㈠ 什么是液压传动特点是什么由哪几部分组成
1、液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。版
2、液压传动系统主要由5部分组权成:动力元件、执行元件、控制调节元件、辅助元件、工作介质。
3、特点:传动平稳,操作省力等,但存在压力损失等。
(1)液压传动装置是一种扩展阅读:
与机械传动比较,液压传动具有以下主要优点:
1、由于一般采用油液作为传动介质,因此液压元件具有良好的润滑条件;工作液体可以用管路输送到任何位置,允许液压执行元件和液压泵保持一定距离;液压传动能方便地将原动机的旋转运动变为直线运动。
这些特点十分适合各种工程机械、采矿设备的需要,其典型应用实例就是煤矿井下使用的单体液压支柱和液压支架。
2、可以在运行过程中实现大范围的无级调速,其传动比可高达1:1 000,且调速性能不受功率大小的限制。
3、易于实现载荷控制、速度控制和方向控制,可以进行集中控制、遥控和实现自动控制。
4、液压传动可以实现无间隙传动,因此传动平稳,操作省力,反应快,并能高速启动和频繁换向。
5、液压元件都是标准化、系列化和通用化产品,便于设计、制造和推广应用。
㈡ 液压系统有什么工作原理
液压站又称液压泵站,是独立的液压装置。它按逐级要求供油。并控制液压油流的方向、压力和流量,适用于主机与液压装置可分离的各种液压机械上。用户购后只要将液压站与主机上的执行机构(油缸或油马达)用油管相连,液压机械即可实现各种规定的动作和工作循环。
液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功能为:
泵装置--上装有电机和油泵,是液压站的动力源,将机械能转化为液压油的压力能。
集成块--由液压阀及通道体组装而成。对液压油实行方向、压力和流量调节。
阀组合--板式阀装在立板上,板后管连接,与集成块功能相同。
油箱--板焊的半封闭容器,上还装有滤油网、空气滤清器等,用来储油、油的冷却及过滤。
电气盒--分两种型式。一种设置外接引线的端子板;一种配置了全套控制电器。
液压站的工作原理:电机带动油泵转动,泵从油箱中吸油供油,将机械能转化为液压站的压力能,液压油通过集成块(或阀组合)实现了方向、压力、流量调节后经外接管路并至液压机械的油缸或油马达中,从而控制液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。
㈢ 液压传动知识
(一)液压传动概述
液压传动是以液体为工作介质来传递动力和运动的一种传动方式。液压泵将外界所输入的机械能转变为工作液体的压力能,经过管道及各种液压控制元件输送到执行机构→油缸或油马达,再将其转变为机械能输出,使执行机构能完成各种需要的运动。
(二)液压传动的工作原理及特点
1.液压传动基本原理
如图2-62所示为一简化的液压传动系统,其工作原理如下:
液压泵由电动机驱动旋转,从油箱经过过滤器吸油。当控制阀的阀心处于图示位置时,压力油经溢流阀、控制阀和管道(图2-62之9)进入液压缸的左腔,推动活塞向右运动。液压缸右腔的油液经管道(图2-62之6)、控制阀和管道(图2-62之10)流回油箱。改变控制阀的阀心的位置,使之处于左端时,液压缸活塞将反向运动。
改变流量控制阀的开口,可以改变进入液压缸的流量,从而控制液压缸活塞的运动速度。液压泵排出的多余油液经限压阀和管道(图2-62之12)流回油箱。液压缸的工作压力取决于负载。液压泵的最大工作压力由溢流阀调定,其调定值应为液压缸的最大工作压力及系统中油液经阀和管道的压力损失之总和。因此,系统的工作压力不会超过溢流阀的调定值,溢流阀对系统还起着过载保护作用。
