㈠ 油田污水预处理中投加氢氧化钠的作用原理是什么
污水处理技术概述
污水处理技术,就是采用各种方法将污水中所含有的污染物质分离出来,或将其转化为无害和稳定的物质,从而使污水得以净化。
一、污水处理方法的分类
现代的污水处理技术,按其作用原理可分为物理法、化学法、物理化学法和生物处理法四大类。
(一)物理法
通过物理作用,以分离、回收污水中不溶解的呈悬浮状的污染物质(包括油膜和油珠),在处理过程中不改变其化学性质。物理法操作简单、经济。常采用的有重力分离法、离心分离法、过滤法及蒸发、结晶法等。
1.重力分离(即沉淀)法
利用污水中呈悬浮状的污染物和水密度不同的原理,借重力沉降(或上浮)作用,使水中悬浮物分离出来。沉淀(或上浮)处理设备有沉砂池、沉淀池和隔油池。
在污水处理与利用方法中,沉淀与上浮法常常作为其他处理方法前的预处理。如用生物处理法处理污水时,一般需事先经过预沉池去除大部分悬浮物质减少生化处理构筑物的处理负荷,而经生物处理后的出水仍要经过二次沉淀池的处理,进行泥水分离保证出水水质。
2.过滤法
利用过滤介质截流污水中的悬浮物。过滤介质有钢条、筛网、砂布、塑料、微孔管等,常用的过滤设备有格栅、栅网、微滤机、砂滤机、真空滤机、压滤机等(后两种滤机多用于污泥脱水)。
3.气浮(浮选)
将空气通入污水中,并以微小气泡形式从水中析出成为载体,污水中相对密度接近于水的微小颗粒状的污染物质(如乳化油)黏附在气泡上,并随气泡上升至水面,从而使污水中的污染物质得以从污水中分离出来。根据空气打入方式不同,气浮处理方法有加压溶气气浮法、叶轮气浮法和射流气浮法等。为了提高气浮效果,有时需向污水中投加混凝剂。
4.离心分离法
含有悬浮污染物质的污水在高速旋转时,由于悬浮颗粒(如乳化油)和污水受到的离心力大小不同而被分离的方法。常用的离心设备按离心力产生的方式可分为两种:由水流本身旋转产生离心力的为旋流分离器,由设备旋转同时也带动液体旋转产生离心力的为离心分离机。
旋流分离器分为压力式和重力式两种。因它具有体积小、单位容积处理能力高的优点,近几十年来广泛用于轧钢污水处理及高浊度河水的预处理。离心机的种类很多,按分离因素分有常速离心机和高速离心机。常速离心机用于分离低浆废水效果可达60%~70%,还可用于沉淀池的沉渣脱水等。高速离心机适用于乳状液的分离,如用于分离羊毛废水,可回收30%~40%的羊毛脂。
(二)化学法
向污水中投加某种化学物质,利用化学反应来分离、回收污水中的某些污染物质,或使其转化为无害的物质。常用的方法有化学沉淀法、混凝法、中和法、氧化还原(包括电解)法等。
1.化学沉淀法
向污水中投加某种化学物质,使它与污水中的溶解性物质发生互换反应,生成难溶于水的沉淀物,以降低污水中溶解物质的方法。这种处理法常用于含重金属、氰化物等工业生产污水的处理。按使用沉淀剂的不同,化学沉淀法可分为石灰法(又称氢氧化物沉淀法)、硫化物法和钡盐法。
2.混凝法
向水中投加混凝剂,可使污水中的胶体颗粒失去稳定性,凝聚成大颗粒而下沉。通过混凝法可去除污水中细分散固体颗粒、乳状油及胶体物质等。该法可用于降低污水的浊度和色度,去除多种高分子物质、有机物、某种重金属毒物(汞、镉、铅)和放射性物质等,也可以去除能够导致富营养化物质如磷等可溶性无机物,此外还能够改善污泥的脱水性能。因此混凝法在工业污水处理中使用得非常广泛,既可作为独立处理工艺,又可与其他处理法配合使用,作为预处理、中间处理或最终处理。目前常采用的混凝剂有硫酸铝、碱式氯化铝、铁盐(主要指硫酸亚铁、三氯化铁及硫酸铁)等。
当单独使用混凝剂不能达到应有净水效果时,为加强混凝过程、节约混凝剂用量,常可同时投加助凝剂。
3.中和法
用于处理酸性废水和碱性废水。向酸性废水中投加碱性物质如石灰、氢氧化钠、石灰石等,使废水变为中性。对碱性废水可吹入含有CO2的烟道气进行中和,也可用其他的酸性物质进行中和。
4.氧化还原法
利用液氯、臭氧、高锰酸钾等强氧化剂或利用电解时的阳极反应,将废水中的有害物氧化分解为无害物质;利用还原剂或电解时的阴极反应,将废水中的有害物还原为无害物质,以上方法统称为氧化还原法。
氧化还原方法在污水处理中的应用实例有:空气氧化法处理含硫污水;碱性氯化法处理含氰污水;臭氧氧化法在进行污水的除臭、脱色、杀菌及除酚、氰、铁、锰,降低污水的BOD与COD等均有显著效果。还原法目前主要用于含铬污水处理。
(三)物理化学法
利用萃取、吸附、离子交换、膜分离技术、气提等操作过程,处理或回收利用工业废水的方法可称为物理化学法。工业废水在应用物理化学法进行处理或回收利用之前,一般均需先经过预处理,尽量去除废水中的悬浮物、油类、有害气体等杂质,或调整废水的pH值,以便提高回收效率及减少损耗。常采用的物理化学法有以下几种。
1.萃取(液-液)法
将不溶于水的溶剂投入污水之中,使污水中的溶质溶于溶剂中,然后利用溶剂与水的密度重差,将溶剂分离出来。再利用溶剂与溶质的沸点差,将溶质蒸馏回收,再生后的溶剂可循环使用。常采用的萃取设备有脉冲筛板塔、离心萃取机等。
2.吸附法
