导航:首页 > 装置知识 > 热量自动控制装置系统图

热量自动控制装置系统图

发布时间:2022-05-24 15:36:02

Ⅰ 谁能提供一下,锅炉燃烧控制系统不同负荷下,惰性区和导前区的传递函数,最好是有原理框图,和结构图。

锅炉过热器和再热器出口蒸汽温度是单元机组运行中必须保持在一定范围的重要参数。随着机组容量的增大,过热器和再热器管道也随之加长,这就使得其热惯性和调节滞后都大大增加,从而造成汽温控制系统投自动困难,或被调参数的动、静态品质指标差。锅炉过热器是回收锅炉烟气能量的,使锅炉出来的蒸汽可以获得加热,变为干蒸汽,有利于提高锅炉热效率,也有利于蒸汽轮机避免水击 回热器是从蒸汽轮机的乏蒸汽中回收能量,加热进入锅炉的循环水 此外还有回热器,可以将高压级排出的蒸汽再热,回收锅炉的能量,这些装置都是大型锅炉蒸汽系统的辅助集热装置,都有利于提高锅炉系统的能量效率,只不过过热器、再热器是回收烟气能量,回热器是回收蒸汽能量。

采用自适应控制技术需要对被控对象的动态特性进行辨识,目前通用的计算机分散控制系统( DCS )中还没有提供一套对被控对象进行实时动态地系统辨识的软件工具,其次在应用领域真正能够掌握和运用自适应控制技术的人才也很缺乏。DCS控制系统(DISTributed Control System,分散控制系统)是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂应运而生的综合控制系统。它是计算机技术、系统控制技术、网络通讯技术和多媒体技术相结合的产物,可提供窗口友好的人机界面和强大的通讯功能,是完成过程控制、过程管理的现代化设备,具有广阔的应用前景。

现场实时控制的应用效果展示了该项技术的先进性和实用性。状态观测器根据系统的外部变量(输入变量和输出变量)的实测值得出状态变量估计值的一类动态系统,也称为状态重构器。60年代初期,为了对控制系统实现状态反馈或其他需要,D.G.吕恩伯格、R.W.巴斯和J.E.贝特朗等人提出状态观测器的概念和构造方法,通过重构的途径解决了状态的不能直接量测的问题。状态观测器的出现,不但为状态反馈的技术实现提供了实际可能性,而且在控制工程的许多方面也得到了实际应用,例如复制扰动以实现对扰动的完全补偿等。工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。PID控制器是根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。不同的控制规律适用于不同的生产过程,必须合理选择相应的控制规律,否则PID控制器将达不到预期的控制效果。

2. 状态反馈系统的基本概念及几个主要结论

状态反馈的基本特点是采用对状态向量的线性反馈律来构成闭环控制系统,由于控制作用是系统状态的函数,可使控制效果得到很大地改善,从而比输出反馈具有一系列更好的控制特性。

自动控制原理指是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。控制系统的各种特性,或其各种品质指标,很大程度上是由系统的极点位置所决定的。而所谓极点配置问题,就是通过反馈阵的选择,使闭环系统的极点,恰好处于所希望的一组极点的位置上。

极点配置定理回答了在怎样的条件下,仅仅通过状态反馈,就能任意配置极点的问题。它可简述为:若动态方程 可控,则利用状态反馈式 可以任意配置闭环系统的特征值,若特征值中有复数,必共轭成对地出现。

3. 运用观测器理论解决蒸汽温度调节对象的状态重构问题

对于完全能控的线性定常系统,可以通过线性状态反馈任意配置极点,以使系统实现其在Ляпунов意义下是渐进稳定的,亦即是能镇定的。但是,通常并不是全部状态变量都能直接量测的,从而给状态反馈的物理实现造成了障碍。

3.1 状态观测器的定义及其实现问题

状态观测器有如下定义 : 设线性定常系统 ∑ o =( A , B , C )的状态 X 是不能直接测量的, 称动态系统∑ g 是∑ o 的一个状态观测器,如果

( 1 )∑ g 以∑ o 的输入 u 和输出 y 作为输入量;

( 2 )∑ g 的输出 W ( t )满足如下的等价性指标

(4)

观测器的存在性:状态观测器存在的充分必要条件是∑ o 的不能观测部分渐近稳定。如果对给定的一个传递函数阵 W ( s ),能找到一个状态方程( A,B,C )并使之成立

C ( sI - A ) - 1 B = W ( s ) (5) 则称( A,B,C )为具有传递特性 W ( s )的系统的一个实现。实现就其本质而言,是在状态空间法的领域内寻找一个假想结构,使之与真实系统具有相同的传递特性。并不是任意给定的 W ( s )都可找到其实现的,通常,它必须满足物理可实现条件。

实现的不唯一性:与给定的 W ( s )具有相同的传递特性的实现不是唯一的。对于给定的 W ( s ),一定存在一类维数最低的实现,称为最小实现,它反映了具有给定传递函数特性 W ( s )的假想结构的最简形式。最小实现也不是唯一的,但它们的维数必是相等的,且必是代数等价的。