在图2-62所示液压系统中,各元件以结构符号表示。所构成的系统原理图直观性强,容易理解;但图形复杂,绘制困难。
工程实际中,均采用元件的标准职能符号绘制液压系统原理图。职能符号仅表示元件的功能,而不表示元件的具体结构及参数。
图2-63所示即为采用标准职能符号绘制的液压系统工作原理图,简称液压系统图。
图2-62 液压传动系统结构原理图
1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀
图2-63 液压传动系统工作原理图
1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀
2.液压传动的特点
(1)液压传动的主要优点
1)能够方便地实现无级调速,调速范围大。
2)与机械传动和电气传动相比,在相同功率情况下,液压传动系统的体积较小,质量较轻。
3)工作平稳,换向冲击小,便于实现频繁换向。
4)便于实现过载保护,而且工作油液能使传动零件实现自润滑,因此使用寿命较长。
5)操纵简单,便于实现自动化,特别是与电气控制联合使用时,易于实现复杂的自动工作循环。
6)液压元件实现了系列化、标准化和通用化,易于设计、制造和推广应用。
(2)液压传动的主要缺点
1)液压传动中不可避免地会出现泄漏,液体也不可能绝对不可压缩,故无法保证严格的传动比。
2)液压传动有较多的能量损失(泄漏损失、摩擦损失等),故传动效率不高,不宜作远距离传动。
3)液压传动对油温的变化比较敏感,不宜在很高和很低的温度下工作。
4)液压传动出现故障时不易找出原因。
(三)液压传动系统的组成及图形符号
1.液压传动系统的组成
由上述例子可以看出,液压传动系统除了工作介质外,主要由四大部分组成:
1)动力元件——液压泵。它将机械能转换成压力能,给系统提供压力油。
2)执行元件——液压缸或液压马达。它将压力能转换成机械能,推动负载做功。
3)控制元件——液压阀(流量、压力、方向控制阀等)。它们对系统中油液的压力、流量和流动方向进行控制和调节。
4)辅助元件——系统中除上述三部分以外的其他元件,如油箱、管路、过滤器、蓄能器、管接头、压力表开关等。由这些元件把系统连接起来,以支持系统的正常工作。
液压系统各组成部分及作用如表2-6所示。
表2-6 液压系统组成部分的作用
2.液压元件的图形符号
图2-64是液压千斤顶的结构原理示意图。它直观性强,易于理解,但难于绘制。特别是当液压系统中元件较多时更是如此。
图2-64 液压千斤顶的结构原理图
1—杠杆;2—泵体;3,11—活塞;4,10—油腔;5,7—单向阀;6—油箱;8—放油阀;9—油管;12—缸体
为了简化原理图的绘制,液压系统中的元件可采用符号来表示,并代表元件的职能。使用这些图形符号可使系统图即简单明了又便于绘制,如果有些液压元件职能无法用这些符号表达时,仍可采用它的结构示意图形式。如表27为液压泵的图形符号;表2-8为常用控制方式的图形符号。欲了解更多液压元件的图形符号,可参阅相关书籍。
表2-7 液压泵的图形符号
表2-8 常用控制方式图形符号
(四)液压传动的主要元件
1.液压泵
是一种能量转换装置。它将机械能转换为液压能,为液压系统提供一定流量的压力油液,是系统的动力元件。
液压泵的结构类型有齿轮式、叶片式和柱塞式等。目前钻探设备的液压系统中主要采用前两种形式。
(1)齿轮泵
齿轮泵分为外啮合和内啮合两种形式。外啮合式齿轮泵由于结构简单,价格低廉,体积小质量轻,自吸性能好,工作可靠且对油液污染不敏感,所以应用比较广泛。
