厘岛承建了一项海浪发电工程,电站的装机容量为1000千瓦。接着又在汤加王国建造一座2000千瓦的海浪电站,1990年竣工。

不仅可以利用海浪上下垂直运动的力量来发电,也可以利用海浪的左右横向运动把海浪能转换成机械旋转或摆动运动的能量。

英国人索尔特研制了一种“点头鸭”式的海浪发电装置,它的外形像个大凸轮,凸轮尖的一头绕凸轮轴转动,另一头是个中空的圆筒,圆筒上有向内向外的叶片。“点头鸭”连成一串,浮在海面上,海浪一来,它们就绕着凸轮轴左右摇摆,而圆筒上的叶片也跟着来回转动,把水赶进涡轮机,转动涡轮发电机发电。

瑞典人与英国人异曲同工,开发出一种海浪叶轮发电装置。这种发电装置由一串叶轮组成,当海浪迎面涌向叶轮时,海水进入叶轮,转动叶轮上的叶片,最后通过变速机构带动发电机旋转发电。

新型的海浪发电装置还有一种叫环礁式海浪电站,是由美国人开发设计的。这种电站是模仿海上圆环形礁石的产物,从海面上只能看到一个直径10米的圆圈,可水下的人工环礁却是个庞然大物,底部直径76米,有一个足球场那么大。人工环礁的圆形壁是个导流罩,用来引导海浪向环礁中心流动。当海浪冲向环礁式电站时,海水将沿着环礁壁从四面八方按螺旋形路线涌向环礁中心,并在那里形成旋涡,转动水轮机发出电来。

㈤ 怎么利用海浪发电海浪发电原理是什么海浪发电装置内部结构

背景:
风与海面作用产生海浪,海浪能是以动能形式表现的水能资源之一。1977年,有人对世界各大洋平均波高1米、周期1秒的海浪进行推算,认为全球海浪能功率约为700亿千瓦,其中可开发利用的约为25亿千瓦,与潮汐能相近。海浪中蕴藏有如此丰富的能量,如将海浪的动能转化为电能,使制造灾难的惊涛骇浪为人类服务,是人们多年来梦寐以求的理想。
早在20世纪70年代,英国爱丁堡大学的工程师斯蒂芬•索尔特就发明了利用海浪发电的“爱丁堡鸭”海浪发电装置。之后,世界上许多国家,如英国、日本、美国、加拿大、芬兰、丹麦、法国等都在研究和试验海浪发电,并相继提出了数百种发电装置设计方案。但是,由于这样或那样的技术问题,海浪发电研究一直没有什么大的突破。直到今天,在能源开发方面,海浪能的利用仍然落后于风能和潮汐能的利用。

