导航:首页 > 装置知识 > 二阶控制系统校正装置设计与仿真

二阶控制系统校正装置设计与仿真

发布时间:2022-07-04 17:08:26

A. 二阶系统与三阶系统校正装置工程设计的依据是

二阶的依据是让阻尼系数等于0.707为设计依据

B. 控制系统校正方法的基本方法

常用的基本方法有根轨迹法和频率响应法两种。
①轨迹法设计校正装置当性能指标以时间域量值(超调量、上升时间、过渡过程时间等)给出时,采用根轨迹法进行设计一般较为有效。设计时,先根据性能指标,在s的复数平面上,确定出闭环主导极点对的位置。随后,画出未加校正时系统的根轨迹图,用它来确定只调整系统增益值能否产生闭环主导极点对。如果这样做达不到目的,就需要引入适当的校正装置。校正装置的类型和参数,根据根轨迹在闭环主导极点对附近的形态进行选取和计算确定。一旦校正装置决定后,就可画出校正后系统的根轨迹图,以确定除主导极点对以外的其他闭环极点。当其他闭环极点对系统过渡过程性能只产生很小影响时,可认为设计已完成,否则还须修正设计。
②用频率响应法设计校正装置在采用频率响应法进行设计时,常选择频率域的性能如相角裕量、增益裕量、带宽等作为设计指标。如果给定性能指标为时间域的形式,则应先化成等价的频率域形式。通常,设计是在波德图上进行的。在波德图上,先画出满足性能指标的期望对数幅值特性曲线,它由三个部分组成:低频段用以表征闭环系统应具有的稳态精度;中频段表征闭环系统的相对稳定性如相角裕量和增益裕量等,它是期望对数幅值特性中的主要部分;高频段表征系统的复杂性。然后,在同一波德图上,再画出系统不可变动部分的对数幅值特性曲线,它是根据其传递函数来作出的。所需串联校正装置的特性曲线即可由这两条特性曲线之差求出,在经过适当的简化后可定出校正装置的类型和参数值。
不论是采用根轨迹法还是频率响应法,设计中常常有一个反复的修正过程,其中设计者的经验起着重要的作用。设计的结果也往往不是唯一的,需要结合性能、成本、体积等方面的考虑,选择一种合理的方案。
在控制系统校正装置的设计中,有时也采用巴特沃思极点配置法。采用这种方法时,把校正后控制系统的闭环传递函数取为如下期望形式:
上式的特点是:G(s)的分子为1,不包含零点;G(s)的分母为零的代数方程Bn(s)=0的根(即G(s)的极点)均匀地分布在 s的复数平面上以原点为圆心的左半单位圆上。图2画出的是n=1,2,3,4的情况。按巴特沃思法设计时,可先选择校正装置的类型,使校正后控制系统的传递函数中只有极点而无零点,然后进一步将其变换为上面列出的巴特沃思标准形,再通过简单的计算来定出校正装置的参数值。

C. 怎样用simulink仿真二阶系统

你说的是在Simulink下仿真PI调节器嘛?如果是,Simulink库中有Saturation元件控制方案的研究设计 串级调节系统是改善大惯性、纯滞后系统调节质量的最有效

D. 控制系统校正方法的并联校正装置

并联校正主要用于机械量的控制系统,如位置控制系统、速度控制系统等。最常用的并联校正是速度反馈校正。它的作用是产生与输出变量的导数成正比的校正信号,以改善系统的过渡过程性能,如减小超调量、缩短过渡过程时间、提高快速性等,同时使校正后的系统保持原有稳态精度。用来作为速度反馈校正装置的部件主要有测速发电机、速度陀螺等。

E. 急求matlab,一个二阶系统为1/(s^2+0.5s+1)系统校正为一个加零点的系统,也就是s+1/(s^2+0.5s+1)仿真结果

晕,这么简单的题还要找人帮做啊

s=tf('s');
G=1/(s^2+0.5*s+1)
G1=(s+1)/(s^2+0.5*s+1)
step(G,G1)
legend('原系统','加零点的系统')

F. 控制系统仿真的方法有哪些

数学仿真
也称计算机仿真,就是在计算机上实现描写系统物理过程的数学模型,并在这个模型上对系统进行定量的研究和实验。这种仿真方法常用于系统的方案设计阶段和某些不适合做实物仿真的场合(包括某些故障模式)。它的特点是重复性好、精度高、灵活性大、使用方便、成本较低、可以是实时的、也可以是非实时的。数学仿真的逼真度和精度取决于仿真计算机的精度和数学模型的正确性与精确性。数学仿真可采用模拟计算机、数字计算机和数字-模拟混合计算机。