1)齿轮泵的工作原理。齿轮泵由泵壳体,两侧端盖及由各齿间形成密封的工作空间组成。齿轮的啮合线把容腔分隔为两个互不相通的吸油腔和排油腔。当齿轮按图示方向旋转时吸油一侧的轮齿逐渐分离,工作空间的容腔逐步增大,形成局部真空。此时油箱中的油液在外界大气压的作用下进入吸油容腔,随着齿轮的旋转,齿间的油液带到排油一侧。由于此侧的轮齿是逐步啮合,工作空间的容腔缩小,油液受挤压获得能量排出油口并输入液压系统。
2)齿轮泵的结构。YBC-45/80齿轮泵是钻探设备常用的一种液压泵,额定流量45L/min,额定泵压8MPa(图2-65)。该泵主要由泵体、泵盖、主动齿轮、被动齿轮及几个轴套等组成。齿轮与轴呈一体,以4只铝合金轴套支撑于泵体内,泵盖与泵体用螺栓紧固,端面及泵轴处均以密封圈密封,两个轴套(图2-65之7与19)在压力油的作用下有一定的轴向游动量,油泵运转时与齿轮端面贴紧,减少轴向间隙同时在轴套和泵盖之间有封严板等,将吸排油腔严格分开,防止窜通以提高泵的容积效率。在轴套靠近齿轮啮合处开有卸荷槽。泵主轴伸出端以半圆键与传动装置连接,接受动力。
图2-65 YBC—45/80齿轮泵
1—卡圈;2—油封;3—螺栓;4—泵盖;5,13,20—O型密封圈;6—封严板;7,10,17,19—轴套;8—润滑油槽;9—主动齿轮;11—进油口;12—泵体;14—油槽;15—排油口;16—定位钢丝;18—被动齿轮;21—油孔;22—压力油腔
3)齿轮泵的流量。齿轮泵的流量可看作是两个齿轮的齿槽容积之和。若齿轮齿数为z,模数为m,节圆直径为D(D=z·m),有效齿高h=2m,齿宽为b时,泵的流量Q为
Q=πDhb=2πzm2b
考虑齿间槽比轮齿的体积稍大一些,通常取π为3.33加以修正,还应考虑泵的容积效率ηv,则齿轮泵每分钟的流量为
地勘钻探工:基础知识
(2)叶片泵
叶片泵与齿轮泵相比较具有结构紧凑,外形尺寸小,流量均匀,工作平稳噪音小,输出压力较高等优点,但结构较复杂,自吸性能差,对油液污染较敏感。在液压钻机中也有采用。
叶片泵分为单作用和双作用两种。前者可作为变量泵,后者只能作定量泵。
2.液压马达
液压马达是将液压能转换为机械能的装置,是液压系统的执行元件。其结构与液压泵基本相同,但由于功能和工作条件不同,一般液压泵和液压马达不具有可逆性。
液压马达按结构特点分为齿轮式、叶片式和柱塞式三类。钻探设备中常用柱塞式液压马达。
如图2-66所示,当压力油经配油盘进入缸体的柱塞时,柱塞受油的作用向外伸出,并紧紧抵在斜盘上,这时斜盘对柱塞产生一法向反作用力F。由于斜盘中心线与缸体轴线倾斜角为δM,所以F可分解为两个分力,其中水平分力Fx与柱塞推力相平衡,而垂直分力Fg则对缸体产生转矩,驱动缸体及马达轴旋转。若从配油盘的另一侧输入压力油,则液压马达朝反方向旋转。
图2-66 轴向柱塞式液压马达工作原理
1—斜盘;2—缸体;3—柱塞;4—配油盘;5—主盘
若液压马达的排量为Q,输入液压马达的液压力为P,机械效率为ηm,则液压马达的输出转矩M为:M=PQηm/2π。
3.液压缸
液压缸是液压系统的执行元件。它的作用是将液压能转变为机械能,使运动部件实现往复直线运动或摆动。液压缸结构简单,使用方便,运动平稳,工作可靠,在钻探设备中应用十分广泛。液压缸的种类很多,按结构类型可分为活塞式、柱塞式和摆动式三种。其中活塞式液压缸最常用。活塞或液压缸可分为单出杆式和双出杆式两种。其固定方式可以是缸体固定或活塞杆固定。
(1)单出杆活塞式液压缸
如图2-67所示为液压式钻机给进油缸的结构。它由活塞、活塞杆、缸筒、上盖、下盖、密封圈和压紧螺母等组成。活塞杆与活塞以螺纹连接成一体。活塞环槽中配装的活塞环及上盖处的密封圈等用以保证缸内具有良好的密封性。在液缸的上下盖上设有输油口,压力油经输油口进入液缸的上、下腔,即推动活塞移动,并通过活塞杆顶端的连接螺母带动立轴上行或下行。由图示结构可知,单出杆液压缸活塞两侧容腔的有效工作面积是不相等的,因此当向两腔分别输入压力和流量相等的油液时,活塞在两个方向的推力和运行速度是不相等的。