现状:
测试海浪发电机的成本很高,而且极其危险,是阻碍海浪发电研究和海浪能利用的重要原因之一。反复无常、变幻莫测的海洋既能产生巨大的能量,也能对机械装置造成毁灭性的破坏。
在苏格兰西海岸的艾斯雷岛上,Wavegen公司建造的500千瓦的“帽贝”海浪发电机已经向电网供电,这是目前世界上最成功的海浪发电装置,然而它是安装在海岸上的。根据海浪发电专家的意见,效率更高、能产生更多电能的海浪发电机必须是漂浮在海洋上的,而不是安装在海岸上的。
为解决一直困扰着海浪发电机设计和建造的各种问题,制造更先进的海浪发电机,欧洲海洋能源中心在英国政府的资助下建立了奥克尼海浪发电试验场。该试验场中安装有抗风暴的系泊设备和铠装电缆,使得安装和测试海浪发电机变得方便而廉价。现在,在奥克尼海浪发电试验场,欧洲海洋能源中心能同时安装四台海浪发电机,研究人员能够同时对不同的海浪发电机进行直接比较,这样就有可能挑选出最好的海浪发电机,从而以很低的成本产生出更多的电能。进一步说,在试验场里还有与电网相连的接入口,这样一来,实验测试用的海浪发电机在开始试验时就可能为研制者带来收益,从而降低了研制成本。
在奥克尼海浪发电试验场中,所有进行测试的海浪发电机都配有“插座”。这些“插座”固定在海底的混凝土墩子上。并由多用途电缆连接岸上设备。多用途电缆包括1条能传送23兆瓦电能的电缆和2条光缆,其中一条光缆用来将海浪发电设备的数据传输到岸上的控制室,另一条光缆将岸上的控制指令传送给海浪发电设备。海底的水流冲击力很强,如果电缆不加以特殊的保护,那么电缆在与岩石不断摩擦后就会遭到毁坏。为了保护好电缆,研究人员采用了铠装电缆,同时用沉重的混凝土护垫将其保护和固定起来。
海浪发电机所产生的电能先被送到岸边的一对变电站,然后再被送入国家电网。而数据收集中心则在离海岸大约35千米的远处。每个系泊位(插座)都由各自独立的控制中心进行控制,各个公司可以在试验场租用一个系泊位,然后通过互联网在自己公司的办公室内进行遥控操作。公司租用一个系泊位,每年要付一笔试验费用,如果试验中的发电设备运行良好的话,公司出售电能的收入将可以基本抵销支付的试验费用。
通过减少海浪发电机的试验费用,欧洲海洋能源中心努力帮助开发者将他们美好的设想转变为现实。眼下,既受到欧洲海洋能源中心试验场设施的诱惑,又得到英国政府的资助,Wavegen公司开始了新的试验。该公司计划开发一种漂浮在海洋上的海浪发电机,并在2004年进行测试,其基本原理与“帽贝”海浪发电机相同,依靠海浪驱动气动涡轮机发电。
奥克尼海浪发电试验场的第一个用户可能是“海蛇”。“海蛇”是英国海洋电力设备公司研制的一款海浪发电机的别称。该公司正在利用欧洲海洋能源中心建造的750千瓦的“海蛇”海浪发电机的样机。据说。“海蛇”的设计寿命为 15-20年,能经受住百年一遇的巨浪的冲击。
海洋发电技术
多亏了名叫George Taylor的企业家,从2007年开始,俄勒冈海边大面积的,有规律的海浪将为西海岸的家庭和企业供电。Taylor现年72岁,在澳大利亚长大,学过电气工程,过去四十年里是美国一家小公司的业主。他最近的一项发明是能将海浪的上下运动转化为电能的浮标,可以由沿海海底电缆控制,并能接入国家电网。
这种浮标是环保主义者的理想之物-从沙滩上就可以看到,引入了一种丰富的可再生的能源,而对海洋生物的影响微乎其微,也不会释放出导致全球变暖的气体。
Taylor计划在2010年之前做出一个100吨重,37英尺宽的浮标,能发电500千瓦。四十个那样的浮标连在一起发电的成本比起煤电厂要低得多,更不用说燃烧天然气等珍贵燃料发电的电厂。如此清洁的电能可以用来淡化海水,电解水,为燃料电池汽车提供氢气,或者为其它宏伟的,急需能源的项目提供廉价电能。

海浪发点设备:
海浪发电机由英国Checkmate 海洋能源公司设计,是一种类似蟒蛇的大型发电设备,由橡胶制成。宽度将达到7米,长度达到200米,二十五分之一大小的原型已于最近完成测试。投入使用后,可满足1000个普通家庭的用电需求。据他们透露,“巨蟒”将于2014年左右投入运转。

㈥ 海浪可以发电吗

在靠近港湾的近海,为了使船只安全进出港,总要设置很多航标灯为夜航船指引航向。以前的航标灯一般靠专人专船去安装或更换电池,非常麻烦,费用也很大。

1940年,英国工程师缪特尔发明了一种波浪发电机,利用海浪上下运动的力量驱动空气涡轮机发电,使航标灯点亮。它的原理并不复杂:当海浪上下波动时,浮体也上下运动,空气室中的空气不断受到压缩和扩张,如同风箱一样。受压缩的空气从露出海面的喷口处以极快的速度喷出,冲向涡轮机,使它快速旋转,这样就带动发电机发电了。

