❶ 液晶显示器做平面设计及怎么调节色彩
有专门的校色软件,不过貌似不太好使。
你可以拿到卖显示器的地方,他们一般都有仪器校色。
设计这个行业,是不以显示器颜色为准的,这个是规矩,因为你做的东西,在你自己显示器上一个颜色,拿给客户肯定又是一个颜色,即使接近,也无法完全相同,所以,我们一般都是拿印刷小样给客户去看。
而且,各个软件的颜色也各不相同,比如同样CMYK或RGB,ai和ps出来的颜色就不一样,后者更加鲜亮。
不光是软件,MAC和PC的颜色也不同。我在公司用MAC做的东西,拿回家就会显示的暗淡无比,远不如公司MAC上显示的色彩好。
虽然大家都在说,设计一定要用CRT做,可是那玩意实在坏眼睛,尤其是每天至少8个小时的盯着它,不出一年,视觉绝对直线下降,而且还有辐射,孰轻孰重,自己把握吧。
❷ 液晶显示器的组成及结构
直以来,更完美的视觉享受都是我们的追求,传统的CRT显示器就经历了从黑白到彩色,从球面到柱面再到平面直角,直至纯平的发展。在这段加速度前进的历程中,显示器的视觉效果在不断得到提高,色彩、分辨率、画质、带宽和刷新率等各项指标均有大幅度的提升。目前成为主流的纯平显示器画面清晰、色彩真实,图像无扭曲、视角更广阔,而且在设计上还充分考虑了人类视觉构造的原理,好的纯平显示器具有长时间使用,眼睛不感到疲劳等一系列优势。
可以说纯平显示器是CRT显示器发展的最高水平,不过,由于CRT显示器的基本工作原理是依靠高电压激发的游离电子轰击显示屏而产生各种各样的图像,技术已经十分成熟,没有太多的发展余地。受限于此,传统CRT显示器在体积、重量、功耗等方面露出自己的劣势,然而其自身的优势也同样非常明显,清晰逼真的色彩还原、高画质大视角、快速显示无抖动、长寿命结实耐用,很多产品通过更严格的TCO 99认证,更加体现环保健康的人文科技。综观现今的CRT纯平显示器市场,使用的显像管主要为Sony FD Trinitron(特丽珑)、Mitsubishi Diamondtron(钻石珑)、LG Flatron(未来窗)和Samsung DynaFlat(丹娜)。此外,虽然也有采用其他显像管的产品,但在市场上则所见寥寥,而且少有人问津。
液晶显示器以其体积小、厚度薄、重量轻、耗能少、无电磁辐射、画面无闪烁、避免几何失真、抗干扰等诸多优点被业界和用户一致看好。但其价格一直居高不下,随着关键技术的突破、成本的大幅削减,使它的价格也变得平易近人。现在很多15英寸液晶显示器的价格已经降到了3000元左右。就像当初17英寸纯平显示开始被市场接受一样,液晶显示市场也已经正式启动了。
LCD是利用液晶的光电效应,通过外部的电压控制和液晶分子的折射特性,以及对光线的旋转能力来获得明、暗效果,从而产生丰富多彩的颜色和图像,达到显像的目的。它是一种典型的受光型显示器,工作原理的完全不同使得LCD与CRT显示器有了明显的性能差异,同时也使得它轻而易举地解决了CRT显示器无法克服的在体积、重量、功耗、环保等方面的缺点。并且随着网络环境和移动办公需求的发展,液晶显示器更加迎合了便携、环保、节能等更现代化的要求了
下面我们来具体看看CRT和低端LCD比较的优劣。
一、分辨率。
由于LCD和CRT显示器的成像原理不同,二者的屏幕分辨率是两个不同的概念。无论在高档还是低档LCD中,分辨率都存在一点不足。LCD面板是由很多发光点组成,只能支持它自己的真实分辨率。比如说15寸LCD真实分辨率为1024×768,而用户想要使用800×600的分辨率,可以有两种显示方式。一是居中显示,只有LCD中间的800×600个点会显示图象,其它面积的发光点则保持不发光的状态,整个画面居中缩小。另一种是仿真显示,这种方式能使图像使用到屏幕上每一个像素,但此时图像难免会出现模糊、失真现象,会对显示效果造成不小的影响。
二、刷新率。
对于CRT来讲,屏幕图像是在高电压作用下,游离的电子轰击荧光粉而来,由于显像管内荧光粉受到电子束击打后发光的时间很短,所以电子束必须不断击打荧光粉使其持续发光,这样就会出现散焦现象。而且电子枪从屏幕的第一行开始,从左至右逐行扫描,扫描完整个屏幕后再从第一行开始,这样就不可避免地会产生闪烁感。所以CRT显示器屏幕的刷新率要达到一定的速度人眼才不易感觉出屏幕的闪烁。LCD则是利用背光源,即荧光灯管作光源,由液晶分子控制光线的偏转或通过,由于液晶分子只有两种状态--关或开,因此对LC......