图2-67 钻机给进油缸的结构
(2)双活塞杆式液压缸
双活塞杆式液压缸结构,组成件与单活塞杆液压缸基本相同,所不同的是活塞左右两端都有活塞杆伸出,可以连接工作部件,实现往复运动。由图示结构可知,
两侧活塞杆直径相同,当两腔的供油压力和流量都相等时,两个方向的推力和运行速度也相等。
4.液压控制阀
液压控制阀是液压系统中的控制元件,用于控制系统的油液流动方向及压力和流量的大小,以保证各执行机构工作的可靠、协调和安全性。
液压控制阀按其用途和工作特点不同,通常可分为方向控制阀(如单向阀和换向阀等)、压力控制阀(如溢流阀、减压阀和顺序阀等)和流量控制阀(如节流阀和调速阀等)。这3种阀可根据需要互相组合成为集成式控制阀,如液压式钻机或其他工程机械就是将一个或多个换向阀、调压溢流阀和流量阀等组装在一起成为集中手柄控制的液压操纵阀。
(五)液压传动系统的基本回路简介
1.压力控制回路
主要是利用压力控制阀来控制系统压力,实现增压、减压、卸荷、顺序动作等,以满足工作机构对力或力矩的要求。如图2-68所示为一减压回路,由于油缸G往返时所需的压力比主系统低,所以在支路上设置减压阀,实现分支油路减压。
图2-68 减压回路
2.速度控制回路
主要有定量泵的节流调速、变量泵和节流阀的调速、容积调速等回路,可以实现执行机构不同运动速度(或转速)的要求。在定量泵的节流调速回路中,采用节流阀,调速阀或溢流调速阀来调节进入液压缸(或液压马达)的流量。根据阀在回路中的安装位置,分为进口节流、出口节流和旁路节流3种。
3.换向控制回路
换向控制回路是利用各种换向阀或单向阀组成的控制执行元件的启动、停止或换向的回路。常见的有换向回路、闭锁回路、时间制动的换向回路和行程制动的换向回路等。
如图2-69所示是简化的工作台作往复直线运动的液压系统图。为了控制工作台的往复运动,在这个系统中设置了一个手动换向阀,用来改变液流进入液压缸的方向。当手动换向阀的阀心在最右端时(图2-69a),压力油由P—A,进入液压缸左腔。此时,右腔中的油液由B—O流回油箱,因而推动了活塞连同工作台一起向右运动。
若把手动换向阀的阀心扳到中间位置(图2-69b),压力油的进油口P与回油口O都被阀心封闭,工作台停止运动。
如果把阀心扳到最左端,压力油从P—B进入液压缸右腔(图2-69c),左腔中的油液由A—O回油箱,从而推动活塞连同工作台向左运动,完成换向动作。
图2-69 换向工作原理图
4.同步回路
当液压设备上有两个或两个以上的液压油缸,在运动时要求能保持相同的位移和速度,或要求以一定的速度比运动时,可采用同步回路。
5.顺序动作回路
当用一个液压泵驱动几个要求按照一定顺序依次动作的工作机构时,可采用顺序动作回路。实现顺序动作可以采用压力控制、行程控制和时间控制等方法。
㈣ 什么是液压传动 举一些例子,在实际中有哪些应用
液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。例如汽车液压传动系统、军事工业用液压系统火炮操纵装置、舰船减摇装置、飞行器仿真等。
在液体传动中,根据其能量传递形式不同,又分为液力传动和液压传动。液力传动主要是利用液体动能进行能量转换的传动方式,如液力耦合器和液力变矩器。
液压传动是利用液体压力能进行能量转换的传动方式。在机械上采用液压传动技术,可以简化机器的结构,减轻机器质量,减少材料消耗,降低制造成本,减轻劳动强度,提高工作效率和工作的可靠性。
