『壹』 请教一个关于辐照的问题,用电子束辐照产品会发热,换用伽马射线辐照还发热吗发热的原因或者原理是什么
福特的问题用电子塑造产生发热反应马达加斯加发热
『贰』 site:eetop.cn+瞬态辐照效应
摘要 由于高带宽和强抗电磁干扰等优点,光纤被广泛地用于辐射场信号传输和探测。在高能脉冲辐射环境中,光纤辐照效应是影响光纤传输系统和测量系统性能的重要因素,目前对大芯径纯石英、随机孔隙光子晶体新型光纤的瞬态辐照效应还缺乏深入的研究和认识,给脉冲辐射场应用光纤技术进行定量化测量造成了困难,也严重限制了新型光纤辐射探测技术的发展。.本项目拟对大芯径纯石英光纤、光子晶体光纤的脉冲伽马/X射线瞬态辐照效应进行研究,建立光纤瞬态辐照效应的实验研究方法,结合理论模拟研究光纤的辐射屏蔽和抗辐射加固技术,研究给出辐照效应随总剂量、剂量率、辐射源种类的变化规律,研究分析光纤辐照效应的时间特性与光谱特性。研究目的是解决新型光纤在脉冲辐射场中面临的重要问题,为开展用于地面核爆诊断、实验室脉冲辐射源诊断用的新型光纤探测系统提供技术参考,具有重要的意义和应用价值。
『叁』 什么是伽马辐照装置
伽马辐照装置是利用电离辐射加工处理食品,以控制食源性致病菌、减少食物的微生物数量和虫害、抑制块根类农作物发芽,以及延长易腐坏农产品的保质期。辐照技术已获准用于约50种不同种类的食物,并最少有33个国家在商业上应用这项技术。尽管业界数十年来一直使用辐照技术为食物进行消毒,以符合检疫规定,但食用辐照食物对健康的影响仍是备受关注。这项研究概述了食物辐照技术的基本原理、应用范围,以及食用辐照食物对消费者构成的潜在健康风险。现有证据显示,虽然辐照加工会令食物产生化学变化,导致营养素流失,但如按照建议的方法进行辐照加工食物,而且加工过程符合良好制造规范,辐照食物的安全性和营养素质量,与用其他传统食物加工方法(例如加热、巴士德消毒和装罐)处理的食物相若。
食物辐照技术是利用电离辐射加工处理食品,以控制食源性致病菌、减少食物的微生物数量和虫害、抑制块根类农作物发芽,以及延长易腐坏农产品的保质期。根据国际原子能机构的资料,超过50个国家已批准使用辐照技术处理约50种不同种类的食物,并有33个国家在商业上应用各国准许进行辐照加工的食品不尽相同,但一般只限于香料、香草、调味料、某些新鲜水果或干果和蔬菜、海产、肉类及肉类制品、家禽,以及蛋类制品。尽管业界数十年来一直使用辐照技术为食物进行消毒,以符合检疫规定,但食用辐照食物对健康的影响仍是备受争议的问题。食品经辐照后产生的化学物是否具有毒性,以及辐照处理会否改变食品的营养价值,都是令人关注的事宜。根据食品法典委员会《辐照食品通用标准》,建议用于食品加工的电离辐射是∶(I)放射性核素钴-60(60Co)或铯-137(137Cs)产生的伽玛射线;以及(II)由机械源产生的电子束(最高能量为10兆电子伏特)和X射线(最高能量为5兆电子伏特)。