利用多孔性的固体物质,使污水中的一种或多种物质被吸附在固体表面而去除的方法。常用的吸附剂有活性炭。此法可用于吸附污水中的酚、汞、铬、氰等有毒物质,且还有除色、脱臭等作用。吸附法目前多用于污水的深度处理。吸附操作可分为静态和动态两种。静态吸附,在污水不流动的条件下进行的操作。动态吸附则是在污水流动条件下进行的吸附操作。污水处理中多采用动态吸附操作,常用的吸附设备有固定床、移动床和流动床三种方式。
3.离子交换法
用固体物质去除污水中的某些物质,即利用离子交换剂的离子交换作用来置换污水中的离子化物质。随着离子交换树脂的生产和使用技术的发展,近年来在回收和处理工业污水的有毒物质方面,由于效果良好,操作方便而得到一定的应用。
在污水处理中使用的离子交换剂有无机离子交换剂和有机离子交换剂两大类。采用离子交换法处理污水时必须考虑树脂的选择性。树脂对各种离子的交换能力是不同的。交换能力的大小主要取决于各种离子对该种树脂亲和力(又称选择性)的大小。目前离子交换法广泛用于去除污水中的杂质,例如去除(回收)污水中的铜、镍、镉、锌、汞、金、银、铂、磷酸、有机物和放射性物质等。
4.电渗析法(膜分离技术的一种)
电渗析法是在离子交换技术基础上发展起来的一项新技术。它与普通离子交换法不同,省去了用再生剂再生树脂的过程,因此具有设备简单、操作方便等优点。电渗析是在外加直流电场作用下,利用阴、阳离子交换膜对水中离子的选择透过性,使一部分溶液中的离子迁移到另一部分溶液中去,以达到浓缩、纯化、合成、分离的目的。另用于海水、苦咸水除盐,制取去离子水等。
5.反渗透(膜分离技术的一种)
利用一种特殊的半渗透膜,在一定的压力下,将水分子压过去,而溶解于水中的污染物质则被膜所截留,污水被浓缩,而被压透过膜的水就是处理过的水。目前该处理方法已用于海水淡化、含重金属的废水处理及污水的深度处理等方面。制作半透膜的材料有醋酸纤维素、磺化聚苯醚等有机高分子物质。为降低操作压力以节省设备和运转费用,目前对于膜的材料和性能正在深入试验研究。
反渗透处理工艺流程由三部分组成:预处理、膜分离及后处理。
6.超过滤法
也是利用特殊半渗透膜的一种膜分离技术。以压力为推动力,使水溶液中大分子物质与水分离,膜表面孔隙大小是主要控制因素。用于电泳涂漆废液等工业废水处理。具体参见http://www.dowater.com更多相关技术文档。
(四)生物法
污水的生物处理法就是利用微生物新陈代谢功能,使污水中呈溶解和胶体状态的有机污染物被降解并转化为无害的物质,使污水得以净化。属于生物处理法的工艺,又可以根据参与作用的微生物种类和供氧情况分为两大类即好氧生物处理及厌氧生物处理。
1.好氧生物处理法
在有氧的条件下,借助于好氧微生物(主要是好氧菌)的作用来进行的。依据好氧微生物在处理系统中所呈的状态不同,又可分为活性污泥法和生物膜法两大类。
(1)活性污泥法 这是当前使用最广泛的一种生物处理法。该法是将空气连续鼓入曝气池的污水中,经过一段时间,水中即形成繁殖有巨量好氧性微生物的絮凝体——活性污泥,它能够吸附水中的有机物,生活在活性污泥上的微生物以有机物为食料,获得能量并不断生长繁殖。从曝气池流出并含有大量活性污泥的污水——混合液,进入沉淀池经沉淀分离后,澄清的水被排放,沉淀分离出的污泥作为种泥,部分地回流进入曝气池,剩余的(增殖)部分从沉淀池排放。活性污泥法有多种池型及运行方式,常用的有普通活性污泥法、完全混合式表面曝气法、吸附再生法等。废水在曝气池内停留一般为4~6小时,能去除废水中的有机物(BOD5)90%左右。
(2)生物膜法 使污水连续流经固体填料(碎石、煤渣或塑料填料),在填料上大量繁殖生长微生物形成污泥状的生物膜。生物膜上的微生物能够起到与活性污泥同样的净化作用,吸附和降解水中的有机污染物,从填料上脱落下来的衰老生物膜随处理后的污水流入沉淀池,经沉淀泥水分离,污水得以净化而排放。
生物膜法多采用的处理构筑物有生物滤池、生物转盘、生物接触氧化池及生物流化床等。除此之外,土地处理系统(污水灌溉)和氧化塘皆属于生物处理法中的自然生物处理范畴。
2.厌氧生物处理法
在无氧的条件下,利用厌氧微生物的作用分解污水中的有机物,达到净化水的目的。它已有百年悠久历史,但由于它与好氧法相比存在着处理时间长、对低浓度有机污水处理效率低等缺点,使其发展缓慢,过去厌氧法常用于处理污泥及高浓度有机废水。近30多年来,出现世界性能源紧张,促使污水处理向节能和实现能源化方向发展,从而促进了厌氧生物处理的发展,一大批高效新型厌氧生物反应器相继出现,包括厌氧生物滤池、升流式厌氧污泥床、厌氧流化床等。它们的共同特点是反应器中生物固体浓度很高,污泥龄很长,因此处理能力大大提高,从而使厌氧生物处理法所具有的能耗小并可回收能源,剩余污泥量少,生成的污泥稳定、易处理,对高浓度有机污水处理效率高等优点,得到充分地体现。厌氧生物处理法经过多年的发展,现已成为污水处理的主要方法之一。目前,厌氧生物处理法不但可用于处理高浓度和中等浓度的有机污水,还可以用于低浓度有机污水的处理。
二、污水处理流程
污水中的污染物质是多种多样的,不能预期只用一种方法就能够把污水中所有的污染物质去除殆尽,一种污水往往需要通过几种方法组成的处理系统,才能达到处理要求的程度。