从此以后,绝大多数的航标灯都采用了这种装置。再也不用派人去为航标灯点亮了。

缪特尔工程师是一个善于思考的聪明人。他的别墅建在山上,经常停水,他便在别墅的房顶上设置了一个水池。他把一个家用的活塞式抽水机用连杆与别墅的大门连接在一起。每一个人推门进屋都可以给屋顶上的水池压上20千克的水。客人们到别墅来都抱怨缪特尔家的大门太重了,开门特别费劲,建议他修理一下。缪特尔总是笑着说:“不用修。这大门是我家水池抽水机的能源。你一推门,我用水就不犯愁了!”客人们了解内情后,都夸缪特尔会动脑筋。正是这种善于想窍门动脑筋的性格使缪特尔成为一个拥有多项专利的发明家。

缪特尔还是一个做事非常执著的人。他认准了的事,千方百计也要做成功。

鸡蛋能不能在光滑的桌面上立住。这是一个古老的问题。

人们都认为这是不可能的,但后来却找到了两种解决的办法。

一种是大家熟知的哥伦布解法。他把鸡蛋往桌子上一磕,蛋壳碎了,但是鸡蛋立住了。谁也没像哥伦布这么做过、想过,哥伦布做了,并体现了一种超常的创新探索精神。这正是发现“新大陆”所需要的精神。

另一种是比较科学的巧妙做法。将鸡蛋一旋,鸡蛋在旋转中也立住了。

此后的几百年间,人们只把这个问题当做“脑筋急转弯”的题来考孩子们。但还有一些人仍然不屈不挠地把它当作一个科学命题来研究。即:如果不把鸡蛋磕碎,也不旋转鸡蛋,鸡蛋能不能立住呢。

缪特尔就是这些“钻牛角尖”的人中的一个。他把鸡蛋放到显微镜下观察,发现蛋壳表面是个起伏不平的粗糙面:高处的平均高度是0.2毫米,高点的平均间距是0.8毫米。在铅笔芯那样大的面积内,至少有3个以上的高点。从物理学的原理讲,只要鸡蛋的重心垂线通过这3个点的中间,鸡蛋从理论上讲就可以立起来。缪特尔反复进行了无数次的实验,真的把鸡蛋完好无损地静止地立起来了。

缪特尔就是这么一个极富智慧又具有认真分析观察态度的科学家。

有一次,缪特尔从英国乘海轮到法国去。傍晚时分,他看到航标工们驾着小船去给航标灯更换电池。他想,海浪一起一伏的动力,为什么不利用来发电,解决航标灯的电源呢。从此,他与海浪结下了不解之缘,常常一个人坐在海边观察海浪,思索如何将上下运动的波能转变成高速旋转运动的机械能,从而带动发电机发出电力。有一天傍晚,他在海边呆久了,直到下起了小雨,他才匆匆往回赶。路途中,雨越下越大,缪特尔躲进一家铁匠铺避雨。看着铁匠太太的手一进一出地扯动风箱,他不禁心中一动。他冒雨冲回家中,连夜在地下室里干了起来。经过3天的奋战,缪特尔造出了像风箱一样的空气活塞式波浪发电装置。

这个发电装置有一个直径60厘米、长4米的圆筒,上面设有两个活塞室,垂直沉下海去,部分浮出水面,活像一个浮标。当海浪上下波动时,活塞室中的空气不断受到压缩和扩张,如同风箱一样。受压缩的空气从露出海面的喷口中以极快的速度喷出,冲向涡轮机叶片,使它快速旋转,从而带动浮筒上面的发电机发电。缪特尔将发电装置送到海里试验,一会儿,浮筒上的灯果然亮了起来。缪特尔高兴极了,他又对发电装置做了一些改善,使发电性能更好。一个发电装置可以发100千瓦的电,完全够航标灯使用。

海洋波浪是由海上的风引起的海面上的水的运动。波浪的大小取决于风,风大浪就高,风小浪就低。在一个典型的海洋中部,8秒的周期里就能涌起15米高的波浪,而大风暴掀起的海浪可高达10米以上。奔腾起伏的海浪,蕴藏着巨大的能量。据科学家测试,海浪对海岸的冲击力每平方米可达20~30吨,大的海浪甚至达到60吨。它像一个力大无穷的壮士,能将10多吨重的岩石抛到20~30米的高处,能把上千吨的混凝土防波堤连基冲垮,甚至还能把万吨巨轮掀到岸上去。在1平方公里的海面上,一起一伏的海浪蕴藏着20万千瓦的能量,全世界的波浪能总蕴藏量为109千瓦,是一笔巨大而取之不尽、用之不竭的能源。