(I) 放射性核素钴-60和铯-137产生的伽玛射线钴-60由高度精制的钴-59(59Co)颗粒在核反应堆中经中子撞击而成,铯-137则由铀裂变产生。钴-60和铯-137发出穿透力强的伽玛射线,可用以处理大件或已包装食物。目前,钴-60是最广泛应用于食物辐照的放射性同位素。 (II) 由机械源产生的电子束和X射线机械源产生的电离辐射的主要优点是,整个处理系统都不涉及放射性物质。产生电子束的电器装置由电力驱动,以直线加速器将电子加速至接近光速。但这些高能电子束的穿透力有限,只适用于较薄的食物。以电子束撞击金属靶,可把电子转化为不同能量的X射线。虽然X射线的穿透力较由钴-60和铯-137产生的伽玛射线强4,但由于电子转化为X射线的效率一般低于10%,以致机械源辐射的应用一直难以推广。 当电离辐射穿过如食物等物质时,能量会被吸收,食物成分的原子和分子会被离子化或激发,引起辐照食物中出现的化学和生物学变化。食物辐照的化学效应食物进行辐照时所产生的化学效应,是由于处于激发态的分子及离子分解后,与相邻分子发生反应,而引发的连串相互反应。主要的化学反应包括分子内部出现异构化和分裂,并与相邻分子发生反应,产生连串新化学产物(包括高反应自由基)。食物经辐照后而产生的自由基,通常存在时间很短。不过,在一些干制、冷藏或含坚硬部分(例如骨头)的食物,由于产生的自由基的活动性有限,因此会存留一段较长时间。由电离辐射引起的另一个重要化学反应是水辐射分解。水分子经辐照后产生的羟基自由基和过氧化氢属高反应性,容易与大部分芳香族化合物、羧酸、酮、醛和硫醇等发生反应。这些化学变化对消除食物的微生物具有重要作用。不过,如辐照环境条件控制不善,这些化学变化难免会对某些食品造成不良影响(例如失去原有风味)。在辐照过程中,利用钴-60产生的伽马射线作能量源,以提供电离辐射。商用辐照设施的共通之处是设有辐照室,以及用以运送食物进出辐照室的输送系统。辐照厂房跟其他工业设施在结构上的主要分别是,辐照室四周建有混凝土防护围墙(厚度一般为1.5至1.8米),以防止电离辐射的泄漏。 放射性核素源会持续发出辐射。当辐射源不用作处理食物时,会贮存在一个水深约6米的水池内。水可吸收辐射能量,是其中一种最佳的阻隔辐射防护物质之一,将辐射源贮存在水里,可保护须要进入辐照室的工作人员免受辐射照射。辐照设施的输送系统采用路轨设计,用以运送食物通过辐照室进行辐照处理。通过控制辐照的时间和辐照源的能量,就可以调节食品接受电离辐射照射的剂量,以达致特定的目的。
在国内,工业用的食物辐照设施必须领取许可证,并受国家辐射安全及卫生当局的规管及监察。他们亦有参考其他主管当局制定的辐照标准 和实务守则 。国际原子能机构和联合国粮食及农业组织合作建立了一个食物辐照设施资料库,胪列各国的认可食物辐照设施,供公众参考。
『肆』 电子束辐射接枝和伽马辐射接枝的异同点
在辐射交联过程中,聚合物的自由基是通过高能射线如γ射线、电子束和中子束等的照射所产生的。在实验室试验时,γ射线一般由辐射源产生。工业上,常用大型电子加速器产生的电子束来使聚合物发生交联。辐射交联主要是使用高能射线打断PE 中C 一C 键和C 一H 键所产生的自由基来引发交联的。
PE 的敏化辐射问题是当前辐射交联法生产CLPE 的一个研究重点。解决该问题的一般方法是在PE 中加人增敏剂和敏化剂或者改变辐射气氛。常用的增敏剂主要有二甲基丙烯酸四甘醇醋、三甲基丙烯酸三羟基丙酯等。常用的敏化剂有四氯化硅、四氯化碳、氟化钠以及炭黑等。使用乙炔气氛是常见的PE 敏化辐射方法之一,尤其适用于PE 纤维的辐射交联。