❸ 液晶显示器不应该设计成正面看亮 斜看暗
这个就是所谓的
液晶显示器
的视角了
这是由于液晶显示器的成像原理造成的
并不是故意设计成这样的
一般情况下
视角越大越好
但也有些特殊作用的显示器处于保护隐私的目的而必须用视角很小的显示器
❹ 液晶显示器要做设计用,如何校准屏幕颜色
具体操作如下:
1.首先打开控制面板。在控制面板中打开颜色管理选项,注意:如果没有这个选项,说明控制面板图标显得得太大,没有显示出这个选项,就点击一下右上角的类别,选择小图标即可。
拓展资料:
液晶显示器,为平面超薄的显示设备,它由一定数量的彩色或黑白像素组成,放置于光源或者反射面前方。液晶显示器功耗很低,因此倍受工程师青睐,适用于使用电池的电子设备。它的主要原理是以电流刺激液晶分子产生点、线、面配合背部灯管构成画面。
液晶显示器的工作原理:液晶是一种介于固体和液体之间的特殊物质,它是一种有机化合物,常态下呈液态,但是它的分子排列却和固体晶体一样非常规则,因此取名液晶,它的另一个特殊性质在于,如果给液晶施加一个电场,会改变它的分子排列。
这时如果给它配合偏振光片,它就具有阻止光线通过的作用(在不施加电场时,光线可以顺利透过),如果再配合彩色滤光片,改变加给液晶电压大小,就能改变某一颜色透光量的多少,也可以形象地说改变液晶两端的电压就能改变它的透光度(但实际中这必须和偏光板配合)。
❺ 液晶显示器的工作原理是什么它靠什么来显示图象
液晶显示器(LCD)是现在非常普遍的显示器。它具有体积小、重量轻、省电、辐射低、易于携带等优点。液晶显示器(LCD)的原理与阴极射线管显示器(CRT)大不相同。LCD是基于液晶电光效应的显示器件。包括段显示方式的字符段显示器件;矩阵显示方式的字符、图形、图像显示器件;矩阵显示方式的大屏幕液晶投影电视液晶屏等。液晶显示器的工作原理是利用液晶的物理特性,在通电时导通,使液晶排列变得有秩序,使光线容易通过;不通电时,排列则变得混乱,阻止光线通过。下面介绍三种液晶显示器的工作原理。
1.“扭曲向列型液晶显示器”(Twisted Nematic Liquid crystal display),简称“TN型液晶显示器”。这种显示器的液晶组件构造如图11所示。向列型液晶夹在两片玻璃中间。这种玻璃的表面上先镀有一层透明而导电的薄膜以作电极之用。这种薄膜通常是一种铟(Indium)和锡(Tin)的氧化物(Oxide),简称ITOH缓笤僭谟?font face="Times New Roman, Times, serif">ITO的玻璃上镀表面配向剂,以使液晶顺着一个特定且平行于玻璃表面之方向排列中左边玻璃使液晶排成上下的方向,右边玻璃则使液晶排成垂直于图面之方向。此组件中之液晶的自然状态具有从左到右共的扭曲, 这也是为什么被称为扭曲型液晶显示器的原因。利用电场可使液晶旋转的原理,在两电极上加上电压则会使得液晶偏振化方向转向与电场方向平行。 因为液态晶的折射率随液晶的方向而改变,其结果是光经过TN型液晶盒以后其偏振性会发生变化。我们可以选择适当的厚度使光的偏振化方向刚好改变。那么,我们就可利用两个平行偏振片使得光完全不能通过.若外加足够大的电压V使得液晶方向转成与电场方向平行,光的偏振性就不会改变。因此光可顺利通过第二个偏光器。于是,我们可利用电的开关达到控制光的明暗。这样会形成透光时为白、不透光时为黑,字符就可以显示在屏幕上了。