半物理仿真
采用部分物理模型和部分数学模型的仿真。其中物理模型采用控制系统中的实物,系统本身的动态过程则采用数学模型。半物理仿真系统通常由满足实时性要求的仿真计算机、运动模拟器(一般采用三轴机械转台)、目标模拟器、控制台和部分实物组成。控制系统电子装置和敏感器安放在转台上。 半物理仿真的逼真度较高,所以常用来验证控制系统方案的正确性和可行性,进行故障模式的仿真以及对各研制阶段的控制系统进行闭路动态验收试验。此外,用航天仿真器来训练航天员和用飞行仿真器来训练飞行员也属于半物理仿真性质,后者更着重于视景模拟和人机关系。以仿真计算机实现系统模型和以航天器计算机或控制系统电子线路为实物的闭路试验,也可认为是半物理仿真,这种仿真重点在于检验控制计算机软件的正确性或研究控制方式中某些功能和参数。 半物理仿真的逼真度取决于接入的实物部件的多寡、仿真计算机的速度、精度和功能,转台和各目标模拟器的性能。通常对三轴机械转台的要求是精度高、转动范围大、动态响应快和框架布置不妨碍光学敏感器的视场。半物理仿真技术是现代控制系统仿真技术的发展重点。

全物理仿真
全部采用物理模型的仿真,又称实物模拟。例如航天器的动态过程用气浮台(单轴或三轴)的运动来代替,控制系统采用实物。因为实物是安放在气浮台上的,这种方法很适合于研究具有角动量存贮装置的航天器姿态控制系统的三轴耦合,以及研究控制系统与其他分系统在力学上的动态关系。在对航天器姿态控制系统进行全物理仿真时,安装在气浮台上的实物应包括姿态敏感器(见航天器姿态敏感器)、控制器执行机构(见航天器姿态控制执行机构)和遥测遥控装置和有关的分系统。目标模拟器、环境模拟器和操作控制台均设置在地面上。航天器在空间的运动是由气浮台来模拟的,所以全物理仿真的逼真度和精度主要取决于气浮台的性能。对气浮台的要求是空气轴承的摩擦力矩和涡流力矩小,垂直负载能力和横向刚度大,气浮台动、静平衡好。全物理仿真技术复杂,一般只在必要时才采用。

G. 自动控制原理课程设计:细菌总数控制系统校正装置设计

联系我拿一份

H. 自动控制原理课程设计 设计题目: 串联滞后校正装置的设计

一、理论分析设计
1、确定原系统数学模型;
当开关S断开时,求原模拟电路的开环传递函数个G(s)。
c);(c、2、绘制原系统对数频率特性,确定原系统性能:
3、确定校正装置传递函数Gc(s),并验算设计结果;
设超前校正装置传递函数为:
,rd>1
),则:c处的对数幅值为L(cm,原系统在=c若校正后系统的截止频率

由此得:

由 ,得时间常数T为:

4、在同一坐标系里,绘制校正前、后、校正装置对数频率特性;
二、Matlab仿真设计(串联超前校正仿真设计过程)
注意:下述仿真设计过程仅供参考,本设计与此有所不同。

利用Matlab进行仿真设计(校正),就是借助Matlab相关语句进行上述运算,完成以下任务:①确定校正装置;②绘制校正前、后、校正装置对数频率特性;③确定校正后性能指标。从而达到利用Matlab辅助分析设计的目的。
例:已知单位反馈线性系统开环传递函数为:

≥450,幅值裕量h≥10dB,利用Matlab进行串联超前校正。≥7.5弧度/秒,相位裕量c要求系统在单位斜坡输入信号作用时,开环截止频率
c)]、幅值裕量Gm(1、绘制原系统对数频率特性,并求原系统幅值穿越频率wc、相位穿越频率wj、相位裕量Pm[即
num=[20];
den=[1,1,0];
G=tf(num,den); %求原系统传递函数
bode(G); %绘制原系统对数频率特性
margin(G); %求原系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(G);
grid; %绘制网格线(该条指令可有可无)
原系统伯德图如图1所示,其截止频率、相位裕量、幅值裕量从图中可见。另外,在MATLAB Workspace下,也可得到此值。由于截止频率和相位裕量都小于要求值,故采用串联超前校正较为合适。