用辐射交联法生产CLPE 具有以下优点:交联与挤塑分开进行,产品质量容易控制,生产效率高,废品率低;交联过程中不需要另外的自由基引发剂,保持了材料的洁净性,提高了材料的电气性能;特别适合于化学交联难以生产的小截面、薄壁绝缘电缆。但是辐射交联也存在一些缺点,如对厚的材料进行交联时需要提高电子束的加速电压;对于像电线电缆这样的圆形物体的交联需要将其旋转或者使用几束电子束,才能使辐射均匀;一次性投资费用大;操作和维护技术复杂,运行中安全防护问题也比较苛刻。
2.2 过氧化物交联法
过氧化物交联法又名化学交联法,是通过过氧化物高温分解而引发一系列自由基反应,从而使PE 发生交联。与辐射交联法的不同之处在于:( l )其交联过程必须有交联剂,即过氧化物存在;( 2 )交联反应必须在一定的温度下进行。
用过氧化物交联PE 可以生产出优质的交联制品,但在制品的加工过程中,挤出温度必须保持很低,否则早期交联可能出现焦化,影响制品的质量甚至损坏设备,该温度极限严格限制着可交联PE的挤出速度,而且在挤出制品时,需要在高温高压和几十米长(甚至上百米)的专用管道进行连续加热,设备占据空间大,能量消耗大,生产效率低,因此限制了该技术在中小型生产企业的应用。
采用交联剂与助交联剂并用可以显著地提高交联效果。助交联剂可以提高交联度,降低降解几率,并可适当降低交联剂的用量。助交联剂为分子中含有硫、肟及一C 一C 一类结构的单体或聚合物,常用的品种有肟类和甲基丙烯酸甲酯类。聚乙烯过氧化物交联近年来的主要发展方向是将极性单体接枝到聚乙烯链上。极性单体包括马来酸酐、丙烯酸、丙烯酰胺和丙烯酸酯等。接枝后的聚乙烯与金属、填料或其它聚合物之间的相容性得到改善。
2.3 硅烷交联法
硅烷交联法又名温水交联法,将硅烷接枝到聚乙烯主链上,在水和催化剂的作用下,引发硅氧烷键交联而获得交联聚乙烯。硅烷交联聚乙烯的成型过程首先是使过氧化物引发剂受热分解,使之成为化学活性很高的游离基。这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后再与硅烷交联剂产生接枝反应,接枝后的聚乙烯在有机锡的催化作用下,发生水解缩合形成一Si 一。一Si 一交联键即得到硅烷交联聚乙烯。与其它方法相比,硅烷交联法所得的聚乙烯产品具有如下优点:(l)设备投资少,生产效率高,成本低;(2)工艺通用性强,适用于所有密度的聚乙烯,亦适用于大部分有填充料的聚乙烯;(3)不受厚度限制;(4)过氧化物用量少(仅为单独用过氧化物交联时的10 %),因此在聚乙烯绝缘层生成微孔较少,有利于保持聚乙烯的高绝缘性;(5)耐老化性能好,使用寿命长。
硅烷交联常用的接枝单体有乙烯基丁甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷;常用的引发剂有过氧化二异丙苯、过氧化二特丁烷、l , 3-二特丁基过氧化二异丙苯、叔丁基过氧化苯甲酰等;交联催化剂包括有机金属化合物、无机酸、脂肪酸等,一般使用有机锡衍生物如二丁烯基锡二月桂酸。
在有机锡等催化剂存在下,易出现过早交联,产生结焦,影响进一步的加工和制品性能。为了解决此问题,美国联碳(UCC )公司采用二羟基氧化锡、羧酸和羧酸盐在加工过程中反应生成催化剂的方法。硅烷温水交联聚乙烯工艺中的主要缺点是交联反应速度较慢,如果采用酯类过氧化物(如叔丁基过氧化物异壬基酯)作引发剂和用金属氧化物(如氧化锌、氧化锡等)作缩合催化剂,交联速度快,可省去温水或蒸汽交联工艺。英国BP 公司用二丁基锡的聚合物作为水解缩合催化剂来代替目前常用的二丁基锡二月桂酸酯,可提高催化剂的活性,交联均匀,所得产品的性能好;常用的抗氧剂有1010与硫代二丙酸二月桂酯组成协同体系,用于交联体系;常用的分散剂用可与聚乙烯相容的低分子量液体如液体石蜡等。