2.TFT型液晶显示器的原理 TFT型液晶显示器也采用了两夹层间填充液晶分子的设计。只不过是把左边夹层的电极改为了FET晶体管,而右边夹层的电极改为了共通电极。在光源设计上,TFT的显示采用"背透式"照射方式,即假想的光源路径不是像TN液晶那样的从左至右,而是从右向左,这样的作法是在液晶的背部设置了类似日光灯的光管。 光源照射时先通过右偏振片向左透出,借助液晶分子来传导光线。由于左右夹层的电极改成FET电极和共通电极,在FET电极导通时,液晶分子的表现如TN液晶的排列状态一样会发生改变,也通过遮光和透光来达到显示的目的。但不同的是,由于FET晶体管具有电容效应,能够保持电位状态,先前透光的液晶分子会一直保持这种状态,直到FET电极下一次再加电改变其排列方式为止。 相对而言,TN就没有这个特性,液晶分子一旦没有被施压,立刻就返回原始状态,这是TFT液晶和TN液晶显示原理的最大不同。
3. “高分子散布型液晶显示器”(Polymer dispersed liquid crystal liquid crystal display),简称“PDLC型液晶显示器”。这种显示器的液晶组件构造如图13所示。高分子的单体(monomer)与液晶混合后夹在两片玻璃中间,做成一液晶盒。这种玻璃与上面所用的相同,是表面上先镀有一层透明而导电的薄膜作电极。但是不需要在玻璃上镀表面配向剂。此时将液晶盒放在紫外灯下照射使个单体连结成高分子聚合物。在高分子形成的同时,液晶与高分子分开而形成许多液晶小颗粒。这些小颗粒被高分子聚合物固定住。 当光照射在此液晶盒上,因折射率不同,而在颗粒表面处产生折射及反射。经过多次反射与折射,就产生了散射(scattering)。此液晶盒就像牛奶一样呈现出不透明的乳白色。
足够大电压加在液晶盒两侧的玻璃上,液晶顺着电场方向排列,而使每颗液晶的排列均相同。对正面入射光而言,这些液晶有着相同的折射率n。如果我们可以选用的高分子材料的折射率与n相同,对光而言这些液晶颗粒与高分子材料是相同的;因而在液晶盒内部没有任何折射或反射的现象产生。此时的液晶盒就像透明的清水一样。
❻ 液晶显示器的主要构成和结构是什么
站在“视”界的巅峰——浅析液晶显示器技术
液晶显示器市场从2001年伊始就沸沸扬扬,先是三星推出了24英寸大屏幕液晶显示器,飞利浦则推出流线型液晶显示器,紧接着EMC一次性推出六款液晶显示器,在显示器市场上刮起一股LCD旋风。总的看来,由于先天的技术优势,LCD显示器正在悄然升温,大有取代CRT显示器之势,那么,液晶显示器的技术优势究竟何在呢?下面就让我们看一看。
液晶显示器的技术优势
体积更小,重量更轻 传统的CRT显示器由于利用显像管技术成像,需要内藏真空显像管,再在尾端配以电子枪,使其长度一般均超过了30厘米,那整个显示器的体积当然就更大。而液晶显示器选用液晶材料,再利用相应成像技术实现显示目的,不用在显示器内部安装显像管,体积当然较小。
相对显示面积更大 传统的CRT显示器由于受到显示技术的限制,其所标示的尺寸要比荧光屏的显示面积要小,一般一台15英寸的CRT显示器,虽然其标明的尺寸为15英寸,但其真正的可视范围可能只有14.1英寸左右,而17英寸的显示器可能只余下15至16英寸的显示面积。但液晶显示器由于成像原理的不同,其所标示的尺寸即是实际的显示面积,如三星的15英寸液晶显示器的显示面积就是完完全全的15英寸,相当于一台17英寸CRT显示器的显示面积,如果两者价钱相差不多的话,当然是买台液晶显示器划算得多。