(4)液压传动装置是一种扩展阅读:
液压传动主要应用如下:
1、一般工业用液压系统塑料加工机械(注塑机)、压力机械(锻压机)、重型机械(废钢压块机)、机床(全自动六角车床、平面磨床)等;
2、行走机械用液压系统工程机械(挖掘机)、起重机械(汽车吊)、建筑机械(打桩机)、农业机械(联合收割机)、汽车(转向器、减振器)等;
3、钢铁工业用液压系统 冶金机械(轧钢机)、提升装置(升降机)、轧辊调整装置等;
4、土木工程用液压系统 防洪闸门及堤坝装置(浪潮防护挡板)、河床升降装置、桥梁操纵机构和矿山机械(凿岩机)等;
5、发电厂用液压系统涡轮机(调速装置)等;
6、特殊技术用液压系统 巨型天线控制装置、测量浮标、飞机起落架的收放装置及方向舵控制装置、升降旋转舞台等;
7、船舶用液压系统 甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等。
㈤ 液压系统的工作原理是什么
液压传动装置本质上是一种能量转换装置,它先将机械能转换为便于输送的液压能,后又将液压能转换为机械能做功。
㈥ 液压传动装置本质上是一种能量转换装置把什么转化为液压能再把液压能转化为机
液压传动装置本质上是一种能量转换装置,把(电能)转化为液压能,再把液压能转化为(机械能)。
㈦ 液压传动和液力传动的区别是什么
1、定义不同
液压传动:液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。在液体传动中,根据其能量传递形式不同,又分为液力传动和液压传动。
液力传动主要是利用液体动能进行能量转换的传动方式,如液力耦合器和液力变矩器。液压传动是利用液体压力能进行能量转换的传动方式。
液力传动:液力传动是液体传动的一个分支,它是由几个叶轮组成的一种非刚性连接的传动装置。这种装置把机械能转换为液体的动能,再将液体的动能转换为机械能,起着能量传递的作用。
2、特点不同
液压传动:在机械上采用液压传动技术,可以简化机器的结构,减轻机器质量,减少材料消耗,降低制造成本,减轻劳动强度,提高工作效率和工作的可靠性
液力传动:液力传动有诸多优点,如自动适应性,防振、隔振性能,还具有过载保护、自动协调、分配负载的功能。也有一些缺点,比如:效率较低、高效范围较窄等。
3、组成不同
液压传动:动力元件,动力元件是把原动机输入的机械能转换为油液压力能的能量转换装置。其作用是为液压系统提供压力油。动力元件为各种液压泵。
执行元件,执行元件是将油液的压力能转换为机械能的能量转换装置。其作用是在压力油的推动下输出力和速度(直线运动),或力矩和转速(回转运动)。这类元件包括各类液压缸和液压马达。
控制调节元件,控制调节元件是用来控制或调节液压系统中油液的压力、流量和方向,以保证执行元件完成预期工作的元件。这类元件主要包括各种溢流阀、节流阀以及换向阀等。这些元件的不同组合便形成了不同功能的液压传动系统。
辅助元件,辅助元件是指油箱、油管、油管接头、蓄能器、滤油器、压力表、流量表以及各种密封元件等。这些元件分别起散热贮油、输油、连接、蓄能、过滤、测量压力、测量流量和密封等作用,以保证系统正常工作,是液压系统不可缺少的组成部分。
工作介质,工作介质在液压传动及控制中起传递运动、动力及信号的作用。T作介质为液压油或其他合成液体。
液力传动:原动机(内燃机、电动机等)带动泵轮旋转,使工作液体的速度和压力增加,这一过程实现了机械能向液体动能的转化;然后具有动能的工作液体再冲击涡轮,此时液体释放能量给涡轮,使涡轮转动将动力输出,实现能量传递。
㈧ 液压传动和机械传动有什么区别、以及优点和缺点