聚乙烯经硅烷交联后的物理性能有较为显著的变化。
(l )耐热性能提高:由于交联聚乙烯为体型大分子,故为不熔、不溶物,耐热性能明显提高。交联度低,维卡软化点变化不大;交联度高,维卡软化点可提高30℃~40℃;交联聚乙烯的长期使用温度为95℃一100℃。分子量为20万的聚乙烯每个分子链上仅接有12 一13 个硅烷单体,所以硅烷交联聚乙烯的交联点间距大,又因一Si 一O 一键与一Si 一C 一键的柔性好,因此交联聚乙烯的耐低温性好,可在-50 ℃ 甚至一70 ℃ 以上使用。并且,由于硅烷交联聚乙烯的分子结构不同于通常过氧化物交联形成的分子间一C 一C 一交联键,其3 个硅烷氧基均可以进行水解缩合反应,能够形成立体网状交联,因此,其热机械性能一般优于具有一C 一C 一平面结构的过氧化物交联聚乙烯。即使硅烷交联聚乙烯的交联度比过氧化物交联的低15%一20 % ,两者的热变形温度仍相当。
( 2 )耐化学介质性优异。交联聚乙烯比普通聚乙烯有更好的耐化学介质性能,一方面是因为交联后强度提高,另一方面是聚乙烯链上接枝硅烷长链后,由于长链不断进人紧密堆砌的片晶格子中,因而增加了晶体间的连接分子数目此外,结构上的长支链缠结强化了晶片间的无定形区,使耐环境应力提高,特别是在100 ℃ 以下的较高温度范围内;( 3 )电绝缘性能突出。交联聚乙烯结晶区较少,密度均匀,并且引人了无极性的一Si一O一键与一Si一C 一键,使其电绝缘性基本无变化,所以仍属于好的绝缘材料,并且在较高温度和苛刻的化学介质中绝缘性仍较高,常用于电缆屏蔽层。
硅烷交联聚乙烯的生产工艺主要有两步法交联工艺、一步法交联工艺和乙烯-硅烷共聚交联工艺3 种。
『伍』 中金辐照有限公司的公司简介
中金辐照股份有限公司 (以下简称“中金辐照”)是国务院国资委管理的大型央企—中国黄金集团公司的控股子公司,总部位于深圳,发轫于1984年,于2011年改制为股份公司,是一家国内外知名的合约灭菌、辐照加工连锁企业,公司在深圳、上海、天津、青岛、成都、武汉、重庆、镇江共拥有12套伽马射线辐照装置,一个医疗灭菌项目(在建中)及一个大型技术检测中心,现有员工总数为140人。
『陆』 伽马射线探伤仪的时候要安全距离是多少
γ射线在空气中强度的衰减遵循指数规律,而安全与否是由辐照剂量决定的,它与射线强度,频率,环境等诸多因素有关,不是仅有距离确定的。
『柒』 自然伽马能谱测井
(一)自然伽马测井原理
自然伽马能谱测井是利用钾、钍、铀释放不同能量伽马射线能量的特性,在钻井中测量地层钾、钍、铀含量的方法技术。图3-11是用碘化钠晶体测量的钍、铀、钾的能量谱。由图可见钾(40K)放射出单能量1.46 MeV的伽马射线;钍系(232Th)的特征能量是2.62 MeV;而铀系(238U)的代表能量是1.76 MeV。因此,分别测量1.46 MeV、1.76 MeV、2.62 MeV的自然伽马射线的强度,进而求出钾、铀、钍的含量。