零辐射,无闪烁 CRT显示器采用阴极显像管成像,其内含的电子光束在运作时会产生很多静电与幅射,并且电子束的运转速度越快,其辐射越大,人体长期使用,会对眼睛及皮肤造成损害,造成眼睛近视、皮肤过敏等问题。而液晶显示器由于采用液晶材料,工作时无须使用电子光束,因此没有静电与幅射这两种影响视力的问题存在。另外,CRT显示器一幅画面的形成是经过扫描而形成的,只有在扫描频率达到一定数值时,才没有闪烁现象,而液晶显示器不需要扫描过程,一幅画面几乎是同时形成的,即使刷新频率很低,也不会出现丝毫闪烁现象。
功耗小,抗干扰能力强 CRT显示器除了电路及显像管功耗之外,还有显示屏的功耗,而液晶显示器主要是背光源和电路功耗,其显示屏的功耗可以忽略不计。另外由于液晶显示器不像CRT显示器那样采用显像管及电子枪成像,不用考虑因为提高电子枪发射电子束而带来的高辐射影响,而只是通过荧光管发射的背光来获得亮度,因此具备了更强的抗干扰能力,即使是在光线比较集中的环境中,也会收到不错的显示效果。
画面质量更高 传统的CRT显示器多采用模拟显示方式,显示的信号输出采用模拟输出方式,在传送过程中就有可能造成图像的损失,导致画面质量的下降,而液晶显示器的信号传送采用数字方式,由显卡直接输出数字信号,不会造成信号的损失,但目前多数液晶显示器仍然采用面向模拟显示器的VGA接口,只有少数如Acer、EMC、三星等厂商设置了数字视频信号接口。
使用功能更为智能化 由于液晶显示器采用的材料和技术的不同,它的一些参数搭配一般比较固定,这就要求显示器的性能调节更为智能化,在这方面各家厂商均有自己成熟的技术。
应用材料的飞跃
液晶显示器之所以具备如此多的优势,很大的一个原因就是它采用液晶作为主要的成像材料。传统的CRT显示器采用的是超厚玻璃显示屏,虽然外表面与液晶显示器一样实现了纯平,但是内表面却有些弯曲,看起来有一种内凹的现象,图像会产生轻微程度的扭曲。而液晶显示器采用的基本材料是液晶——一种同时具备液体的流动性和晶体的规则排列特性的物质。液晶受热到一定程度就会变成透明状液体,冷却后会呈现出晶体的特征,正由于液晶特性介于固态和液态之间,不但具有固态晶体的光学特性,还具有了液态的流动特性,液晶显示器正是利用它的这种特性达到了成像的目的。
因为液晶既有固态的光学特性,又有液态的流动特性,所以当光线射入液晶物质中,必然会按照液晶分子的排列方式行进,产生了自然的偏转现象。而液晶分子中的电子结构,又具备着很强的电子共轭运动能力,所以当液晶分子受到外加电场的作用,便很容易改变排列方式,也就相应改变了光线的行进方式。Acer、EMC、三星等厂商的液晶显示器产品,就是利用液晶的光电效应,由外部的电压控制,再通过液晶分子的折射特性,以及对光线的旋转能力来控制亮暗状态(或者称为可视光学的对比),从而达到显像的目的。
液晶显示器成像原理
目前液晶显示技术大多以TN、STN、TFT三种技术为主,在此就从这三种技术来探讨一下液晶显示器的成像原理。