3.2 锅炉蒸汽温度被控对象的动态特性及其状态观测器的一种实现

锅炉蒸汽温度被控对象包括过热器出口主蒸汽温度和再热器出口的再热蒸汽温度。集总参数模型则是将单相受热管的介质状态参数看成是均一的,并在空间位置上选定一个有代表性的点,就用这一点介质的参数作为环节的集总参数。进一步还可推断出单相受热管的多段集总参数模型,通常把整个管段均分成若干小段,每个分段内集总参数的选择要一致。因此每个分段模型的形式与整个管段模型的形式是相同的,整个管段的模型则由各个分段(设共有 n 段)模型串联而成,也就是分段模型的 n 次幂。这时,对每个分段来说,须将总热流量、总金属量、总容积等分别除以分段数 n 。关于进出口温度之间的传递函数。

这个公式含有近十个参数,对于实际应用并不方便。它的意义在于提供了一个十分有用的概念,即可以把过热器和再热器等单相受热管理解成由若干个分段所组成,各分段传递函数的形式相同,段数 n 越大,每段传递函数表达式中的时间常数就成比例地减少。再热器实质上是一种把作过功的低压蒸汽再进行加热并达到一定温度的蒸汽过热器,再热器的作用进一步提高了电厂循环的热效率,并使汽轮机末级叶片的蒸汽温度控制在允许的范围内。

实际工程问题中往往把解析法和系统辨识方法结合起来,通过对系统基本结构及工作原理的了解,初步推断出系统模型的结构,或估计出系统模型的结构形式,然后再用辨识方法确定模型中的参数。

图 1 所示为过热器的状态观测器,整个过热器划分为四段,对每一分段又可简化为一阶惯性环节,整个过热器就是四阶惯性环节。至于时间常数 T 通常是单元机组负荷的函数,可作为状态反馈控制系统中的一个待定因变量,在运行过程中通过观测试验进行参数整定。

图 1 过热器的状态观测器及其状态反馈示图

为了更好地反映被控对象的动态特性,故将过热器的状态观测器设计为“增量形式”,即将过热器入口温度偏差和出口温度偏差引入状态观测器,这样观测到的状态变量更明确地反映了温度的变化方向,同时过热器入口温度偏差的引入使状态观测器具有了预测控制的某些特点。为适应过热器参数的变化,入口温度设定值,出口温度设定值及时间常数 T 均为锅炉负荷的函数。

设过热器导前区传递函数为 ,惰性区传递函数为



状态观测器的反馈矩阵 Kc=[K c1 , K c2 , K c3 , K c4 ] ;状态反馈矩阵 K=[K 1 , K 2 , K 3 , K 4 , K 5 ] ,其中 K 1 为过热器导前区的反馈增益。

惰性区传递函数的增益 K 2 可以查阅锅炉的热力计算书,取不同工况的平均值。而过热器惰性区时间常数 T 2 的辨识则可以利用状态观测器来完成。首先,令状态反馈控制开环 , 状态反馈矩阵 Kc=[0 , 0 , 0 , 0] ;然后,调节观测器时间常数,使观测器输出值和过热器出口值的变化基本保持一致,此时的观测器时间常数即可认为是惰性区传递函数的时间常数。

4 状态观测器、状态反馈控制与常规 PID 调节相结合的工程应用实例

4.1 状态反馈- PID 控制的结构与特点

状态反馈— PID 控制的原理框图见图 2 。

图 2. 状态反馈— PID 控制的原理框图

与传统的 PID 控制相比,采用状态反馈控制能方便的通过配置闭环极点的方法,改变系统的特性,达到提高控制精度的目的。这对控制具有迟延环节的工业对象来说,无疑是一种较好的控制方案。但是,由于单相受热管的动态特性与热流量有关,单靠状态反馈配置极点还难以保证在不同的工况下使锅炉蒸汽温度控制系统的指标均达到理想的要求,而 PID 控制恰好具有鲁棒性好和抗高频干扰能力强的优点,二者的优势可以互补。动态特性:当被测量随时间迅速变化时,输出量与输入量之间的关系称为动态特性,可以用微分方程表示。热流量是一定面积的物体两侧存在温差时,单位时间内由导热、对流、辐射方式通过该物体所传递的热量。通过物体的热流量与两侧温度差成正比,与厚度成反比,并与材料的导热性能有关。单位面积的热流量为热流通量。稳态导热通过物体热流通量不随时间改变,其内部不存在热量的蓄积;不稳态导热通过物体的热流通量与内部温度分布随时间而变化。

利用状态反馈改善系统的闭环特性,提高系统响应速度。这是控制的第一个层次。然后,将这个品质比较好的广义被控对象交由 PID 控制,改善系统的鲁棒性,使系统的适应性提高。这是控制的第二个层次。

4.2 状态反馈- PID 控制的仿真研究

设 , ,令观测器为 , Kc=[188.8458 , 329.2705 , 159.7069,22.8667] , K=[0.06659 , 3.6134 , 4.8962 , 2.9486 , 0.6659]