按污水的处理程度划分,污水处理可分为一级、二级和三级(深度)处理。一级处理主要是去除污水中呈悬浮状的固体污染物质,物理处理法中的大部分用作一级处理。经一级处理后的污水,BOD只能去除30%左右,仍不宜排放,还必须进行二级处理,因此针对二级处理来说,一级处理又属于预处理。二级处理的主要任务,是大幅度地去除污水中呈胶体和溶解状态的有机性污染物质(即BOD物质),常采用生物法,去除率(BOD)可达90%以上,处理后水中的BOD5含量可降至20~30mg/L,一般污水均能达到排放标准。但经二级处理后的污水中仍残存有微生物不能降解的有机污染物和氮、磷等无机盐类。深度处理往往是以污水回收、再次复用为目的而在二级处理工艺后增设的处理工艺或系统,其目的是进一步去除废水中的悬浮物质、无机盐类及其他污染物质。污水复用的范围很广,从工业上的复用到充作饮用水,对复用水水质的要求也不尽相同,一般根据水的复用用途而组合三级处理工艺,常用的有生物脱氮法、混凝沉淀法、活性炭过滤、离子交换及反渗透和电渗析等。
污水处理流程的组合,一般应遵循先易后难,先简后繁的规律,即首先去除大块垃圾及漂浮物质,然后再依次去除悬浮固体、胶体物质及溶解性物质。亦即,首先使用物理法,然后再使用化学法和生物法。
对于某种污水,采取由哪几种处理方法组成的处理系统,要根据污水的水质、水量,回收其中有用物质的可能性和经济性,排放水体的具体规定,并通过调查、研究和经济比较后决定,必要时还应当进行一定的科学试验。调查研究和科学试验是确定处理流程的重要途径。以下介绍一些常用的污水处理工艺流程。
(一)城市污水处理的典型流程
以去除污水中的BOD物质为主要对象的,一般其处理系统的核心是生物处理设备(包括二次沉淀池),处理流程如图6-1所示。污水先经格栅、沉砂池,除去较大的悬浮物质及砂粒杂质,然后进入初次沉淀池,去除呈悬浮状的污染物后进入生物处理构筑物(或采用活性污泥曝气池或采用生物膜构筑物)处理,使污水中的有机污染物在好氧微生物的作用下氧化分解,生物处理构造物的出水进入二次沉淀池进行泥水分离,澄清的水排出二沉池后再经消毒直接排放;二沉池排放出的剩余污泥再经浓缩、污泥消化、脱水后进行污泥综合利用;污泥消化过程产生的沼气可回收利用,用作热源能源或沼气发电。
以去除污水中BOD的同时达到脱氮除磷目的的城市污水处理流程有水解(酸化)-好氧生物处理工艺,A1/A2/O流程即厌氧-兼氧-好氧生物处理工艺,如图6-2所示。
(二)炼油厂废水处理的典型流程
炼油厂废水处理的典型流程如图6-3所示。
三、污泥处理、利用与处置
污泥是污水处理的副产品,也是必然产物。在城市污水和工业废水处理过程中,产生很多沉淀物与漂浮物。有的是从污水中直接分离出来的,如沉砂池中的沉渣,初沉池中沉淀物,隔油池和浮选池中的渣渣等;有的是在处理过程中产生的,如化学沉淀污泥与生物化学法产生的活性污泥或生物膜。一座二级污水处理厂,产生的污泥量约占处理污水量的0.3%~5%(含水率以97%计)。如进行深度处理,污泥量还可增加0.5~1.0倍。污泥的成分非常复杂,不仅含有很多有毒物质,如病原微生物、寄生虫卵及重金属离子等,也可能含有可利用的物质如植物营养素、氮、磷、钾、有机物等。这些污泥若不加妥善处理,就会造成二次污染。所以污泥在排入环境前必须进行处理,使有毒物质得到及时处理,有用物质得到充分利用。一般污泥处理的费用约占全污水处理厂运行费用的20%~50%。所以对污泥的处理必须予以充分的重视。
污泥处置的一般方法与流程如图6-4所示。
(一)污泥的脱水与干化
从二次沉淀池排出的剩余污泥含水率高达99%~99.5%,污泥体体积大,在堆放及输送方面都不方便,所以污泥的脱水、干化是当前污泥处理方法中较为主要的方法。
二次沉淀池排出的剩余污泥一般先在浓缩池中静止沉降,使泥水分离。污泥在浓缩池内静止停留12~24小时,可使含水率从99%降至97%,体积缩小为原污泥体积的1/3。
污泥进行自然干化(或称晒泥)是借助于渗透、蒸发与人工撇除等过程而脱水的。一般污泥含水率可降至75%左右,使污泥体积缩小许多倍。污泥机械脱水是以过滤介质(一种多孔性物质)两面的压力差作为推动力,污泥中的水分被强制通过过滤介质(称滤液),固体颗粒被截留在介质上(称滤并),从而达到脱水的目的。常采用的脱水机械有真空过滤脱水(真空转鼓、真空吸滤)、压滤脱水机(板框压滤机、滚压带式过滤机)、离心脱水机等,一般采用机械法脱水,污泥的含水率可降至70%~80%。
(二)污泥消化
1.污泥的厌氧消化
将污泥置于密闭的消化池中,利用厌氧微生物的作用,使有机物分解稳定,这种有机物厌氧分解的过程称为发酵。由于发酵的最终产物是沼气,污泥消化池又称沼气池。当沼气池温度为30~35℃时,正常情况下1m3污泥可产生沼气10~15m3,其中甲烷含量大约为50%左右。沼气可用作燃料和作为制造CCl4等化工原料。
2.污泥好氧消化
利用好氧和兼氧菌,在污泥处理系统中曝气供氧,微生物分解生物可降解的有机物(污泥)及细胞原生质,并从中获得能量。
近年来人们通过实践发现污泥厌氧消化工艺的运行管理要求高,比较复杂,而且处理构筑物要求密闭、容积大、数量多而且复杂,所以认为污泥厌氧消化法适用于大型污水处理厂污泥量大、回收沼气量多的情况。污泥好氧消化法设备简单、运行管理比较方便,但运行能耗及费用较大些,它适用于小型污水处理厂污泥量不大、回收沼气量少的场合。而且当污泥受到工业废水影响,进行厌氧消化有困难时,也可采用好氧消化法。
3.污泥的最终处理