TN型液晶显示技术是液晶显示器中最基本的,其他种类的液晶显示器皆以TN型为基础来加以改进,所以它的工作原理也较其他技术来得简单。它主要包括垂直方向与水平方向的偏光板、配向膜、液晶材料以及导电的玻璃基板。其显像原理是将液晶材料置于两片透明导电玻璃间,液晶分子会依配向膜的细沟槽方向依序旋转排列,如果电场未形成,光线会顺利地从偏光板射入,依液晶分子旋转其行进方向,然后从另一边射出。如果在两片导电玻璃通电之后,两片玻璃间会形成电场,进而影响其间液晶分子的排列,使其分子棒进行扭转,光线便无法穿透,进而遮住光源。这样所得到亮暗对比的现象,叫做扭转式向列场效应,简称TNFE(Twisted Nematic Field Effect)。在电子产品中所用的液晶显示器,几乎都是用扭转式向列场效应原理所制成。但因为单纯的TN液晶显示器本身只有明暗两种情形,所以只能形成黑白两种颜色,并没有办法做到色彩的变化。
STN型的显示原理与TN相类似,不同的是TN扭转式向列场效应的液晶分子是将入射光旋转90度,而STN超扭转式向列场效应是将入射光旋转180~270度。这一区别导致了光线的干涉现象,实现了一定程度色彩的变化,使STN型液晶显示器具备了一些淡绿色与橘色的色调。如果再加上一个彩色滤光片,并将单色显示矩阵之任何一个像素分成三个子像素,分别通过彩色滤光片显示红、绿、蓝三原色,再经由三原色比例之调和,也可以显示出全彩模式的色彩。
一般TFT液晶显示屏的主要构成包括荧光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等。这种液晶显示器必须先利用荧光灯管投射出光源,这些光源会先经过一个偏光板然后再经过液晶,这时液晶分子的排列方式会改变穿透液晶的光线角度,然后这些光线接下来还必须经过前方的彩色的滤光膜与另一块偏光板。而我们只要改变刺激液晶的电压值就可以控制最后出现的光线强度与色彩,并进而能在液晶面板上变化出有不同深浅的颜色组合了。它与前两者的区别是把TN上部夹层的电极改为FET晶体管,而下层改为共同电极。
液晶分子驱动技术
三种液晶显示器所采用驱动方式也有所不同,一般前两者采用的是单纯矩阵驱动方式,而后者采用的是主动式驱动方式。
单纯矩阵驱动方式是由垂直与水平方向的电极所构成,选择要驱动的部份由水平方向电压来控制,垂直方向的电极则负责驱动液晶分子。在TN与STN型的液晶显示器中,采用一种由玻璃基板、ITO膜、配向膜、偏光板等制成的夹层,共上下两层。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中的是液晶分子,在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。上下沟槽呈十字交错,即上层的液晶分子的排列是横向的,下层的液晶分子排列是纵向的,而位于上下之间的液晶分子接近上层的就呈横向排列,接近下层的则呈纵向排列。整体看起来,液晶分子的排列就像螺旋形的扭转排。但这一技术的缺陷在于显示部分不能太大,如果显示部份过大的话,那么中间部份的电极反应时间可能就会比较长,而为了让屏幕显示一致,整体速度上就会变慢。讲的简单一点,就好像是CRT显示器的屏幕更新频率不够快,那时使用者就会感到屏幕闪烁、跳动; 或者是当需要快速3D动画显示时,但显示器的显示速度却无法跟上,显示出来可能就会有延迟的现象。所以,早期的液晶显示器在尺寸上有一定的限制,而且并不适合拿来看电影、或是玩3D游戏。