第一级调节器参数为: K p =0.08 , I=50s

第二级调节器参数为: K p =1.0 , I=0.0s

4.2.1 状态反馈- PID 控制与 PID 串级控制系统的比较

PID 串级控制系统第一级调节器参数为: Kp=1 , I=25s

第二级调节器参数为: Kp=1.0 , I=0.0s

图 3 是定值在发生单位阶跃扰动时的响应曲线。

由图 3 可以看出,状态反馈- PID 控制系统的控制效果明显优于传统的 PID 串级控制系统

图 3 状态反馈— PID 控制与 PID 串级控制的响应特性比较

4.2.2 改变观测器的时间常数 T 0 (其它参 数不变)

令 T 0 =5 , 8 , 10 , 15 时,系统的设定值扰动响应见图 4 。由图 4 可以看出在模型失配时,状态反馈- PID 控制系统的表现。当观测器的时间常数 T0 小于惰性区时间常数 T2 (10s) 时,系统响应加快,但 T0 越小出现的超调越大。当 T0 大于 T2 时,系统响应变慢。应该注意到,当 T0 与 T2 相差较大时,系统响应变差。因此,在实际应用中可以令观测器的时间常数 T0 是负荷的函数,以适应惰性区时间常数 T2 的变化。

图 4. 在不同的观测器时间常数下系统的响应曲线

4.2.3 改变观测器的增益 K0 (其它参数不变)

令 K0= 1.0 , 1.1 , 1.2 , 1.5 时,系统的设定值扰动响应见图 5 。由图 5 可见,系统对 K0 的变化不敏感;而实际系统的惰性区增益的变化范围也基本在 1.1-1.5 之间。

图 5. 在不同的观测器增益下系统的响应曲线

改变状态反馈矩阵 K (其它参数不变)

系统的设定值扰动响应见图 6 。

理论上讲, T 0 , K0 , KC 和 K 的变化均会导致系统闭环极点位置的变化。但是,如果 T 0 和 K0 的变化范围已知,就可以找到一蔟满足设计期望的 KC 和 K 。由图 4 , 5 , 6 , 7 不难看出,状态反馈- PID 控制系统中参数的变化范围是比较大的,而系统的控制指标仍旧很好,说明系统具有比较强的鲁棒性。

图 6. 在不同的状态反馈矩阵下系统的响应曲线

4.3 状态反馈- PID 控制的工程应用

陕西宝鸡第二发电厂新建工程 1 号 300MW 单元机组,锅炉为亚临界、自然循环中间再热汽包炉。主蒸汽温度为三级喷水调节,其中二级和三级过热器分为 A 、 B 两侧,再热汽温度以燃烧器摆动火嘴调节为主,加微量喷水及事故工况喷水调节。燃烧器是使燃料和空气以一定方式喷出混合(或混合喷出)燃烧的装置统称。热工控制系统硬件为引进美国西屋公司的 WDPF-II 型分散控制系统,应用软件的设计组态以及工程服务由国电智深承担。在机组 168 小时考核试运期间,过(再)热汽温度控制系统一直处于连续的自动控制状态。计算机统计的结果表明,蒸汽温度的偏差不超过± 2 ℃ 。图 8 为三级过热器 A 侧 24 小时运行曲线。

5 结论

为了实现对大滞后复杂对象的高质量控制,本文将状态反馈控制与 PID 控制相综合,提出了状态反馈 -PID 控制方案。对汽温控制进行的仿真研究和现场调试结果表明,本方案具有优良的控制性能,并具有较强的鲁棒性。

与其它现代控制方法相比,状态反馈 -PID 控制的算法简单,计算量小,且容易理解,可直接利用 DCS 系统中标准控制算法实现,有很好的推广应用价值。

之二:基于自抗扰控制器的蒸汽温度控制系统

1. 汽温调节对象的动态特性

过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许范围之内,并保护过热器使其管壁温度不超过允许的工作温度。为了提高机组热循环的经济性,减小汽轮机末级叶片中蒸汽湿度,而采用中间再热循环系统。

大型锅炉的过热器一般布置在炉膛上部和高温烟道中,过热器往往分成多段,中间设置喷水减温器,减温水由锅炉给水系统提供。喷水减温器按冷却水喷入调温水蒸气的结构不同,可分为文丘里式、旋涡式和多孔喷管式等型式。喷水减温器一般布置在两级过热器之间。因喷水直接与水蒸气混合,故对水质要求较高。对给水品质好的凝汽式电厂,可直接用给水作喷水。对给水品质较差的中、高压电厂,还可采用自制冷凝水的喷水减温系统。其原理是将部分饱和水蒸气用给水冷却成冷凝水喷入减温器中调温。水的喷射依靠冷凝器和减温器之间的压差来实现,不需专门的减温水泵。喷水减温器的特点是结构简单,调温幅度大(可达50℃--65'C),调节温度灵敏,易于实现自动化,因此,锅炉中普遍采用。缺点为对喷水品质要求高。