图1 校正前系统伯德图
2、求校正装置Gc(s)(即Gc)传递函数
L=20*log10(20/(7.5*sqrt(7.5^2+1))); =7.5处的对数幅值Lc%求原系统在
rd=10^(-L/10); %求校正装置参数rd
wc=7.5;
T= sqrt(rd)/wc; %求校正装置参数T
numc=[T,1];
denc=[T/ rd,1];
Gc=tf(numc,denc); %求校正装置传递函数Gc
(s)(即Ga)3、求校正后系统传递函数G
numa=conv(num,numc);
dena=conv(den,denc);
Ga=tf(numa,dena); %求校正后系统传递函数Ga
4、绘制校正后系统对数频率特性,并与原系统及校正装置频率特性进行比较;
求校正后幅值穿越频率wc、相位穿越频率wj、相位裕量Pm、幅值裕量Gm。
bode(Ga); %绘制校正后系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(G,':'); %绘制原系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(Gc,'-.'); %绘制校正装置对数频率特性
margin(Ga); %求校正后系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(Ga);
grid; %绘制网格线(该条指令可有可无)
校正前、后及校正装置伯德图如图2所示,从图中可见其:截止频率wc=7.5;
),校正后各项性能指标均达到要求。相位裕量Pm=58.80;幅值裕量Gm=inf dB(即
从MATLAB Workspace空间可知校正装置参数:rd=8.0508,T=0.37832,校正装置传递函数为 。

图2 校正前、后、校正装置伯德图
三、Simulink仿真分析(求校正前、后系统单位阶跃响应)
注意:下述仿真过程仅供参考,本设计与此有所不同。

线性控制系统校正过程不仅可以利用Matlab语句编程实现,而且也可以利用Matlab-Simulink工具箱构建仿真模型,分析系统校正前、后单位阶跃响应特性。
1、原系统单位阶跃响应
原系统仿真模型如图3所示。

图3 原系统仿真模型
系统运行后,其输出阶跃响应如图4所示。

图4 原系统阶跃向应曲线
2、校正后系统单位阶跃响应
校正后系统仿真模型如图5所示。

图5 校正后系统仿真模型
系统运行后,其输出阶跃响应如图6所示。

图6 校正后系统阶跃向应曲线
3、校正前、后系统单位阶跃响应比较
仿真模型如图7所示。

图7 校正前、后系统仿真模型
系统运行后,其输出阶跃响应如图8所示。

图8 校正前、后系统阶跃响应曲线
四、确定有源超前校正网络参数R、C值
有源超前校正装置如图9所示。

图9 有源超前校正网络

当放大器的放大倍数很大时,该网络传递函数为:
(1)
其中 , , ,“-”号表示反向输入端。
该网络具有相位超前特性,当Kc=1时,其对数频率特性近似于无源超前校正网络的对数频率特性。
根据前述计算的校正装置传递函数Gc(s),与(1)式比较,即可确定R4、C值,即设计任务书中要求的R、C值。
注意:下述计算仅供参考,本设计与此计算结果不同。

如:由设计任务书得知:R1=100K,R2=R3=50K,显然

T=R4C

I. 自动控制原理设计矫正装置

自动控制原理的
最快的时间,
最理想的

阅读全文

与二阶控制系统校正装置设计与仿真相关的资料

热点内容
韩国电影爱情推理片观看 浏览:246
附近电影院购票 浏览:641
66在线免费视频 浏览:74
药厂都有哪些设备 浏览:120
适合晚上看的动漫电影 浏览:800
流浪汉和三个修女 浏览:929
免费看les片 浏览:658
0855影视电视剧免费看 浏览:407
韩国校园爱情电影 浏览:243
韩国迟度大又好看的电影钥匙 浏览:179
3d电影免费下载方法 浏览:230
洛阳什么地方有修仪表盘的 浏览:589
工程机械销售税率是多少 浏览:591
100部免费电影推荐 浏览:950
奇瑞前轮右轴承多少钱 浏览:755
春日五金制品有限公司 浏览:212
能在线看的网站 浏览:988
美国式禁忌类型电影 浏览:45
硅橡胶生产需要哪些设备 浏览:533
一个ssd机械硬盘怎么分区 浏览:669