对主要含有机物的污泥,经过脱水及消化处理后,可用作农田肥料。
脱水后的污泥,如需要进一步降低其含水率时,可进行干燥处理或加以焚烧。经过干燥处理,污泥含水率可降至20%左右,便于运输,可作为肥料使用。当污泥中含有有毒物质不宜用作肥料时,应采用焚烧法将污泥烧成灰烬,以作彻底的无害化处理,可用于填地或充作筑路材料使用。(谷腾水网)
有污水需要处理的单位,如需了解完整污水处理方案或报价,可以通过污水宝发布方案报价海选公告;全国几千家环保公司供您选择,污水宝资深工程师团队帮您寻找最省钱的污水处理方案,货比三家花最少的钱将污水处理达标。
㈡ 制碱工业的原理 详细过程
侯氏制碱法原理,是依据离子反应发生的原理进行的,离子反应会向着离子浓度减小的方向进行。也就是很多初中高中教材所说的复分解反应应有沉淀,气体和难电离的物质生成。要制纯碱,先制得溶解度较小的NaHCO3。再利用碳酸氢钠不稳定性分解得到纯碱。要制得碳酸氢钠就要有大量钠离子和碳酸氢根离子,所以就在饱和食盐水中通入氨气,形成饱和氨盐水,再向其中通入二氧化碳,在溶液中就有了大量的钠离子,铵根离子,氯离子和碳酸氢根离子,这其中NaHCO3溶解度最小,所以析出,其余产品处理后可作肥料或循环使用。
原理简介其化学方程式可以归纳为以下三步反应。
(1)NH3+H2O+CO2=NH4HCO3(首先通入氨气,然后再通入二氧化碳)
(2)NH4HCO3+NaCl=NH4Cl+NaHCO3↓(NaHCO3溶解度最小,所以析出。)
(3)2NaHCO3=Na2CO3+CO2↑+H2O(NaHCO3热稳定性很差,受热容易分解)
且利用NH4Cl的溶解度,可以在低温状态下向(2)中的溶液加入NaCl,则NH4Cl析出,得到化肥,提高了NaCl的利用率。
㈢ 工业上除油污方法:加碱溶液的原理
重油污清洗剂母料 1、中性配方:重油污清洗剂母料+超级纳米乳 化剂+香精+色素+防腐剂+水+拉丝粉 2、碱性配方:重油污清洗剂母料+超级皂化乳 化剂+香精+色素+防腐剂+水+拉丝粉 重油污清洗剂母料,是成都恒丰宏业洗涤剂厂最新研发的专门用于重油、重污、重垢的清洗剂特效核心母料,具有下列特点: 一、六大特效功能 1、超级脱脂除油能力,能快速清除各种有机油、无机油、矿物油、机械油、工业油、食用油、动物油、植物油等各种油污。2、超级自动除油能力,在不需要加温搅拌等条件下能快速自动脱脂除油。3、超级渗透乳化能力,在不加温搅拌等条件下能快速渗透到任何角落并进行乳化,让油脂、污垢无处藏身,4、超级去污能力,对常用污垢、污渍、汗斑都能轻松洗尽。5、超级净洗能力,能快速瓦解、清洗物品上的残留顽垢6、富含高性能氧漂活性物,能让白衣的更白,彩衣的更彩 二、广泛的适用性 1、广泛适用于衣物、纺织品、瓶子、塑料、五金、金属、硬表面等重油污清洗。2、、广泛适用于工业机械重油污清洗。3、广泛适用于餐具公司重油污餐具浸泡清洗。4、广泛适用于各种清洗行业的重油污清洗。 三、生产配方与生产流程(参考,自己根据成本修改相关比例) 1、重油污清洗剂母料2—10%。2、超级纳米乳化剂(超级纳米乳化剂)1—5%3、水85--97%。4、防腐剂、色素、香精适量。5、拉丝粉30克6、生产流程:先将防腐剂加入水中搅拌,然后将重油污清洗剂母料、超级纳米乳化剂(超级纳米乳化剂)、色素、香精、拉丝粉加入混合搅拌均匀就行了。若需要高稠请加四合一增稠剂,也可以加速溶耐酸碱透明增稠粉。
㈣ 粗蛋白的测定有没有比凯氏定氮更好地方法呀
主要成分是蛋白质。检验方法是剀氏定氮法。
蛋白质的测定方法
pro的测定方法分为两大类:一类是利用pro的共性,即含氮量,肽链和折射率测定pro含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定pro含量。但是食品种类很多,食品中pro含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此pro的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸液吸收,用标准酸或碱液滴定,由样品中含氮量计算出pro的含量。由于食品中pro含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。
一 凯氏定氮法
这种方法是1883年Kjeldahl发明,当时凯氏只使用H2SO4来分解试样,来定量谷物中的pro,他只知用H2SO4分解试样,而不能阐明H2SO4分解有机氮化合物生成氨的反应历程,所以只使用H2SO4分解试样,需要较长时间,后来由Gunning加入改进,他改进的办法是在消化时加入K2SO4使沸点上升,这样加快分解速度,因为温度由原来硫酸沸点的380上升到400℃,提高了不到67℃所以速度也就加快了,凯氏定氮法至今仍在使用。
我们在检验食品中pro时,往往只限于测定总氮量,然后乘以pro核算等数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗pro。
1 凯氏常量定氮法:
不论常量、半微量以及微量定氮法它们的原理都是一样的,首先第一个步骤是消化:
(1)消化:样品与硫酸一起加热消化,硫酸使有机物脱水。并破坏有机物,使有机物中的C、H氧化为CO2和H2O蒸汽逸出,而pro则分解氮,则与硫酸结合成硫酸铵,留在酸性溶液中。
(2)在消化过程中添加硫酸钾可以提高温度加快有机物分解,它与硫酸反应生成硫酸氢钾,可提高反应温度,一般纯硫酸加热沸点330℃,而添加硫酸钾后,温度可达400℃,加速了整个反应过程。此外,也可以加入硫酸钠,氢化钾盐类来提高沸点。其理由随着消化过程硫酸的不断地被分解,水分的逸出而使硫酸钾的浓度增大,沸点增加。加速了有机的分解。但硫酸钾加入量不能太大,否则温度太高,生成的硫酸氢铵也会分解,放出氨而造成损失。
为了加速反应过程,还加入硫酸铜,氧化汞或硒粉作为催化剂以及加入少量过氧化氢,次氯酸钾作为氧化剂。但为了防止污染通常使用硫酸铜。
所以有机物全部消化后,出现硫酸铜的兰绿色,它具有催化功能,还可以作为碱性反应指示剂。
(1)蒸馏:样液中的硫酸铵在碱性条件下释放出氨,在这操作中,一是加入氢氧化钠溶液要过量,二是要防止样液中氨气逸出。
(2)吸收与滴定:
蒸馏过程中放出的氨可用一定量的标准硫酸或标准盐酸溶液进行氨的吸收,然后再用标准氢氧化钠溶液反滴定过剩的硫酸或盐酸溶液,从而计算出总氮量。
半微量或微量定氮通常用硼酸溶液吸收后,再用标准盐酸直接滴定,硼酸呈微弱酸性,用酸滴定不影响指示剂变色反应,它有吸收氨的作用。
1.操作步骤:
准确称取样品中0.50-2.00g→于500ml凯氏瓶中→加10g无水K2SO4→加0.5gCuSO4→加20ml H2SO4→在通风橱中先以小火加热,待泡沫消失后,加大火力,消化至透明无黑粒后,将瓶子摇动一下使瓶壁炭粒溶于硫酸中→继续消化30分钟→至到样液呈绿色状态,停止消化,冷却→加200ml水→连接蒸馏装置→用硼酸作吸收液→在K氏瓶中加波动珠数粒和80ml50% NaOH→立即接好定氮球→加热→至到K氏瓶内残液减少到三分之一时,取出用水冲洗→用0.1N HCl滴定。
N(V2-V1)0.014
W
计算:
总氮量%= (N(V2-V1)×0.014)/W × 100
0.014----氮的毫克当量数
pro%=总氮%×K
乳制品K=6.38(N=15.7%)
小麦粉K=5.79(N=17.6%)
动物胶K=5.6(N=18.0%)
冰蛋K=6.7(N=14.8%)
大豆制品K=6.0(16.7%) K=6.25则(N=16%)
K-换称等数
各种试剂的作用:
浓H2SO4:
A :脱水使有机物炭化,然后有机物炭化生成碳,碳将H2SO4还原为SO2,本身则变为CO2
B: 氧化
C: pro与浓H2SO4生成NH3↑,CO2,SO2,H2O↑
D: NH3与H2SO4生成硫酸铵
(1)CuSO4的作用(催化剂)
CuSO4为红色沉淀,当C完全消化后,反应停止,红色消失,变为兰色,即为消化达到完全,兰色为CuSO4的颜色
(2)K2SO4的作用(提高沸点)
沸点由330℃提高到400℃加速了反应过程。
(3)硒粉和过氧化氢,氧化汞都为催化剂,但为了防止污染通常采用硫酸铜
(4)50%NaOH的作用
下面我就针对几点来说明为何影响氨化完全和速度快的因素:
(1)K氏烧瓶和取样量
如果称1g以上的样品,就需要K氏烧瓶最小500ml,800~1000ml的更好,这样的K氏烧瓶对于缩短氨化时间,加热的均匀性和完全氨化效果最好。
(2)分解剂
A H2SO4和K2SO4的添加量
有机无分解需要H2SO4量,H2SO4应根据有机物种类不同而加的量就不同,如果试样含脂类高,则加H2SO4多,为了提高分解温度,要大量添加K2SO4,但不能太多,也不能太少,太少则氨化不充分。K2SO4和H2SO4的添加比例是:
1g样品 K2SO4: H2SO4=7g:12ml
这种比例在国内外都使用,是公认的
还有一种比例: K2SO4:H2SO4=10:20ml
B 催化剂
用作催化剂的有Hg、HgO、Se,硒化合物,CuSO4、TiO2,对Hg,HgO有毒但结果好,Se与CuSO4得到结果是一种,TiO2,的结果偏低,采用不同的催化剂则消化时间不同, HgO消化麦子为38,Se与CuSO4消化麦子55,TiO2消化麦子70,所以在给出测定结果时要注明催化剂的类型。
(3)热源的强度
消化时热源的强度同迅速消化和完全氨化关系很大,即便盐类K2SO4加得多,如果热源弱,也是没有意义的,热源过强导致H2SO4损失,使氨回收率低,另外K氏瓶的容量大小,颈部的粗细和长短等,也与热源的强度有关。
(4)氨的蒸馏和吸收及滴定
蒸馏有两种:
1 直接蒸馏(装置简便,准确性好)
2 水蒸汽蒸馏
蒸馏加NaOH是50%,加的量为H2SO4量的4倍,硫酸量为12ml,则NaOH为12×4=48ml,而且一般高于这个理论值,即加到50~55ml,如果NaOH量加的不够就变成H2S, H2S是强酸,使颜色变红。
吸收液有:
1标准H2SO4 用标准碱返滴定,甲醛红指示剂
2 硼酸 用HCl进行滴定,混合指示剂
目前都用硼酸吸收液,用硼酸代替H2SO4,这样可省略了反滴定,H2SO4是强酸,要求较严,而硼酸是弱酸,在滴定时,不影响指示剂变色范围,另外硼酸为吸收液浓度在3%以上可将氨完全吸收,为保险期间一般用4%。
〈6〉实验注意事项
a.样品应时均匀的,若是固体样品应事先研细,液体样要混合均匀。