影响过热器出口汽温的因素很多,主要是以下三种扰动。

A. 蒸汽流量扰动

B. 烟气侧传热量的扰动

C. 减温喷水量扰动

其中 1 和 2 的扰动响应曲线类似,因为两者的扰动是沿整个过热器长度方向上同时发生的,响应具有自平衡特性,而且惯性和迟延都比较小。

对于第 3 种扰动考虑到使控制系统结构简单,易于实现,目前大多采用喷水量作为调节量,因此喷水量扰动就是基本扰动。

2 、通常的汽温控制系统

通常采用两种方法对汽温系统进行控制即带有导前微分信号的双信号汽温控制系统和汽温串级控制系统,另外还可以增加相位补偿回路或前馈控制回路,提高控制系统的品质。

3 、自抗扰控制器介绍

自抗扰控制器自PID控制器演变过来,采取了PID误差反馈控制的核心理念。传统PID控制直接引取输出于参考输入做差作为控制信号,导致出现响应快速性与超调性的矛盾出现。自抗扰控制器主要由三部分组成:跟踪微分器(tracking differentiator),扩展状态观测器 (extended state observer) 和非线性状态误差反馈控制律(nONlinear state error feedback law)。跟踪微分器的作用是安排过渡过程,给出合理的控制信号,解决了响应速度与超调性之间的矛盾。扩展状态观测器用来解决模型未知部分和外部未知扰动综合对控制对象的影响。虽然叫做扩展状态观测器,但与普通的状态观测器不同。扩展状态观测器设计了一个扩展的状态量来跟踪模型未知部分和外部未知扰动的影响。然后给出控制量补偿这些扰动。将控制对象变为普通的积分串联型控制对象。设计扩展状态观测器的目的就是观测扩展出来的状态变量,用来估计未知扰动和控制对象未建模部分,实现动态系统的反馈线性化,将控制对象变为积分串联型。非线性误差反馈控制律给出被控对象的控制策略。

自抗扰控制器 (ADRC) 基本结构是由如下三种功能组合而成 :

用一个跟踪微分器 (TD) 来安排过渡过程并提取其微分信号;

用扩张状态观测器 (ESO) 来估计对象的状态变量和未知扰动的实时作用量;

安排的过渡过程与对象状态估计量之间误差的适当非线性组合和未知扰动估计量的补偿来生成控制信号。

下面以二阶 ADRC 为例:

(1) 跟踪微分器

跟踪微分器是这样的非线性环节:对它输入一个信号 , 它给出这个信号的跟踪信号 及其微分信号 . 是安排的过渡过程 , 而 是这个过渡过程的微分信号 . 跟踪微分器的动态方程为

其中 , 为如下方式定义的非线性函数:













当 为控制目标 - 设定值时, 给出 0 到设定值的无超调的过渡过程曲线,而 是此过渡过程的微分信号。过渡过程的快慢就取决于参数 的选取, 大,过渡过程快, 小,过渡过程慢。

(2)扩张状态观测器

扩张状态观测器 (ESO) 的动态方程为

其中 , 非线性函数 为

是对象的输入 , 是对象的输出 , 它们都是 ESO 的输入量 . 变量 将估计出产生信号 的对象的状态变量 , 而 将估计出产生信号 的对象的模型作用 ( 内扰 ) 和外扰作用的实时总和作用 . 是 ESO 的可调参数 . 调好了参数 , 这个 ESO 能给出很满意的估计结果 . 这是独立于产生信号 的对象模型和外扰作用的观测器 .

(3) 控制信号的生成

控制信号 将由安排的过渡过程 、 ESO 给出的估计 共同生成。

设对象描述为

把系统的输入 和输出 一同输入到 ESO 中, ESO 的 分别估计出对象的 , 及 。

现在把控制量 分解成两个分量:

并把控制分量 取成

那么被控对象近似地变成

-- 纯粹的积分器串联形对象

把对象的“内扰”和“外扰”作用全部补偿掉了 . 这是 ADRC 具有抗扰能力的根本原因 .

至于控制量的另一分量 的构造方法如下:

由安排的过渡过程 与 ESO 给出的状态估计 来形成两个误差量



然后用误差 和 的适当非线性函数 来产生 ,具体可取

一般 , . 如果 , 那么这种反馈符合“小误差大增益 , 大误差小增益”的规律。

(4)自抗扰控制器的结构

自抗扰控制器的方块图 (Block Diagram of ADRC) 为

ADRC 的结构图

(5) 自抗扰控制器的特点与应用前景

自抗扰控制器是由过渡过程安排、扩张状态观测器、扰动补偿、状态误差的非线性反馈等特殊形式非线性结构所组成 .

自抗扰控制器能够自动检测并补偿对象的 " 内扰 ( 模型 )" 和 " 外扰 " 作用,从而在各种恶劣环境之下也能保证很高的控制精度。利用自抗扰控制器进行控制系统设计时,可以把系统中的许多不同因素归类为对系统的这种,或那种“扰动”,然后用扩张状态观测器来分别进行估计、补偿。动检测就是在测量和检验过程中完全不需要或仅需要很少的人工干预而自动进行并完成的。实现自动检测可以提高自动化水平和程度,减少人为干扰因素和人为差错,可以提高生产过程或设备的可靠性及运行效率。自动检测的任务主要有两种,一是将被测参数直接测量并显示出来,以告诉人们或其他系统有关被测对象的变化情况,即通常而言的自动检测或自动测试;二是用作自动控制系统的前端系统,以便根据参数的变化情况做出相应的控制决策,实施自动控制。