主动式矩阵驱动方式是让每个像素都对应一组电极,它的构造有点像DRAM的回路方式,电压以扫描的(或称作一定时间充电)方式,来改变每个像素的状态。这种方法是利用薄膜技术所做成的硅晶体管电极,利用扫描法来选择任意一个显示点的开与关,其实是利用薄膜式晶体管的非线性功能来控制不易控制的液晶非线性功能。在EMC的BM-568中,导电玻璃上画上网状的细小线路,电极由薄膜晶体管排列而成的矩阵开关,在每个线路相交的地方则形成一个控制匣,虽然驱动信号快速地在各显示点扫描而过,但只有电极上晶体管矩阵中被选择的显示点得到足以驱动液晶分子的电压,使液晶分子轴转向而呈亮的状态,不被选择的显示点自然就是暗的状态,也因此避免了显示功能对液晶电场效应能力的依靠。
TN、STN及TFT型液晶显示器因其利用液晶分子扭转原理之不同,在视角、彩色、对比及动画显示品质上有高低层次之差别。其中TFT液晶显示器所需的资金投入以及技术需求较高,对制造厂商的要求很高,而TN及STN所需的技术及资金需求则相对较低。
❼ 液晶显示器的构造原理是
4-25. 液晶屏的构造原理是怎样的?
答:液晶是1888年奥地利植物学家莱尼兹发现的,但是想把它应用到显示器上,则是1968年的事了,当时器件很不稳定,离实用化还有一段距离;真正开始商品化生产的最早应用,则是1973年日本夏普公司生产的EL-8025计算器的屏幕。
液晶,是一种同时具备液体的能流动和晶体的规则排列特性的有机物,分子呈棒状长条形,把5微米的液晶封闭地夹在两层1mm的薄玻璃片之间,两玻璃片上外侧镀上一层既导电又透明的氧化铟锡电极,当电极通电时(必须通方波交流电,若通直流电,屏不久就报废了),使两电极之间的液晶分子转身,变成不透明状态,若不通电,液晶就恢复原来的透明状态。这就是计算器黑白液晶屏的简单的工作原理。
液晶屏自己不会发光,只能透光或不透光,若用它做计算器的数字显示,为了省电,直接用自然光反射就可以了。但若用作电脑显示器或电视液晶屏,那就必须增加背光源。早期的背光源用节能灯管,自2008年开始,都使用更低能耗、寿命更长的白色发光二极管(LED)了,不但省电,还不怕频繁开闭。
液晶真实的工作状况是:因为在不通电时,液晶分子呈立体旋转排列,会把经过的光线旋转90度透出,人们为了做到不通电液晶就透明,通电就不透明,通常玻璃前后要加两个相互垂直的偏光片(一个偏45°,一个偏135°),当背光通过后边的垂直偏光片后,变成垂直偏振光,经过液晶的扭转90度,变成水平偏振光,正好从前边的水平偏光片透出;当液晶两边的电极通电后,液晶分子则排列整齐,不再把光线旋转90度,这样当垂直偏振光到达水平偏光片时,光线就被阻挡过不去了。产生了不通电屏幕就亮,通电就黑的理想效果。
彩色液晶屏的原理就复杂多了。首先,得让小光点发的光分成红、绿、蓝三种颜色,但是不管是灯管发光或者LED白色发光二极管发的光,都是仅有一个白色,这就要在在两层玻璃之间加上红、绿、蓝三种颜色滤色片,并让滤色片上的颜色小点与小光阀点(像素)一一对应,这样一来,人们就可以像彩色显像管一样随心所欲地控制颜色了。
彩色液晶屏真实的结构是:两层薄玻璃片之间夹有液晶,后面玻璃片上制有许多(分辨率为1920×1080的有622万个,3840×2160的2488万个)透明电极,外(后)边贴有偏光薄膜,前面玻璃片内侧上制有公用电极,贴有滤色片,外(前)面贴有与后边玻璃贴的偏光薄膜角度垂直的偏光薄膜。