b.样品放入K氏烧瓶时,不要黏附瓶颈上,万一黏附可用少量水缓慢冲下,以免被检样消化不完全,使结果偏低。
c.消化时,如不容易呈透明溶液,可将K氏烧瓶放冷后,加入30%过氧化氢催化剂2~3ml,促使氧化。
d.在整个消化过程中,不要用强火,保持和缓的沸腾,使火力集中在K氏烧瓶底部,以免附在壁上的蛋白质在无硫酸存在的情况下,使氮有损失。
e.如硫酸缺少,过多的硫酸钾会引起氨的损失,这时会形成硫酸氢钾,而不与氨作用,因此当硫酸过多底物被消耗掉或样品中脂肪含量过高时,要添加硫酸量。
f.混合指示剂在碱性溶液中呈绿色,在中性溶液中呈灰色,在酸性溶液中呈红色,如果没有溴甲酚绿,可单独使用0.1%甲醛红乙醇溶液。
g.氨是否完全蒸馏出来,PH试纸检查馏出液是否为碱性。
h.向蒸馏瓶中加入浓碱时,往往出现褐色沉淀无。这时由于分解促进剂与加入的硫酸铜反应,生成氢氧化铜,经加热后又分解生成氧化铜的沉淀,有时Cu离子与氨作用生成深兰色的络合物。
i.消化剂绿色后继续消化30分钟即可。
2 K氏微量定氮仪法
3 K氏半微量定氮仪法 (2 、 3原理一样)
操作方法大同小异,半微量法消化后,定容100ml,然后吸25ml蒸馏吸收液吸收。
N(V2-V1)0.014
W*10/100
计算总氮%=(N(V2-V1)×0.014)/(W×10/100)×100
对于微量定氮仪法,仪器有了改进,样液称样少,蒸馏消化液也少,其它基本一样。
4 K氏自动定氮法
原理与上面一样,仪器,采用K氏自动定氮仪:其装置内具有自动加碱蒸馏装置,自动吸收和滴定装置以及自动数字显示装置,消化装置:由优质玻璃制成的K氏消化瓶以及红外线装置的消化炉。
二 水扬酸比色法:
1 原理: 样品中的pro经H2SO4消化转化为铵盐溶液后,在一定的酸度和温度下与水扬酸钠和次氯酸钠作用生成有颜色的化合物,可以在波长660nm处比色测定,求出样品含氮量,计算蛋白质含量。
2 方法 (1)标准曲线的绘制
取6个25ml容量瓶编号 0 1 2 3 4 5 6
分别加空白酸液 2ml
分别加磷酸盐缓冲液 5ml
稀释至总体体积至15ml
分别加水扬酸钠 5ml
37C水浴 15分钟
加入次氯酸钠 2.5ml
37C水浴 15分钟
取出试液于660nm下进行比色,绘标准曲线。
(2)样品处理:
准确称样0.20~1.00g→于K氏瓶中→加15mlH2SO4和5g催化剂→电炉上加热到沸腾后→加大
火力消化→直到出现暗绿色时→摇动瓶子→K氏瓶全部消化后→冷却→加水至250ml容量
瓶。
(3)样品测定:
准确吸取上述消化溶液10ml→于100ml容量瓶中→定容→准确吸2ml→于25ml容量瓶中→加
5ml磷酸缓冲液→以下操作与标准曲线绘制的步骤相同
并以试剂空白微对照,测得样液的光密度,从标准曲线查出其含氮量。
(4)计算
C×F
含氮%= ---------------------------× 100
W×1000×1000
C---从标准曲线中查出测定样液的含氮量(Ug)
F---样品溶液的稀释倍数
W---样品重量(g)
pro%=总氮%×K(K可为6.25,也可查)
3注意事项:
A 当天消化液最好当天测定,结果重现性好,如果样液改至第二天比色就有变化。
B 当在PH和试剂适当范围内加入氯源后,颜色的显色和温度有关,应严格控制反应温度。
C 这种方法测定结果基本与K氏法一致。
4 试剂
(1)氯标液:称经110℃干燥2h的硫酸铵0.4719g→于烧瓶中定容10ml→此液1ml相当于
1.0mg氮标液→使用时配制成1ml相当于2.50Ug氮标液。
(2)空白酸液:称0.50g蔗糖→加15mlH2SO4和5g催化剂→与样品一样消化→定容250ml→
使用时吸收此液10ml→加水至100ml为工作液备用。
(3)磷酸盐缓冲液:称7.1g磷酸氢二钠→加38g磷酸三钠→加20g三九石酸钾钠→加400ml水
溶解→过滤→另称35gNaOH溶于100ml水中→冷至室温→缓缓地搅拌加入磷酸盐溶液中→加
入水稀释至1000ml备用。
(4)水扬酸钠溶液:称25g水杨酸钠和0.15g亚硝基铁氰化钠溶于200ml水中过滤,加水稀释
至500ml
(5)次氯酸钠溶液:吸4ml安替富民液,用水稀释至100ml
5 仪器
(1)分光光度计
(2)恒温水浴
三 紫外分光光度法
1 原理:
pro及其降解产物的芳香环基 ,在紫外区内对某一波长具有一定的光选择吸收,在280nm下,光吸收与pro浓度(3~8mg/ml)成直线关系,因此,通过测定pro溶液的吸光度,并参照事先用K氏定氮法分析的标准样品,从标准曲线查出蛋白质的含量。
2 试剂:
(1) 0.1mol/l柠檬酸水溶液。
(2)8mol/l脲[(NH2)2CO]的2NNaOH溶液。 脲的2N氢氧化钠液
(3) 95%乙醇
(4) 无水乙醚
3 仪器
(1) 751型的紫外分光光度计
(2) 离心机
4 操作方法
(1)标准曲线的绘制:准确称取样品.2.00g,置于50ml烧瓶中,加入0.1mol/l柠檬酸水溶液30ml,搅拌30分钟使其充分溶解,用四层纱布过滤于玻璃离心管中,以每秒钟3000~5000转的速度离心10分钟,分别吸出上清夜0.5,1.0,1.5,2.0,2.5,3.0ml于6个10ml容量瓶钟,每个容量瓶,8mol/l脲的氢氧化钠溶液充分摇2分钟(如果离心再次离心),取透明液于比色皿中,在280nm下测定其吸光度。(做参比值)