图3-12是自然伽马能谱测井示意图。上图为井下仪器部分,下图是地面记录部分。采用能量窗分析技术,测量几个“能量窗”的计数率,能窗的中心分别为1.46 MeV、1.76 MeV和 2.62 MeV,即用几个能窗测量 40K、238 U、232Th所放出的伽马射线强度。实际上,由于伽马射线与地层物质发生作用,各能窗测得的伽马射线除了来自该能窗对应的放射性元素外,还有其他放射性元素放出的伽马射线,以及能量降低后的伽马射线。如此说来,每个能窗测量结果,并非独立反映该能窗对应元素的含量。因此,对每一个能窗有:
图3-11 用NaI(Tl)晶体探测器取得的钾、钍、铀的真实能谱图
地球物理测井
其中:w(232Th)、w(238U)、w(40K)分别为钍、铀、钾的含量;Ai、Bi、Ci为第i个能窗的三个系数,由标定仪器得出。
求解由图3-13中所划分的三个能窗(W3、W4、W5)测井结果所组成的方程组,即可得出钍、铀、钾的含量:
地球物理测井
地球物理测井
式中:W3、W4、W5分别为第3、4、5个能窗的测量结果;mij为测量矩阵系数。
图3-12 自然伽马能谱仪器的原理示意图
图3-13 自然伽马能谱测井仪的能量窗划分
从误差分析的角度,考虑到核测井的特点,存在统计起伏误差,式(3 19)应改写为
地球物理测井
式中:Δγi为统计起伏误差。
自然伽马能谱测井采用两种方法减小统计起伏的影响,一是增加低能窗(W1,W2)测量;二是采用数字滤波技术。
(二)自然伽马能谱刻度和谱分析
1.自然伽马能谱测井仪的刻度
为了统一自然伽马能谱测井标准,确定式(3-19)中的系数Ai、Bi、Ci,采用了自然伽马能谱测井刻度技术。下井仪器的刻度装置是一口特别设计的刻度井(图3-14)。
这口井由四个层组成。顶部三层分别含有钍、铀和钾三种放射性元素,底层主要成分为混凝土。水泥井段的作用是便利下井仪器的。
放入井内和将其刻度响应值作为刻度基线。
设第i个能窗在j井段的计数率为Wij,于是可测得15个Wij。每一个Wij都与Uj、Thj和Kj有关。解以下方程组:
地球物理测井
可算出15个系数Ai、Bi、Ci,可用于开5个能窗的仪器。图3-14是刻度曲线。
2.自然伽马能谱解析
能谱解析是从测得的脉冲幅度谱中求钾、铀、钍在地层中的含量。把钾、铀、钍系各看成是一个整体,而不细分各放射性核素的含量。有以下几种方法。
(1)剥谱法
在混合谱中找出容易识别的核素,求出谱形,并从混合谱中扣除,然后在剩余谱中找出第二种核素,并做同样处理,直到求出所有的核素为止。
图3-14 TUK刻度井
图3-15 含钾、铀、钍的厚地层自然伽马混合谱
为用剥谱法解析与图3-15相似的钾、铀、钍自然伽马混合谱,先要建立只含钾、铀或钍地层的自然伽马标准谱,并把混合谱看成是每种放射性元素标准谱的线性叠加。标准谱是用测井仪器在刻度井中测定的,井中的标准模块的放射性元素含量已知,刻度条件和测井时的环境尽可能接近。
解谱时,选40K的1.46 MeV、铀系中214Bi的1.76 MeV和钍系中208Tl的2.62 MeV光电峰分别为钾、铀、钍三种放射性元素的自然伽马特征峰,并在三个特征峰下划分出三个道区(在测井工程中习惯称“能窗”),或者说卡出三个谱段。道区之间留适当的间隔,以保证高能谱段中不包含能量较低的光子的贡献,三个道区的计数率分别记为N1、N2、N3。在每个谱段由三种元素生成的计数率分别与它们的含量K、U、Th成正比,并可用下列线性方程组描述:
地球物理测井
地球物理测井
式中系数aij是单位浓度第j种放射性元素在第i个特征道区造成的计数率,由标准谱确定。
这是一个三角形线性方程组,由最后一个方程按顺序往回递推即可求出钍、铀和钾的含量。通常,钍、铀的单位用g/t,而钾的单位用%。因解谱时是分道区进行的,可称为道区剥谱法或道区逐次差引法。
(2)逆矩阵法
对于自然伽马混合谱,是解下列线性方程组:
地球物理测井
其中符号的含义与(3-24)相同,区别在于能量较高的道区也可包含能量较低光子的贡献,即每个特征道区中都可包含钾、铀、钍三种放射源的贡献。因此,特征道区之间不需要留间隔,可较多地利用谱中的数据。
式(3-25)可写成矩阵形式:
地球物理测井
式中:N为由三个特征道区的计数率组成的3×1阶测量矩阵;A为3×3阶方阵,称为能谱测井仪各特征道区对钾、铀、钍的响应矩阵;X为待求的由钾、铀、钍含量组成的3×1阶矩阵。
此时,解谱就是求上述矩阵方程的解:
地球物理测井
式中A-1是A的逆矩阵。
矩阵求逆要求,两种核素不能具有相同的特征峰。
(3)最小二乘逆矩阵法
剥谱法和逆矩阵法只用一个全能峰表征一种放射源,解混合谱时对钾、铀、钍各取一个特征峰。实际上,铀系和钍系均有若干个全能峰可供利用,要把可能利用的全能峰用起来,能峰道区数m就会大于3,这就是用最小二乘法求解的原由。实测的第i个能峰道区的计数率:
地球物理测井
式中:i为能峰道区序号;εi为混合谱第i道区计数率统计误差;aij为谱仪第i个能峰道区对第j种放射性元素(钾、铀、钍)的响应系数;xj为第j种元素在地层中的含量。
用最小二乘法求解,就是使εi的平方和达到最小时求得xj的最可几值,使εi的平方和对xj的偏导数为零,可得到矩阵方程:
地球物理测井
式中:A为矩阵元aij组成的m×3阶响应矩阵;X为待求的钾、铀、钍含量组成的3×1阶矩阵;N为由混合谱m个道区上的计数率组成的m×1阶矩阵。
令S=ATA和Y=ATN,则
地球物理测井
式中:S为3×3阶矩阵;Y为3×1阶矩阵。
(4)加权最小二乘法
在前述解谱方法中,假设各个道区的计数率(或称窗计数率)具有相同的方差,实际上并非如此。对非等精度道区计数率观察值,需要用加权最小二乘法解谱。这一方法是使道区计数率统计误差εi的加权平方和最小,以求取待定的xj的最可几值。此时式(3-29)中增加了一个权矩阵W,变为
地球物理测井
W为一对角矩阵,其第i个对角矩阵元Wi可取为
地球物理测井
式中:σi为第i个道区计数率ni的标准误差;T为谱数据采集时间。
由式(3-31)可求出钾、铀、钍含量矩阵:
地球物理测井
解出每一深度点上地层的钾(K)、铀(U)、钍(Th)含量,就可得到随深度变化的三条曲线。测井还给出一条总计数率曲线,用GR表示(表示其量时,用CGR)。GR曲线可通过直接测量总计数率经刻度得到,也可用下式算出:
地球物理测井
式中:A、B、C为刻度系数;w(Th)、w(U)、w(K)分别为钍、铀和钾在地层中的含量。若除掉铀的贡献,则有
地球物理测井
称之为“无铀”自然伽马射线强度。
对自然伽马能谱测井曲线,通常要用滑动加平均公式或卡尔曼滤波法做平滑处理。
(三)环境影响
自然伽马能谱测井仪器的标准谱和解谱时用的响应矩阵是在标准刻度井中获得的。实际测井时遇到的井条件不可能与刻度井完全相同,测量和解谱结果就会受到环境影响而产生误差。环境影响及其校正方法,可通过理论计算或实验方法进行研究。