自抗扰控制器的算法简单,容易实现,而且其参数适应范围广,是一种理想的实用数字控制器。

自抗扰控制器具有如下优特点:

A. 独立于对象数学模型的固定结构;

B. 能实现快速、无超调、无静差控制;

C. 被调参数物理意义明确,易整定参数;

D. 算法简单,能实现高速、高精度控制的理想数字控制器;

E. 无需量测外扰而能消除其影响;

F. 不用区分线性、非线性,时变、时不变对象;

G. 对象模型已知更好,未知也无妨;

H. 易实现大时滞对象控制;

I. 解耦控制特别简单;所谓解耦控制系统,就是采用某种结构,寻找合适的控制规律来消除系统种各控制回路之间的相互耦合关系,使每一个输入只控制相应的一个输出,每一个输出又只受到一个控制的作用。 解耦控制是一个既古老又极富生命力的话题,不确定性是工程实际中普遍存在的棘手现象。解耦控制是多变量系统控制的有效手段。

目前,绝大部分工业控制器都以数字控制器形式出现,旧的模拟式控制器也被数字式控制器所取代。数字控制器,Digital Controller ,电子控制器的一类,计算机控制系统的核心部分,一般与系统中反馈部分的元件、设备相连,该系统中的其他部分可能是数字的也可能是模拟的。数字控制器通常是利用计算机软件编程,完成特定的控制算法。通常数字控制器应具备: A/D转换、D/A转换、一个完成输入信号到输出信号换算的程序。

自抗扰控制器为适应这个新时代的要求而诞生,它将以更高的效率和精度去替代过程控制中广泛采用的 PID 和现行各种形式“先进控制器”。

自抗扰控制器的结构已经成型,对不同类型对象 ,只需调整相应参数就可实用 .

自抗扰控制器已在机械人的高速、高精度控制;力学持久机群控;炉温控制;发电机励磁控制;磁悬浮浮距控制;四液压缸协调控制;传动装置的运动控制;异步电机变频调速控制;高速高精度加工车床控制等不同装置的实物实验中均取得了很理想的控制效果。

在过程控制领域,一种新型的非线性数字控制器 -- “自抗扰控制器”以更好的控制能力和更高的控制精度,将会取代 PID 而发挥它应有的作用。

4 、利用自抗扰控制器的汽温控制系统

汽温控制对象一般为减温器和过热器,减温器可看成一个一阶惯性环节,过热器通常是 4-6 阶惯性环节。通常我们可以将对象简化为一个二阶惯性环节加迟延的控制对象,我们可以利用二阶(或三阶) ADRC 来控制。如上图,被控对象就是过热器和减温器对象。将其控制思想于 DCS 常规算法于自定义算法相结合,取得了较好的控制效果。

Ⅱ 如下图所示换热器温度自动控制系统,热流体为来自锅炉房的水蒸汽,冷流体为易挥发的有机溶剂,冷热流体在换

容积式热交换器的工作原理
容积式换热器是利用冷、热流体交替流经蓄热室中的蓄热体(填料)表面,从而进行热量交换的换热器,间壁容积式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器。
产品特点
1、容积式换热器热媒温降大。汽水换热时,凝结水出水温度约50℃,回水管上下需设疏水器,给使用维修带来方便,水-水换热时,热温降为同型换热器的2~2.5倍,120~150℃的高温热水换热后可降至70~75℃。
2、容积式换热器换热效果好,散热效果好,散热损失小,节能。同时,以蒸汽为热媒时,能回收约占整个换热量的15%凝结水热量。
3、冷水区小,容积利用率高。
4、保持了容积式换热器贮水量大,水头损失低,供水安全稳定,方便清垢之优点。

Ⅲ 锅炉结构示意图

锅炉结构图如下:

锅炉整体的结构包括锅炉本体、辅助设备和安全装置两大部分。锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。

锅炉在“锅”与“炉”两部分同时进行,水进入锅炉以后,在汽水系统中锅炉受热面将吸收的热量传递给水,使水加热成一定温度和压力的热水或生成蒸汽,被引出应用。在燃烧设备部分,燃料燃烧不断放出热量,燃烧产生的高温烟气通过热的传播,将热量传递给锅炉受热面,而本身温度逐渐降低,最后由烟囱排出。

(3)热量自动控制装置系统图扩展阅读

维护:

1、压力表、水位表、安全阀、排污装置、给水阀、蒸汽阀等,检查其性能是否符合要求,其他的阀门开关状态是否良好。

2、自动控制装置系统,包括火焰检测器、水位、水温检测、报警装置及各种联锁装置、显示控制系统等性能状态是否符合要求。

3、给水系统,包括储水水箱的水位、给水温度、水处理设备等状况是否符号要求。

4、燃料燃烧系统,包括燃料的储备量、输送线路、燃烧设备、点火设备、燃料切断装置、油泵等状况是否符合要求。

Ⅳ 锅炉燃烧自动控制系统设计是什么样的

燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。

图1 燃烧控制系统结构图

2、控制方案

锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。

2.1 控制系统总体框架设计

燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。

图2 单元机组燃烧过程控制原理图

P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。

2.2 燃料量控制系统

当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。

图3 燃料量控制策略

其中:NB为锅炉负荷要求;B为燃料量;F(x)为执行机构。

设置燃料量控制子系统的目的之一就是利用它来消除燃料侧内部的自发扰动,改善系统的调节品质。另外,由于大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种的变化、投入的燃料供给装置的台数不同等因素都会给控制系统带来影响。燃料量控制子系统的设置也为解决这些问题提供了手段。