波浪除了上下运动的能量外,还有横向运动的能量和旋转运动的能量。缪特尔的成功,激发了人们向海浪要能量的热情,目前,世界上许多国家已经就不同方向运动的能量设计了不同的装置进行试验。

最常见的就是缪特尔发明的空气活塞式波力发电机。单个的这种发电机发电能力有限,现在科学家建造了装有许多个装置的波力发电船。这种船长80米,宽12米,重500吨,装有20个浮筒,在3米高海浪的水面上,能发电2000千瓦左右。

现在还研制出了一种固定式海岸波力发电装置。它把空气活塞室固定在海岸边,通过管道内水面的升降来代替浮筒的上下,使活塞室内的空气反复受到压缩和扩张,从而将横向运动的波能转化为机械能,带动发电机发电,每一个海岸固定式发电机容量为1000千瓦。

美、英、法、日等国在20世纪90年代还研制出一种更为经济的发电装置——气袋式波力发电机。科学家们将一个个特制软质气袋浮漂在海面上,再用链状轴将它们串连成排,如同一条横跨海面的粗大胶管。海浪扑打气袋,气袋里的空气受到压缩。被压缩的空气驱动空气涡轮机,再带动发电机发出电来。一套由4000个气袋组成的波力发电装置,可以发电2000万千瓦。

最近,日本又开发出一种叫“人造环礁”的波力发电装置,直径达75米,好像一个巨大的油煎环饼,只有顶部露出水面。海浪冲击环礁边沿,并从中央喷口喷出,冲击中间的涡轮机工作,发出电来。一个装置的发电量为10万千瓦。

自20世纪初期以来,人类就锲而不舍地探求发掘波浪能的方法。到20世纪末,科学家们已卓有成效地研制出各种各样的波力发电装置。英国、美国、法国、日本、意大利等国已经开始利用波能发电,节省了大量能源。中国也在积极研制波力发电装置,并已投入试验。对于中国这样一个有漫长海岸线的国家而言,光是大陆沿海就至少有12亿千瓦的海浪能量等待我们去开发利用。

科学家们预计,21世纪初,波力发电装置进一步改善以后,将大量投入使用。到21世纪中叶,波浪将与石油、煤、风、潮汐等能源一样为人类服务。它不仅能让航标灯发光,而且能将光明送到地球的多个角落,照亮人类的生活。

㈦ 用海水温差怎样发电

海洋中蕴藏着丰富的太阳热能。太阳每年供应给海洋的热能大约有60多功能万亿千瓦时,这样庞大的能量,除了一部分转变为海流的动能和水气的循环外,都直接以热能的形式储存在海水中, 主要表现为海水表层和深层直接的温差。通常情况下,海水表层的温度可达25-28℃ ,而海平面以下500米的深处水温大约只有4-7℃,两者相差20℃左右,热带海洋的温差更为明显.
在赤道地区,接近海面的表面海水温度在太阳照射下高达近30摄氏度,而水深数百米的深层海水温度是5~10度。海洋温差发电就是利用这一温差进行的。据佐贺大学海洋能源研究中心介绍,位于北纬40度——南纬40度的100个国家和地区都可以进行海洋温差发电.

火力发电和原子能发电是以热能使水沸腾,利用蒸汽带动涡轮机,然后发电。作为带动涡轮机的蒸汽。海洋温差发电是利用氨和水的混合液。与水的100度相比,氨水的沸点是33度,容易沸腾。

借助表面海水的热量,利用蒸发器使水沸腾,用氨蒸汽带动涡轮机。氨蒸汽会被深层海水冷却,重新变成液体。在这一往返过程中,可以依次将海水的温差变成电力。
海洋温差发电的原理是19世纪后半期由法国人想出来的。日本人上原从1973年开始进行研究。为了高效地将海水热量伟给氨,他开发了电容器板热交换装置,安装在凝结器和蒸发器上。结果,他确立了海洋温差发电中最高度的“上原循环”系统。

