导航:首页 > 装置知识 > 已知单位反馈系统开环传递函数为设计串联超前校正装置使校正装置

已知单位反馈系统开环传递函数为设计串联超前校正装置使校正装置

发布时间:2022-05-25 07:49:35

① 设单位反馈控制系统的开环传递函数为G0(s)=K/s(s+1)(0.2s+1)试设计一串联校正装置,使系统满足如下性能指

设单位仅馈控制系统的开环传递函数为G(s)=k/s(s+1)(0.2s十1),试设计一串联校正装置,使系统满足如下性能指标:静态速度误差系数K=8,相角裕度y

② 已知某单位负反馈系统的开环传递函数为G(s)=K/[s(0.5s+1)(0.1s+1)]

上课好好学。毕竟很难学。

③ 已知单位负反馈系统的开环传递函数为 ,试对系统进行串联校正设计,使之满足以下条件。

哥 不会哦

④ 一型单位反馈系统原有部分的开环传递函数为G(s)=k/s(s+1) 要求设计串联校正装置,系统满足下列性能指标

你开始时是不能假设G(s)=k/s^2(s+1)的。
应该这样做:
1。画出开环传递函数波特图
2。根据波专特图判断截止频率属、相角裕度是否符合要求,还要判断截止频率出的波特图斜率是否为20db/dec
3。找出原系统的不足之处后,开始校正。判断是选择滞后校正、超前校正还是选择PID校正,选好校正方式后,求出校正系统(控制系统)的传递函数,要使得此传递函数的波特图与原开环传递函数的波特图相加为理想的系统。之后重新判断一下是否符合要求即可。

⑤ 自动控制原理课程设计 设计题目: 串联滞后校正装置的设计

一、理论分析设计
1、确定原系统数学模型;
当开关S断开时,求原模拟电路的开环传递函数个G(s)。
c);(c、2、绘制原系统对数频率特性,确定原系统性能:
3、确定校正装置传递函数Gc(s),并验算设计结果;
设超前校正装置传递函数为:
,rd>1
),则:c处的对数幅值为L(cm,原系统在=c若校正后系统的截止频率

由此得:

由 ,得时间常数T为:

4、在同一坐标系里,绘制校正前、后、校正装置对数频率特性;
二、Matlab仿真设计(串联超前校正仿真设计过程)
注意:下述仿真设计过程仅供参考,本设计与此有所不同。

利用Matlab进行仿真设计(校正),就是借助Matlab相关语句进行上述运算,完成以下任务:①确定校正装置;②绘制校正前、后、校正装置对数频率特性;③确定校正后性能指标。从而达到利用Matlab辅助分析设计的目的。
例:已知单位反馈线性系统开环传递函数为:

≥450,幅值裕量h≥10dB,利用Matlab进行串联超前校正。≥7.5弧度/秒,相位裕量c要求系统在单位斜坡输入信号作用时,开环截止频率
c)]、幅值裕量Gm(1、绘制原系统对数频率特性,并求原系统幅值穿越频率wc、相位穿越频率wj、相位裕量Pm[即
num=[20];
den=[1,1,0];
G=tf(num,den); %求原系统传递函数
bode(G); %绘制原系统对数频率特性
margin(G); %求原系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(G);
grid; %绘制网格线(该条指令可有可无)
原系统伯德图如图1所示,其截止频率、相位裕量、幅值裕量从图中可见。另外,在MATLAB Workspace下,也可得到此值。由于截止频率和相位裕量都小于要求值,故采用串联超前校正较为合适。

图1 校正前系统伯德图
2、求校正装置Gc(s)(即Gc)传递函数
L=20*log10(20/(7.5*sqrt(7.5^2+1))); =7.5处的对数幅值Lc%求原系统在
rd=10^(-L/10); %求校正装置参数rd
wc=7.5;
T= sqrt(rd)/wc; %求校正装置参数T
numc=[T,1];
denc=[T/ rd,1];
Gc=tf(numc,denc); %求校正装置传递函数Gc
(s)(即Ga)3、求校正后系统传递函数G
numa=conv(num,numc);
dena=conv(den,denc);
Ga=tf(numa,dena); %求校正后系统传递函数Ga
4、绘制校正后系统对数频率特性,并与原系统及校正装置频率特性进行比较;
求校正后幅值穿越频率wc、相位穿越频率wj、相位裕量Pm、幅值裕量Gm。
bode(Ga); %绘制校正后系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(G,':'); %绘制原系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(Gc,'-.'); %绘制校正装置对数频率特性
margin(Ga); %求校正后系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(Ga);
grid; %绘制网格线(该条指令可有可无)
校正前、后及校正装置伯德图如图2所示,从图中可见其:截止频率wc=7.5;
),校正后各项性能指标均达到要求。相位裕量Pm=58.80;幅值裕量Gm=inf dB(即
从MATLAB Workspace空间可知校正装置参数:rd=8.0508,T=0.37832,校正装置传递函数为 。