2.3 送风量控制系统

为了实现经济燃烧,当燃料量改变时,必须相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量的关系见图4。

图4 燃料量与送风量关系

燃烧过程的经济与否可以通过剩余空气系数是否合适来衡量,过剩空气系数通常用烟气的含氧量来间接表示。实现经济燃烧最基本的方法是使风量与燃料量成一定的比例。

送风量控制子系统的任务就是使锅炉的送风量与燃料量相协调,可以达到锅炉的最高热效率,保证机组的经济性,但由于锅炉的热效率不能直接测量,故通常通过一些间接的方法来达到目的。如图5所示,以实测的燃料量B作为送风量调节器的给定值,使送风量V和燃料量B成一定的比例。

图5 燃料量空气调节系统

在稳态时,系统可保证燃料量和送风量间满足

选择使送风量略大于B完全燃烧所需要的理论空气量。这个系统的优点是实现简单,可以消除来自负荷侧和燃料侧的各种扰动。

2.4 引风量控制系统

为了保持炉膛压力在要求的范围内,引风量必须与送风量相适应。炉膛压力的高低也关系着锅炉的安全和经济运行。炉膛压力过低会使大量的冷风漏入炉膛,将会增大引风机的负荷和排烟损失,炉膛压力太低甚至会引起内爆;反之炉膛压力高且高出大气压力的时候,会使火焰和烟气冒出,不仅影响环境卫生,甚至可能影响设备和人生安全。引风量控制子系统的任务是保证一定的炉膛负压力,且炉膛负压必须控制在允许范围内,一般在-20Pa左右。

控制炉膛负压的手段是调节引风机的引风量,其主要的外部扰动是送风量。作为调节对象,炉膛烟道的惯性很小,无论在内扰和外扰下,都近似一个比例环节。一般采用单回路调节系统并加以前馈的方法进行控制,如图6所示。

图6 引风量控制子系统

图中为炉膛负压给定值,S为实测的炉膛负压,Q为引风量,V为送风量。由于炉膛负压实际上决定于送风量和引风量的平衡,故利用送风量作为前馈信号,以改善系统的调节性能。另外,由于调节对象相当于一个比例环节,被调量反应过于灵敏,为了防止小幅度偏差引起引风机挡板的频繁动作,可设置调节器的比例带自动修正环节,使得在小偏差时增大调节器的比例带。对于负压S的测量信号,也需进行低通滤波,以抑制测量值的剧烈波动。

3、系统硬件配置

在锅炉燃烧过程中,用常规仪表进行控制,存在滞后、间歇调节、烟气中氧含量超过给定值、低负荷和烟气温度过低等问题。采用PLC对锅炉进行控制时,由于它的运算速度快、精度高、准确可靠,可适应复杂的、难于处理的控制系统。因而,可以解决以上由常规仪表控制难以解决的问题。所选择的PLC系统要求具有较强的兼容性,可用最小的投资使系统建成及运转;其次,当设计的自动化系统要有所改变时,不需要重新编程,对输入、输出系统不需要再重新接线,不须重新培训人员,就可使PLC系统升级;最后,系统性能较高。硬件结构图如图7所示。

图7 硬件结构图

根据系统的要求,选取西门子PLCS7-200 CPU226 作为控制核心,同时还扩展了2个EM231模拟量输入模块和1个CP243-1以太网模块。CPU226的IO点数是2416,这样完全可以满足系统的要求。同时,选用了EM231模块,它是AD转换模块,具有4个模拟量输入,12位AD,其采样速度25μs,温度传感器、压力传感器、流量传感器以及含氧检测传感器的输出信号经过调理和放大处理后,成为0~5V的标准信号,EM231模块自动完成AD转换。

S7-200的PPI接口的物理特性为RS-485,可在PPI、MPI和自由通讯口方式下工作。为实现PLC与上位机的通讯提供了多种选择。

为实现人机对话功能,如系统状态以及变量图形显示、参数修改等,还扩展了一块Eview500系列的触摸显示屏,操作控制简单、方便,可用于设置系统参数, 显示锅炉温度等。还有一个以太网模块CP243-1,其作用是可以让S7-200直接连入以太网,通过以太网进行远距离交换数据,与其他的S7-200进行数据传输,通信基于TCPIP,安装方便、简单。

4、系统软件设计

控制程序采用STEP7-MicroWin软件以梯形图方式编写,其软件框图如图8所示。

图8 软件主框图

S7-200PLC给出了一条PID指令,这样省去了复杂的PID算法编程过程,大大方便了用户的使用。使用PID指令有以下要点和经验:

(1)比例系数和积分时间常数的确定。应根据经验值和反复调试确定。
(2)调节量、给定量、输出量等参数的标准归一化转换。
(3)按正确顺序填写PID回路参数表(LOOP TABLE),分配好各参数地址。