以事先用K氏定氮法测定的样品中蛋白质的含量微横坐标上面的吸光度为纵坐标,绘制标准曲线。
(2)样品测定
准确称取试样1.00g→于50ml烧杯中→加0.1mol/l柠檬酸溶液30ml→搅拌10分钟→四层纱布过滤到离心管中→用8mol/L脲的NaOH溶液定容,摇匀后于280nm下测吸光度,从标准曲线上查出pro的含量。
计算: 蛋白质= C/W× 100
C----从标准曲线上查得的pro含量(mg)
W----测定样品溶液相当于样品量(mg)
说明:
a.此法运用于糕点,牛乳和可溶性pro样品,测定糕点时,应把表皮颜色去掉。
b.温度对pro水解有影响,操作温度应控制在20~30℃。
四 双缩脲法-皮尼克法
1 原理:
双缩脲在碱性条件中,能与CuSO4结合成红紫色的络合物。pro分子中含有肽链与双缩脲结构相似,也呈此反应。本法直接用于测定像小麦粉等固体试样的pro含量。但作为铜的稳定剂,酒石酸钾钠比甘油好些。小麦粉中的pro能直接地一边抽出一边进行定量。
2 试剂
⑴甘油作为稳定剂:取10ml10N KOH溶液,3.0ml甘油加到937ml水中,激烈搅拌,同时加入4%CuSO450ml。
⑵酒石酸钠作稳定剂,吸10ml10N KOH溶液和20ml25%酒石酸钾钠溶液加到930ml水中,激烈搅拌,同时加入4%CuSO4液40ml。
配制以上两种溶液、试剂,必须澄清,无氢氧化铜生成,否则重配。
3 方法:样品测定
标准曲线绘制
准确称0.6g样品→使用试剂(1)
准确称0.5g样品→使用试剂(2)
假如用试剂(2)
(1)准确称样→0.5g→于80ml离心管→加1mlClC4→混合→加50ml酒石酸钾钠稳定剂→盖上盖子离心10min(4000转/分)→放置1小时→吸混合液15ml→于20ml离心管中→离心到完全透明→取上清夜5ml于→10ml容量瓶→加水定容→于550nm处测定吸光度,从标准曲线上查出pro含量。
(2)标准曲线绘制
按样品测定方法,根据样品中pro含量,取离心澄清样液0.0 2.0 4.0 8.0 10.0ml于10ml容量瓶中→分别加水定容,按照样品测定其吸光度。
事先用K氏定氮法测定样品中pro含量为横坐标,以上述吸光度为纵坐标绘制标准曲线。
4 计算:蛋白质%=C/W×100
C----从标准曲线上查得得pro含量(mg)
W----测定样液时相当于样品重量(mg)
㈤ 氢气发生器有什么样的工作原理
氢气发生器产出的氢气有两种不同的来源。
一、纯水电解制氢工作原理:把满足要求的电解水(电阻率大于1MΩ/cm,电子或分析行业用的去离子水或二次蒸馏水皆可)送入电解槽阳极室,通电后水便立刻在阳极分解:2H2O=4H++2O-2,分解成的负氧离子(O-2),随即在阳极放出电子,形成氧气(O2),从阳极室排出,携带部份水进入水槽,水可循环使用,氧气从水槽上盖小孔放入大气。氢质子以水合离子(H+XH2O)的形式,在电场力的作用下,通过SPE离子膜,到达阴极吸收电子形成氢气,从阴极室排出后,进入气水分离器,在此除去从电解槽携带出的大部分水份,含微量水份的氢气再经干燥器吸湿后,纯度便达到99.999%以上。
二、碱液电解制氢工作原理:是传统隔膜碱液电解法。电解槽内的导电介质为氢氧化钾水溶液,两极室的分隔物为航天电解设备用优质隔膜,与端板合为一体的耐蚀、传质良好的格栅电极等组成电解槽。向两极施加直流电后,水分子在电解槽的两极立刻发生电化学反应,在阳极产生氧气,在阴极产生氢气。
俊齐仪器设备(上海)有限公司氢气发生器操作简便,安全可靠,一次性加碱,日常使用只需补充 蒸馏 水,启动电源开关即可产氢。(可供多台色谱),气路部分全部采用不锈钢管(电解抛光,超音清洗),设有过压保护装置,两级净化。输出流量稳定,自动跟踪,纯度不衰减,可连续使用 。
㈥ 如何用过加碱液自动控制PH值自动控制PH值的设备,如何操作
双碱法脱硫工艺的碱液母池ph多少合适一般来讲,维持浆液池的PH值在11左右,再生池的PH值在6.8左右,或者6.8-7.0之间,中性或略微酸性。既能提高吸收液的脱硫效率,又有助于减小塔进口硫酸钙的过饱和度,防止系统结垢堵塞。也可以加入脱硫增效剂提高脱硫效率,比如常见的欣格瑞SGR系列。必要时向系统中投加一定量的Na2CO3做为补充。
㈦ 蒸氨加碱的原理是什么
蒸氨塔是使溶解于循环水中的氨气释放的解吸塔,从属于解吸塔,是使溶解于循环水中的氨气通过热载体的传热而挥发释放出来的操作设备,采用一般的载热体水蒸气作为加热剂,使循环水液面上氨气的平衡蒸汽压大于热载体中氨气的分压,汽液两相逆流接触,进行传质传热,从而使氨气逐渐从循环水中释放出来,在塔顶得到氨蒸汽与水蒸气的混合物,在塔底得到较纯净的循环水。总之,加碱源的目的是使固定铵盐转化为挥发铵盐。
常用的蒸氨塔在进行清理时是将清水通入蒸氨塔进行清洁,这种方式的清洁效果不好,清理不干净,且效率较慢,实用性不高。
㈧ 清洗碱罐的工作原理是什么
碱洗塔循环泵是用于碱洗塔装置配套使用的水泵,碱洗塔,中下二段为碱洗段,上段为水洗段,中段为浓碱液,下段碱液为中段流下的稀碱液,并由稀碱循环泵使之循环,新碱液用碱洗塔循环水泵连续送入中段。