彩色液晶屏与彩色等离子屏和彩色显像管比较,其优点很多,主要是:节能,耗电很省,是等离子屏的二分之一,显像管的五分之一。寿命长:30年;屏幕大、体积小,是等离子屏的四分之一厚,显像管的几乎百分之一厚。无辐射,对观看者的身体无损害。与显像管相比,还有图像不失真不变形的好处。 在2006年之前,彩色液晶屏有两大致命缺点使其无法全面超越等离子屏和显像管:一是观看角度小,只有30°~40°,在此角度之外观看颜色失真甚至反转。二是响应慢,在150ms~200ms之间,在观看体育运动节目和打游戏时拖尾严重,使观看者很难受。但2006年发明了TFT屏,将两个缺点全部克服,观看角度可达178°,也就是只要在屏幕前,任何角度的观看效果都一样。响应时间提升至4ms,运动再快也不会拖尾了(人眼的极限是62ms,即十六分之一秒)。
TFT屏也叫真彩屏,是在每个像素角上增加了一个薄膜晶体管(实际是绝缘栅场效应管)来驱动液晶,这一招真厉害,一下子就把彩色显像管和彩色等离子屏全部赶出了历史舞台,几乎成为彩色液晶屏的一统天下了。虽然有OLED屏想与之抗衡,无奈OLED屏老化快、寿命短,还是比不了液晶屏。
❽ 显示器的设计原则是什么
()显示器可觉察性、可辩性。
(2)信息数量不宜过多。
(3)考虑人接受信息能力的特性。
(4)同种类的信息应尽量用同样的传递方式。
(5)符合习惯。
(6)重要的显示器放在醒目的位置上。
通常在两片玻璃基板上装有配向膜,液晶会沿着沟槽配向,由于玻璃基板配向沟槽偏离90°,液晶中的分子在同一平面内就像百叶窗一样一条一条整齐排列,而分子的向列从一个液面到另一个液面过渡时会逐渐扭转90°,也就是说两层分子的排列的相位相差90°。
一般最常用的液晶型式为向列(nem 不同种类的显示器 atic)液晶,分子形状为细长棒形,长宽约1-10nm(1nm=10Am)。
在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源开和关的作用下产生明暗的区别,以此原理控制每个像素,便可构成所需图像。
(8)液晶显示装置的设计扩展阅读
关于笔记本电脑与液晶显示器,以往的笔记本电脑中都是采用8英寸(对角线)固定大小的LCD显示器,基于TFT技术的桌面系统LCD能够支持14到18英寸的显示面板。
CRT显示器的调控方式从早期的模拟调节到数字调节,再到OSD调节走过了一条极其漫长的道路。
模拟调节是在显示器外部设置一排调节按钮,来手动调节亮度、对比度等一些技术参数。由于此调节所能达到的功效有限,不具备视频模式功能。另外,模拟器件较多,出现故障的机率较大,而且可调节的内容极少,所以已销声匿迹。
数字调节是在显示器内部加入专用微处理器,操作更精确,能够记忆显示模式,而且其使用的多是微触式按钮,寿命长故障率低,这种调节方式曾红极一时。
OSD调节严格来说,应算是数控方式的一种。它能以量化的方式将调节方式直观地反映到屏幕上,很容易上手。OSD的出现,使显示器得调节方式有了一个新台阶。市场上的主流产品大多采用此调节方式,同样是OSD调节,有的产品采用单键飞梭,如美格的全系列产品,也有采用静电感应按键来实现调节。