井中介质包括钻井液、套管和水泥环。若钻井液为低放射性钻井液,则井的影响主要是对来自地层的伽马射线的散射和吸收;若钻井液中含有KCl,则钻井液柱相当于一个附加的放射源,钾的特征道区计数率会增高;当钻井液中含有重晶石时,钻井液的光电吸收效应增强,将使自然伽马谱严重变形。
图3-16 裸眼井模型
1.低放射性钻井液井环境影响
为简化计算,考虑图3-16所示的裸眼井模型。井眼和地层为同轴正圆柱体,井内钻井液无放射性,地层在探测范围内构成一圆环状放射源,源强密度为M,光子能量为Eγ,地层和钻井液对光子的线性吸收系数分别为μ和μ′,点状探测器置于井轴与地层中介面的交点上,并只记录能量在Eγ附近的光子。图中r0为井眼半径,r-r0是圆环状放射源的径向厚度,φ和α分别为从观察点到环境源内、外边线的垂线与地层顶面的夹角。此时,点状探测器的计数率应为
地球物理测井
式中:
地球物理测井
若令
地球物理测井
而J0=εM/μ,所以有
地球物理测井
地层的径向伸展与厚度相比总可视为无限大,即α=0,并使式(3-37)后两项等于零,则
地球物理测井
即
地球物理测井
若地层厚度与井眼半径相比可看成无限厚时,φ=π/2,所以有
地球物理测井
当ν=0时,K=1,J=J0。此时无井眼影响。
2.氯化钾和重晶石钻井液的影响
钻井液中加入3%~5%的氯化钾,对泥岩的冲蚀作用可明显降低。但是,钾的放射性可使自然伽马测井受到干扰,表现为:①总计数率增高;②钾特征峰道区计数率明显增高;③能量低于1.46 MeV的道区计数率增高;④解谱结果钾含量异常的高,铀含量偏低,钍含量偏高,各种比值不正常。而重晶石钻井液能使低能道区计数率明显降低。
图3-17 区分泥质地层和钾盐层
氯化钾和重晶石钻井液对测量结果的影响均可用蒙特卡罗方法进行研究。
图3-18 铀含量高的渗透性地层
(四)自然伽马能谱测井的用途
地层岩石中,钍、铀、钾含量的资料有广泛的用途。不仅在石油勘探开发中,在煤田勘探、地热研究中都是十分有价值的资料。无论单独使用,还是与其他测井资料综合使用都有明显的效果。
1.区别泥质地层和钾盐层
在自然伽马测井曲线上,泥质地层和钾盐层都是高值显示,但泥质层的钾含量明显低于钾盐层;钾盐层的钍含量近于零、曲线平直无变化。同时,铀含量曲线也有类似的反映;而钾含量曲线类似于总自然伽马曲线(图3-17)。
图3-18中1600 ft和1638 ft(1ft=0.3048 m)处,自然伽马曲线上显示两个尖峰,似乎应为两个薄泥岩石,但在自然伽马测井曲线中K、Th两条曲线无显示,而在U曲线显示两个尖峰,与自然伽马曲线吻合。这表明这里不是泥岩层,应为一渗透层,并在该深度处U的含量较高,可能是溶有U的水运移中沉淀下来。
2.判断砂-泥岩剖面的岩性
泥岩的特征是Th、K的含量高,而U的含量低;砂岩的基本特征是三种元素的含量都比较低。
图3-19是砂泥岩剖面自然伽马能谱测井曲线和解释结果。
3.碳酸盐岩研究
自然伽马测井不能用于计算碳酸盐岩的泥质含量。因为铀使自然伽马射线增加,而碳酸盐岩是可能含铀的。