图2 校正前、后、校正装置伯德图
三、Simulink仿真分析(求校正前、后系统单位阶跃响应)
注意:下述仿真过程仅供参考,本设计与此有所不同。

线性控制系统校正过程不仅可以利用Matlab语句编程实现,而且也可以利用Matlab-Simulink工具箱构建仿真模型,分析系统校正前、后单位阶跃响应特性。
1、原系统单位阶跃响应
原系统仿真模型如图3所示。

图3 原系统仿真模型
系统运行后,其输出阶跃响应如图4所示。

图4 原系统阶跃向应曲线
2、校正后系统单位阶跃响应
校正后系统仿真模型如图5所示。

图5 校正后系统仿真模型
系统运行后,其输出阶跃响应如图6所示。

图6 校正后系统阶跃向应曲线
3、校正前、后系统单位阶跃响应比较
仿真模型如图7所示。

图7 校正前、后系统仿真模型
系统运行后,其输出阶跃响应如图8所示。

图8 校正前、后系统阶跃响应曲线
四、确定有源超前校正网络参数R、C值
有源超前校正装置如图9所示。

图9 有源超前校正网络

当放大器的放大倍数很大时,该网络传递函数为:
(1)
其中 , , ,“-”号表示反向输入端。
该网络具有相位超前特性,当Kc=1时,其对数频率特性近似于无源超前校正网络的对数频率特性。
根据前述计算的校正装置传递函数Gc(s),与(1)式比较,即可确定R4、C值,即设计任务书中要求的R、C值。
注意:下述计算仅供参考,本设计与此计算结果不同。

如:由设计任务书得知:R1=100K,R2=R3=50K,显然

T=R4C

⑥ 已知单位负反馈系统的开环传递函数

牛人啊!

⑦ 已知单位负反馈系统的开环传递函数 , 试用频率法设计串联超前校正装置,使系统的相位裕度 ,静态速度误差

s=tf('s'); %生成拉普拉斯变量s
G=10/(s*(s+1)); %生成开环传递函数
[mag,phase,w]=bode(G); %获取对数频率特性上每个频率w对应的幅值和相位角
[Gm,Pm]=margin(G); %计算开环传递函数的幅值裕量和相位裕量
DPm=45; %期望的相位裕量
MPm=DPm-Pm+5; %校正网络需提供的最大相位超前
MPm=MPm*pi/180; %转换为弧度表示的角度
a=(1+sin(MPm))/(1-sin(MPm)); %计算超前校正的分度系数
adb=20*log10(mag); %计算开环传递函数对应不同频率的对数幅值
am=10*log10(a); %计算校正网络在校正后的剪切角度频率处提供的对数幅值
wc=sphine(adb,w,-am); %利用线性插值函数求取对应-am处的频率,即为校正后的 %剪切频率wc
T=1/(wc*sqrt(a)); %求时间常数
at=a*T;
Gc=tf([at 1],[T 1]); %获取控制器的传递函数
Gh=Gc*G;
figure,margin(Gh); %绘制校正后系统的Bode图
grid

⑧ 已知单位反馈系统的开环传递函数为g(s)

闭环传递函数为
4
G(s)=---------------------
s^2+5s+4
4 1 4/3 1/3
输出C(s)=G(s)R(s)=--------------------------= ----- _ ---- + -------
s(s+1)(s+4) s s+1 s+4
所以c(t)=1(t)+4/3*e^(-t)+1/3*e^(-4t)

阅读全文

与已知单位反馈系统开环传递函数为设计串联超前校正装置使校正装置相关的资料

热点内容
机械手表怎么 浏览:800
钥匙是什么简单机械 浏览:2
众润机械科技有限公司怎么样 浏览:725
铸造厂可以做普工干什么活 浏览:353
室外收音设备多少钱 浏览:869
节流过程为什么可以制冷 浏览:606
汽车仪表两边代表什么 浏览:837
是做一个实验装置 浏览:570
机械租赁公司的成本构成有哪些 浏览:302
基于matlab遗传算法工具箱的曲线拟合 浏览:139
自动扶梯安全装置调试 浏览:757
铸造球铁不缩水怎么办 浏览:84
目前常用的无损检测仪器有哪些 浏览:676
尼尔机械纪元怎么激活修改器 浏览:291
19逍客仪表盘如何清理灰尘 浏览:345
中央空调的阀门盖怎么打开 浏览:32
破碎机轴承怎么安装 浏览:580
商品检验有哪些仪器 浏览:920
五金件检验项目 浏览:308
中央空调系统自动加药装置宁波厂家 浏览:209