5、结束语

单元机组燃烧过程控制系统在某火电厂发电机组锅炉协调控制系统中投入使用。实际运行情况表明:由于引入负荷模糊前馈,使得锅炉燃烧控制系统作为协调控制的子系统,跟随机组负荷变化的能力显著提高,风煤比能够在静态和动态过程中保持一致;送、引风控制系统在逻辑控制系统的配合下运行的平稳性和安全性提高,炉膛负压波动减小,满足了运行的要求;在机组负荷不变时,锅炉燃烧稳定,各被调参数动态偏差显著减少,实现了锅炉的优化燃烧;采用非线性PID调节方式,解决了引风挡板的晃动问题。

采用西门子的PLC控制,不仅简化了系统,提高了设备的可靠性和稳定性,同时也大幅地提高了燃烧能的热效率。通过操作面板修改系统参数可以满足不同的工况要求,机组的各种信息,如工作状态、故障情况等可以声光报警及文字形式表示出来,主要控制参数(温度值)的实时变化情况以趋势图的形式记录显示, 方便了设备的操作和维护,该系统通用性好、扩展性强,直观易操作。

Ⅳ 热泵原理图

地源热泵遵循逆卡诺原理,即从外部供给热泵较小的耗功W,同时从低温环境TL中吸收大量的低温热QL,热泵就可以输出温度高得多的热能QH,并送到高温环境TH中去,从而达到不能直接利用的低温热回收利用起来。
地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。

地源热泵空调系统主要分为三个部分:室外地能换热系统、水源热泵机组系统和室内采暖空调末端系统。其中水源热泵机组主要有两种形式:水-水型机组或水-空气型机组。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。

地源热泵工作原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。

Ⅵ 工业炉温自动控制系统的工作原理

工作原理:

加热炉采用电加热方式运行,加热器所产生的热量与调压器电压cu的平方成正比,cu增高,炉温就上升,cu的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压fu。

fu作为系统的反馈电压与给定电压ru进行比较,得出偏差电压eu,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。

在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压fu正好等于给定电压ru。此时,0erfuuu,故1auu,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使cu保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。

炉温自动控制是指根据炉温对给定温度的偏差,自动接通或断开供给炉子的热源能量,或连续改变热源能量的大小,使炉温稳定有给定温度范围,以满足热处理工艺的需要。热处理温度自动控制常用调节规律有二位式、三位式、比例、比例积分和比例积分微分等几种。

(6)热量自动控制装置系统图扩展阅读:

控制种类

1)二位式调节--它只有开、关两种状态,当炉温低于给定值时执行器全开;当炉温高于给定值时执行器全闭。(执行器一般选用电磁阀)

2)三位式调节--它有上下限两个给定值,当炉温低于下限给定值时执行器全开;当炉温在上、下限给定值之间时执行器部分开启;当炉温超过上限给定值时执行器全闭。(如管状加热器为加热元件时,可采用三位式调节实现加热与保温功率的不同)

3)比例调节(P调节)--调节器的输出信号(M)和偏差输入(e)成比例。即:

M=ke

式中:K-----比例系数

比例调节器的输入、输出量之间任何时刻都存在--对应的比例关系,因此炉温变化经比例调节达到平衡时,炉温不能加复到给定值时的偏差--称“静差”

4)比例积分(PI)调节--为了“静差”,在比例调节中添加积分(I)调节,积分调节是指调节器的输出信号与偏差存在随时间的增长而增强,直到偏差消除才无输出信号,故能消除“静差”比例调节和积分调节的组合称为比例积分调节.

5)比例积分微分(PID)调节--比例积分调节会使调节过程增长,温度的波动幅值增大,为此再引入微分(D)调节。

微分调节是指调节器的输出与偏差对时间的微分成比例,微分调节器在温度有变化“苗头”时就有调节信号输出,变化速度越快、输出信号越强,故能加快调节速度,降低温度波动幅度,比例调节、积分调节和微分调节的组合称为比例积分微分调节。

Ⅶ 什么是自动控制系统的方框图

在研究控制系统时,为了能够更清楚的表达出控制系统中各个组成部分之间的相互影响和信息联系,一般用方框图来表示控制系统的组成和作用。
图中的每一个方框代表控制系统的一个组成部分,称为“环节”。环节具有单向性,即任何环节只能由输入得到输出,不能逆行。连接两个环节的带箭头的线条表示控制系统中传递的信息,也就是系统中各环节输入输出的变量。箭头指出了信息的作用方向。方框中的圆圈称为“加法器”,用于信号相加或相减,当两个信号相减,即e=ys-ym,又称为比较元件。
方框图中出现的一些控制系统常用的术语以解释说明:
1,被控变量y 指需要控制的工艺参数,如锅炉汽包的水位、反应器的温度、燃料流量等。
2,给定值(或设定值)ys 对应于生产工程中被控变量的期望值。
3,测量值ym 由检测元件得到的被控变量的实际值。
4,操纵变量(或控制变量)m 受控于调节阀,用以克服干扰影响,具体实现控制作用的变量称为操纵变量,它是调节阀的输出信号。
5,干扰(或外界扰动)f 引起被控变量偏离给定值的,除操纵变量意外的各种因素。最常见的干扰因素是符合改变,电压,电流的波动,气候变化等。锅炉水位控制中,整齐用量的变化就是一种干扰。
6,偏差信号e
7,控制信号u 调节器将偏差按一定规律计算得到的量。