一)液压传动的工作原理:
液压传动时候依靠液体介质的静压力来传递能量的液体传动。它依靠密闭容积的变化传递运动,依靠液体内部的压力(由外界负载所引起)传递运动。液压装置本质上是一种能量转换装置,它先将机械能转换还成为便于传输的液压能,随后又将液压能转换为机械能做功。对教材中的例子要理解。
(二)液压传动系统的组成
液压传动系统有以下四个主要部分组成:
动力部分,执行部分,控制部分,辅助部分
1. 动力部分:把机械能换成油液压力能,常见的是液压泵。
2. 执行部分:把液体的压力能转换成机械能输出的装置,如作直线运动的液压缸或作回转运动的马达。
3. 控制部分:对系统中流体压力流量和流动方向进行控制或调节的装置,如溢流阀、流量控制阀、换向阀等。
4. 辅助部分;保证液压传动系统正常工作所需的上述三种以外的装置,如油箱、过滤器、油管和管接头等。
要掌握以下内容,这些内容是客观题的考点:
只要控制油液的压力、流量和流动方向,便可控制液压设备动作所要求的推力(转矩)、速度(转速)和方向。
液压缸的工作压力取决于负载。
溢流阀可以控制油泵打出油液的压力,溢流阀同时还起着把油泵输出的多余油液排回油箱的作用。
(三)液压传动的优缺点:
优点:
1. 在输出同等功率的条件下体积和重量可减小很多,布局安装有很大的灵活性,能构成用其它方法难以组成的复杂系统。
2. 传递运动均匀平稳,易于实现快速启动、制动和频繁的换向,可以在运行中实现大范围的无级变速。
3. 操作控制方便、省力,易于实现自动控制、过载保护。
液压元件易于实现系列化、标准化、通用化。
缺点:
1. 不能严格保证定比传动。
2. 对温度比较敏感,在高温和低温条件下采用液压传动有一定的困难。
3. 液压元件制造精度高,不易诊断。
机械传动有多种形式,主要可分为两类:①靠机件间的摩擦力传递动力和运动的摩擦传动,包括带传动、绳传动和摩擦轮传动等。摩擦传动容易实现无级变速,大都能适应轴间距较大的传动场合,过载打滑还能起到缓冲和保护传动装置的作用,但这种传动一般不能用于大功率的场合,也不能保证准确的传动比。②靠主动件与从动件啮合或借助中间件啮合传递动力或运动的啮合传动,包括齿轮传动、链传动、螺旋传动和谐波传动等。啮合传动能够用于大功率的场合,传动比准确,但一般要求较高的制造精度和安装精度。 机械传动按传力方式分,可分为 : 1 摩擦传动。 2 链条传动。 3 齿轮传动。 4 皮带传动。 5 涡轮涡杆传动。 6 棘轮传动。 7 曲轴连杆传动 8 气动传动。 9 液压传动(液压刨) 10 万向节传动 11 钢丝索传动(电梯中应用最广) 12 联轴器传动 13 花键传动。 1、带传动的特点 由于带富有弹性,并靠摩擦力进行传动,因此它具有结构简单,传动平稳、噪声小,能缓冲吸振,过载时带会在带轮上打滑,对其他零件起过载保护作用,适用于中心距较大的传动等优点。 但带传动也有不少缺点,主要有:不能保证准确的传动比,传动效率低(约为0.90~0.94),带的使用寿命短,不宜在高温、易燃以及有油和水的场合使用。 2,齿轮传动的基本特点 1、齿轮传递的功率和速度范围很大,功率可从很小到数十万千瓦,圆周速度可从很小到每秒一百多米以上。齿轮尺寸可从小于1mm到大于10m。 2、齿轮传动属于啮合传动,齿轮齿廓为特定曲线,瞬时传动比恒定,且传动平稳、可靠。 3、齿轮传动效率高,使用寿命长。 4、齿轮种类繁多,可以满足各种传动形式的需要。 5、齿轮的制造和安装的精度要求较高。4. 链传动的特点 1)能保证较精确的传动比(和皮带传动相比较) 2)可以在两轴中心距较远的情况下传递动力(与齿轮传动相比) 3)只能用于平行轴间传动 4)链条磨损后,链节变长,容易产生脱链现象。5. 蜗杆传动的特点 单级传动就能获得很大的传动比,结构紧凑,传动平稳,无噪声,但传动效率低。6. 螺旋传动的特点:传动精度高、工作平稳无噪音,易于自锁,能传递较大的动力等特点。