纯化学沉积的碳酸盐岩,基本上不含钍和钾。如果它的铀含量也近似为零,那么这种岩石是在氧化环境下形成的;如果铀含量曲线呈现明显的幅度变化,那么这种碳酸盐岩可能为以下两种情况之一:①还原环境下形成。这种环境有利于有机质的储存,并转变成烃。②如果碳酸盐岩颗粒比较细、孔隙度低,那么它可能有裂缝。裂缝中充填有铀、有机质或粘土矿物。当然,铀峰的出现也可能是磷的反应。
碳酸盐岩含粘土时,钍、铀和钾一起存在,自然伽马能谱测井曲线上有明显的幅度反应。有机藻类的碳酸盐岩或含海绿石的碳酸盐岩有明显的钾异常。铀异常可有也可能没有。
图3-19 砂泥岩剖面自然伽马能谱解释
图3-20 碳酸盐岩自然伽马能谱测井曲线
碳酸盐岩的自然伽马能谱测井实例见图3-20。它表明,碳酸盐岩的自然放射性是铀引起的。
4.识别火成岩的种类
自然伽马能谱测井有助于识别火成岩的种类。为了提高准确度,应有其他测井资料,其中最有意义的是密度和声速。图3-21是钍-铀交会图识别主要火成岩的例子。
5.自然伽马能谱测井研究地质问题
在还原条件下,地下热水沿裂缝流动,会使铀盐、铀沉淀下来。所以,通过铀峰可以识别裂缝。要注意,裂缝被充填后,也可能出现铀峰。因此,应和其他测井方法配合使用,正确判断裂缝。
图3-21 钍-铀交会图
实际经验证明,w(Th)/w(U)可用于判断沉积环境:
w(Th)/w(U)>7,陆相氧化环境;
w(Th)/w(U)<7,海相沉积;
w(Th)/w(U)<2,海相黑色页岩。
而w(Th)/w(K)可检查地层岩石的接触关系。当沉积条件急剧改变形成不整合时,w(Th)/w(U)的平均值会突然变化(图3-22)。这种不整合不能用其他测井曲线识别。
图3-22 自然伽马能谱识别地层接触关系
6.寻找有机碳和烃的埋藏位置
有机质和铀的关系十分密切,经过岩心资料刻度后,使用铀含量曲线可以很好地估计有机碳的含量,确定含烃的井段。
『捌』 伽马射线对人体有哪些损害
γ射线具有极强的穿透本领。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶。
它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。
(8)商用伽马辐照装置设计概论扩展阅读:
起源理论
关于γ射线爆发的起源有一种理论——它们是具有无穷能量的“巨超新星”(hypernova),在觉醒时留下巨大的黑洞。看起来γ射线爆发似乎是排成队列的巨型黑洞。
太空产生
在太空中产生的伽马射线是由恒星核心的核聚变产生的,因为无法穿透地球大气层,因此无法到达地球的低层大气层,只能在太空中被探测到。太空中的伽玛射线是在1967年由一颗名为“维拉斯”的人造卫星首次观测到。
从20世纪70年代初由不同人造卫星所探测到的伽马射线图片,提供了关于几百颗此前并未发现到的恒星及可能的黑洞。于90年代发射的人造卫星(包括康普顿伽马射线观测台),提供了关于超新星、年轻星团、类星体等不同的天文信息。
『玖』 怎样才能通过伽马射线的辐射身体变成绿巨人
虽然不是没有什么可能 但是暴露在伽马辐射下绝对是死的多
伽马射线也有可能使你的基因电离 电离后你的基因就变异了 不一定还会畸形
绿巨人是虚构的 就算是真的 那变成他的几率也是非常小
『拾』 高分子材料改性的辐照源及特点伽马射线(Co60)
钴-60放射源大剂量辐照,主要是改变分子的结构,发生交联改性。淄博利源高科辐照技术有限公司拥有大型钴-60辐照装置。欢迎商家前来交流洽谈。0533-6287993