这是我大四专业课教材里的定义和关于方框图的重点
我当时学这个的时候感觉很抽象 没有制造工程直观 希望对你有帮助吧

Ⅷ 某同学利用热敏电阻为家中灯暖型“浴霸”(用电灯取暖的用电器)设计了一个温度可自动控制的装置,如图甲

()每盏灯泡正常工作时的功率P=440W,在1min内产生的热量:
Q=W=Pt=440W×60s=2.64×104J;
(2)当R1温度为40℃时,其阻值R1=170Ω;
因为R1和R0串联,
所以R=R1+R0=170Ω+30Ω=200Ω;
因此,控制电路的最小电压为:U1=I1R=0.05A×200Ω=10V;
(3)取临界情况,当电流为I=50mA=0.05A时:
因串联电路中总电阻等于各分电阻之和,
所以,由I=

U
R
可得:
R1+R0=
U1
I
=
12V
0.05A
=240Ω,
则R1=240Ω-R0=240Ω-30Ω=210Ω,由图可得对应的温度为32℃;
当电流为I′=40mA=0.04A时:
因R1′+R0=
U1′
I′
=
12V
0.04A
=300Ω,
则R1′=300Ω-R0=300Ω-30Ω=270Ω,由图可得对应的温度为23℃;
所以,室内温度可控制在23℃~32℃范围内.
答:(1)工作电路正常工作时,每盏灯泡在1min内产生的热量是2.64×104J;
(2)若浴室中的温度不得超过40℃,则控制电路的电源电压U1最小值是10V;
(3)若电源U1电压恒定为12V,则将此装置放在浴室内,浴室内温度可控制的范围为23℃~32℃.

Ⅸ 简单的温度控制电路怎么做

工作原理是通过温度传感器对环境温度自动进行采样、即时监控,当环境温度高于控制设定值时控制电路启动,可以设置控制回差。如温度还在升,当升到设定的超限报警温度点时,启动超限报警功能。

被控制的温度不能得到有效的控制时,为了防止设备的毁坏还可以通过跳闸的功能来停止设备继续运行。主要应用于电力部门使用的各种高低压开关柜、干式变压器、箱式变电站及其他相关的温度使用领域。

控制方法一般分为两种;一种是由被冷却对象的温度变化来进行控制,多采用蒸气压力式温度控制器,另一种由被冷却对象的温差变化来进行控制,多采用电子式温度控制器。

其采用的模糊控制技术如PID控制,P(Proportional)比例+I(Integral)积分+D(Differential)微分控制。

(9)热量自动控制装置系统图扩展阅读:

温控器的分类

一、突跳式温控器

1、双金属片突跳式温控器是一种将定温后的双金属片作为热敏感反应组件,产品主件温度升高时所产生的热量传递到双金属圆片上,达到动作温度设定时迅速动作,通过机构作用是触点断开或闭合。

2、当温度下降到复位温度设定时,双金属片迅速回复原状,使触点闭合或断开,达到接通或断开电路的目的,从而控制电路。

二、液涨式温控器

1、被控制对象的温度发生变化时使温控器感温部内的物质(一般是液体)产生相应的热胀冷缩的物理现象(体积变化),与感温部连通一起的膜盒产生膨胀或收缩。以杠杆原理,带动开关通断动作,达到恒温目的。

2、液胀式温控器具有控温准确,稳定可靠,开停温差小,控制温控调节范围大,过载电流大等性能特点。液涨式温控器主要用于家电行业,电热设备,制冷行业等温度控制场合用。

三、压力式温控器

1、通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为空间压力或容积的变化,达到温度设定值时,通过弹性元件和快速瞬动机构,自动关闭触头,以达到自动控制温度的目的。

2、由感温部、温度设定主体部、执行开闭的微动开关或自动风门等三部分组成。压力式温控器适用于制冷器具(如电冰箱冰柜等)和制热器等场合。

阅读全文

与热量自动控制装置系统图相关的资料

热点内容
机械手表怎么 浏览:800
钥匙是什么简单机械 浏览:2
众润机械科技有限公司怎么样 浏览:725
铸造厂可以做普工干什么活 浏览:353
室外收音设备多少钱 浏览:869
节流过程为什么可以制冷 浏览:606
汽车仪表两边代表什么 浏览:837
是做一个实验装置 浏览:570
机械租赁公司的成本构成有哪些 浏览:302
基于matlab遗传算法工具箱的曲线拟合 浏览:139
自动扶梯安全装置调试 浏览:757
铸造球铁不缩水怎么办 浏览:84
目前常用的无损检测仪器有哪些 浏览:676
尼尔机械纪元怎么激活修改器 浏览:291
19逍客仪表盘如何清理灰尘 浏览:345
中央空调的阀门盖怎么打开 浏览:32
破碎机轴承怎么安装 浏览:580
商品检验有哪些仪器 浏览:920
五金件检验项目 浏览:308
中央空调系统自动加药装置宁波厂家 浏览:209