1、CIP系统简介
CIP清洗即原位清洗、在线清洗、就地清洗。
CIP清洗即不分解生产设备,又可用简单操作方法安全自动的清洗系统,几乎被引进到所有的食品,饮料及制药等工厂。CIP清洗不仅能清洗机器,而且还能控制微生物。
CIP清洗装置其有以下的优点:
1、能使生产计划合理化及提高生产能力。
2、驭手洗相比较,不但没有因作业者之差异而影响清洗效果,还能提高其产品质量。
3、能防止清洗作业中的危险,节省劳动力。
4、可节约清洗剂、蒸汽、水及生产成本。
5、能增加机器部件的使用年限。
2、CIP清洗的作用机理
化学能主要是加入其中的化学试剂产生的,它是决定洗涤效果^主要的因素。一般厂家可根据清洗对象污染性质和程度、构成材质、水质、所选清洗方法、成本和安全性等方面来选用洗涤剂。常用的洗涤剂有酸、碱洗涤剂和灭菌洗涤剂。
酸、碱洗涤剂的优点有:能将微生物全部杀死;去除有机物效果较好。缺点有:对皮肤有较强的刺激性;水洗性差。
灭菌剂的优点有:杀菌效果迅速,对所有微生物有效;稀释后一般无毒;不受水硬度影响;在设备表面形成薄膜;浓度易测定;易计量;可去除恶臭。缺点有:有特殊味道;需要一定的储存条件;不同浓度杀菌效果区别大;气温低时易冻结;用法不当会产生副作用;混入污物杀菌效果明显下降;洒落时易玷污环境并留有痕迹。
酸碱洗涤剂中的酸是指1%—2%硝酸溶液,碱指1%—3%氢氧化钠在65℃—80℃使用。灭菌剂为经常使用的氯系杀菌剂,如次亚氯酸钠等。
热能在一定流量下,温度越高,黏度系数越小,雷诺数(Re)越大。温度的上升通常可以改变污物的物理状态,加速化学反应速度,同时增大污物的溶解度,便于清洗时杂质溶液脱落,从而提高清洗效果、缩短清洗时间。
运动能的大小是由Re来衡量的。Re的一般标准为:从壁面流下的薄液,槽类Re>200,管类Re>3000,而Re>30000效果^好。
水的溶解作用水为极性化合物,对油脂性污物几乎无溶解作用,对碳水化合物、蛋白质、低级脂肪酸有一定的溶解作用,对电解质及有机或无机盐的溶解作用较强。
机械作用由运动而产生的作用,如搅拌、喷射清洗液产生的压力和摩擦力等。
3、CIP清洗效果的影响因素
设备污染程度、污染物性质及产品生产工艺等它是决定清洗效果的重要原因,如果清洗时不根据其特性来确定CIP的条件,很难达到理想的目的或因此导致清洗费用过高等缺陷。
清洗剂种类目前食品行业应用的清洗剂种类很多,主要有酸碱类等,其中氢氧化钠和硝酸应用^为广泛。碱类洗涤剂对含蛋白质较高的污物有很好的去除作用,但对食品橡胶垫圈等有一定腐蚀作用。酸类洗涤剂对碱性清洗剂不能去除的顽垢有较好效果,但对金属有一定的腐蚀性,应添加一些抗腐蚀剂或用清水冲洗干净。清洗剂还有表面活性剂、螯合剂等,但只在特殊需要时才使用,如清洗用水硬度较高时可使用螯合剂去除金属离子。
清洗剂浓度提高清洗剂浓度时,可适当缩短清洗时间或弥补清洗温度的不足。清洗剂浓度增高会造成清洗费用的增加,而且浓度的增高并不一定能有效地提高清洗效果,因此厂家有必要根据实际情况确定合适的浓度。
洗液温度通常而言,温度每升高10℃,化学反应速度会提高1.5—2.0倍,清洗速度也相应提高,清洗效果较好。清洗温度一般不低于60℃。
清洗时间清洗时间受许多因素的影响,如清洗剂种类、浓度、清洗温度、产品特性、生产管线布置以及设备设计等。清洗时间必须合适,太短不能对污物进行有效去除,太长则浪费资源。
以饮料行业为例,其清洗程序如下:
1.洗涤3—5分钟,常温或60℃以上的热水;碱洗10—20分钟,1%—2%溶液,60℃—80℃;中间洗涤5—10分钟,60℃以下的清水;^后洗涤3—5分钟,清水。
2.洗涤3—5分钟,常温或60℃以上的热水;碱洗5—10分钟,1%—2%溶液,60℃—80℃,中间洗涤5—10分钟,60℃以下的清水,杀菌10—20分钟,90℃以上的热水。
清洗流量保证流量实际上是为了保证清洗时的清洗液流速,从而产生一定的机械作用,即通过提高流体的湍动性来提高冲击力,取得一定的清洗效果。
㈨ 食品干货涨发,为什么选择碱发放碱起什么作用原理
碱发就是指干货原料先用清水浸软后,再放人食用纯碱液或枧水的溶液中浸,使其去韧回软,再用清水漂净碱味的方法。
碱发利用的是纯碱的电离和“腐蚀”作用,在水的浸润作用下,使干货原料带上电荷,加强亲水基的亲水作用,使其能充分吸水回软并适度除韧。纯碱是一种强电解质,在水中完全电离,产生的碳酸根离子发生水解生成氢氧根离子而使溶液呈碱性。干货原料放在溶液中,碱会对表面膜“腐蚀”,方便水对干货原料的渗入;稀碱溶液中的氢氧根离子能破坏蛋白质的一些副键,使蛋白质轻度变性,这样就使肌肉纤维结构发生松弛,也有利于碱水的渗透和扩散;碱能促使油脂的水解,消除油脂对水分扩散的阻碍,加快了水分渗透和扩散的速度;碱溶液使蛋白质的亲水基团大量暴露,从而使蛋白质的亲水性大大增强,加快了干货的吸水,令体积膨润,经过碱发的原料,体积会比一般浸发的胀大几倍;在碱的化学作用下有些原料变得爽脆;碱水溶还具有脱脂作用,经过碱水浸泡后,原料不但易吸水涨大。而且能去除油脂,变得洁净;碱发后的原料放在清水中漂洗时,由于渗透压的原理仍然会继续膨胀。
碱水发只适合于一些特别坚韧,用一般浸发方法不能完全涨发的干货原料。如鱿鱼、墨鱼。