上原解释说:“由于燃料是海水,燃料费等于零。如果能够提高系统效率、降低成本,就可以投入实用。”

上原等研究人员将表面海水放入特殊的真空容器里,使它迅速蒸发,然后用深层海水进行冷却,成功地使之变成了淡水。据测算,印度1000千瓦的海洋温差发电设备一天可生产1.6万瓶淡水。

海洋温差发电的能源变换效率是3%~5%,比火力发电的40%低得多。但如果一台发电设备的输出功率达不到1万千瓦的规模,每千瓦小时的发电成本就难以控制在可与其他发电方式竞争的10日元以下。
然而,美国工程师设计的一个16万千瓦的海洋温差发电装置,全长450米,自重23.5万吨,排水量达30万吨。由于海洋能密度比较小,并且能源变换效率是3%~5%,很低.所以要得到比较大的功率,海洋能发电装置要造得很庞大。而且还要有众多的发电装置,排列成阵,形成面积广大的采能场,才能获得足够的电力。这是海洋能利用的共同特点。
由于海洋温差能开发利用的巨大潜力,海洋温差发电受到各国普遍重视。目前,日本、法国、比利时等国已经建成了一些海洋温差能电站,功率从100千瓦至5000干瓦不等。上万干瓦的温差电站也在建设之中。

㈧ 建在海底的发电站是怎样的,是怎么完成发电的呢

大家听过风力发电,也听过大坝水力发电。那你听过在海底也能建发电站吗?到底什么是海底发电站?是如何工作的?相比其他发电方式,有什么独到之处?今天我们就来聊一聊这座位于海底的发电站。

㈨ 海流能的发电装置

海流发电装置主要有轮叶式、降落伞式和磁流式几种。轮叶式海流发电装置利用海流推动轮叶,轮叶带动发电机发出电流。轮叶可以是螺旋浆式的,也可以是转轮式的。降落伞式海流发电装置由几十个串联在环形铰链绳上的降落伞组成。顺海流方向的降落伞靠海流的力量撑开,逆海流方向的降落伞靠海流的力量收拢,降落伞顺序张合,往复运动,带动铰链绳继而带动船上的铰盘转动,铰盘带动发电机发电。磁流式海流发电装置以海水作为工作介质,让有大量离子的海水垂直通过强大磁场,获得电流。海流发电的开发史还不长,发电装置还处在原理性研究和小型试验阶段。

㈩ 海浪发电是怎样的

要利用海浪发电,关键是要探索海浪运动变化的规律,及时准确地将海浪能“收集”起来,加以利用。这就要求人们设计和试验的波力发电装置必须能充分地将大面积的波浪能加以吸收,并集中转换成机械能,再带动发电机运转发出电来。同时要求发电装置坚固结实,以抗御海浪的冲击。为研究这种装置,许多海洋科学家进行了长期反复的探索和实验。早在1799年法国人就开始设计研制波能转换装置,通过100多年的试验,终于在1911年建成了世界上第一个波浪发电装置。1965年,波能发电装置作为导航及灯塔的工作用电开始在实际中运用。

阅读全文

与设计一个发电装置海洋相关的资料

热点内容
燃气灶底部4个阀门有什么用 浏览:896
蓝盾保险箱白狼的扮演者是谁 浏览:899
台湾电影女的为了拍电影装口叫是什么 浏览:71
丰园五金制品有限公司 浏览:400
韩剧大尺度电影 浏览:372
江欣燕和曹查理 浏览:243
钢筋中机械接头是什么 浏览:878
舒淇拍过哪些3级 浏览:655
在线观免费网站 浏览:536
电影外国男主是瞎子女主是酒店员工 浏览:65
轴承中rc是什么意思 浏览:403
免费不要网站可以看动漫的 浏览:965
生活垃圾分类设备应该如何设置 浏览:922
机器人美女的电影是什么名字 浏览:948
在线观看直接搜索 浏览:14
车关着仪表盘灯光明怎么回事 浏览:842
五分钱的爱情电影免费观看 浏览:778
77电影在线观看高清 浏览:767
接头电磁式仪表有什么作用 浏览:98
黑人英语课堂作弊三及片 浏览:174