㈨ 液压传动的优缺点是什么
优点:
1,与机械传动比较,液压传动具有以下主要优点:
(1)由于一般采用油液作为传动介质,因此液压元件具有良好的润滑条件;工作液体可以用管路输送到任何位置,允许液压执行元件和液压泵保持一定距离;液压传动能方便地将原动机的旋转运动变为直线运动。这些特点十分适合各种工程机械、采矿设备的需要,其典型应用实例就是煤矿井下使用的单体液压支柱和液压支架。
(2)可以在运行过程中实现大范围的无级调速,其传动比可高达1:1 000,且调速性能不受功率大小的限制。
(3)易于实现载荷控制、速度控制和方向控制,可以进行集中控制、遥控和实现自动控制。
(4)液压传动可以实现无间隙传动,因此传动平稳,操作省力,反应快,并能高速启动和频繁换向。
(5)液压元件都是标准化、系列化和通用化产品,便于设计、制造和推广应用。
2,与电力传动相比,液压传动的主要优点有以下几点:
(1)质量小,体积小。这是由于电动机受到磁饱和的限制,其单位面积上的切向力与液压机械所能承受的液压相差数十倍。
(2)运动惯性小,响应速度快。液压马达的力矩惯量比(即驱动力矩与转动惯量之比)较电动机大得多,故其加速性能好。例如,加速一台中等功率的电动机通常需要一秒至几秒钟,而加速同样功率的液压马达只需要0.1 s左右。这种良好的动态特性,对液压控制系统更有其重要意义。
(3)低速液压马达的低速稳定性要比电动机好得多。
(4)液压传动的应用,可以简化机器设备的电气系统。这对于具有爆炸危险的煤矿井下工作大有好处。
缺点:
(1)在传动过程中,由于能量需要经过两次转换,存在压力损失、容积损失和机械摩擦损失,因此总效率通常仅为0.75~0.8。
(2)传动系统的工作性能和效率受温度的影响较大,一般的液压传动,在高温或低温环境下工作,存在一定困难。
(3)液体具有一定的可压缩性,配合表面也不可避免地有泄漏存在,因此液压传动无法保证严格的传动比。
(4)工作液体对污染很敏感,污染后的工作液体对液压元件的危害很大,因此液压系统的故障比较难查找,对操作、维修人员的技术水平有较高要求。
(5)液压元件的制造精度、表面粗糙度以及材料的材质和热处理要求都比较高,因而其成本较高。
总的说来,液压传动的优点是主要的。它的某些缺点随着生产技术的发展,正在逐步得到克服。如果进一步吸取其他传动方式的优点,采用电 液、气,液等联合传动,更能充分发挥其特点。
(9)液压传动装置是一种扩展阅读:
液压传动主要应用如下:
(1)一般工业用液压系统塑料加工机械(注塑机)、压力机械(锻压机)、重型机械(废钢压块机)、机床(全自动六角车床、平面磨床)等;
(2)行走机械用液压系统工程机械(挖掘机)、起重机械(汽车吊)、建筑机械(打桩机)、农业机械(联合收割机)、汽车(转向器、减振器)等;
(3)钢铁工业用液压系统 冶金机械(轧钢机)、提升装置(升降机)、轧辊调整装置等;
(4)土木工程用液压系统 防洪闸门及堤坝装置(浪潮防护挡板)、河床升降装置、桥梁操纵机构和矿山机械(凿岩机)等;
(5)发电厂用液压系统涡轮机(调速装置)等;
(6)特殊技术用液压系统 巨型天线控制装置、测量浮标、飞机起落架的收放装置及方向舵控制装置、升降旋转舞台等;
(7)船舶用液压系统 甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;
(8)军事工业用液压系统火炮操纵装置、舰船减摇装置、飞行器仿真等。